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Background 
The Great Barrier Reef Catchment Loads Monitoring Program (GBRCLMP) first started monitoring water quality 

within Queensland’s waterways in 2006 as part of the Reef Water Quality Protection Plan 2003 (Reef Plan 2003). 

Reef Plan has since progressed through multiple iterations, and the GBRCLMP now sits within the Paddock to Reef 

(P2R) Integrated Monitoring, Modelling and Reporting Program (Reef Plan 2017). The P2R Program monitors water 

quality status and trends, and reports on progress towards the Reef 2050 Water Quality Improvement Plan (WQIP) 

targets, objectives and long-term outcomes through the Reef Water Quality Report Card. The WQIP water quality 

targets for sediments and nutrients are aimed at reducing the end-of-catchment load of these compounds being 

delivered to the Great Barrier Reef lagoon. The GBRCLMP is the source of sediment and nutrient loads data for the 

validation of Source Catchments models. 

The accurate calculation of discharge from a waterway is a critical component in the calculation of nutrient and 

sediment loads. Generally, water quality monitoring for these compounds (either lab-based water sample analysis or 

in situ probe) will generate concentration data which is multiplied by discharge to calculate the load of a compound 

being exported past a point in a waterway. Catchment load is used to calculate the yield of a compound as a weight 

per unit of catchment area. As discharge is a key component in these calculations, any uncertainty in the discharge 

data will be propagated through to the final load or yield. To achieve the best possible discharge data integrity, the 

methods that the GBRCLMP utilise to determine discharge have been continually revised and improved since the 

program commenced.  

This report will provide a summary of the discharge calculation methods that have been or are being used by the 

GBRCLMP, with the primary focus being on the calculation of discharge in estuaries. These methods include height-

discharge relationships, the use of Acoustic Doppler Velocity Meters (ADVMs), velocity indexing techniques, and 

tidal filtering instances. The report will also introduce several methods that have been recently developed by the 

GBRCLMP, including a novel tidal filtering approach and a new application of a machine learning algorithm for the 

determination of discharge based on upstream sources. These new methods have allowed the GBRCLMP to refine 

the calculation of discharge, with improved interpolation through tidal minimums, and the capacity for calculation of 

discharge during prolonged data gaps in locally measured discharge.  
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Discharge Calculation Methods 

Height Discharge Ratings 

The standard method for determining river discharge is from a height-discharge relationship (rating curve). A rating 

curve is developed by plotting heights against either gauged or estimated flows, and a line of best fit drawn through 

them. Streams are gauged by physically measuring water depths and velocities across the stream at specific heights, 

either with a handheld current meter or acoustic doppler instrument (BoM 2019a). To derive an accurate rating curve 

the full range of stream heights should ideally be gauged. Where gaugings aren’t practical, discharge for a stream 

can be estimated using Manning’s equation, derived from the surveyed slope and channel cross section, and the 

estimated roughness of the stream bed. 

A rating curve is not appropriate for all waterways – a rating curve ideally has a stable cross section, a straight stretch 

of channel with a clear, free flowing section downstream, and stable hydraulic conditions, where the height-discharge 

relationship is consistent and controlled by the roughness, slope and channel shape. Persistent or long-term changes 

(e.g. a change to the cross section from erosion or deposition) can be accounted for by re-gauging the waterway. 

However, anything downstream that causes variable or short-term backpressure can interfere with the relationship 

in an unpredictable manner. For example, a low bridge or other obstruction may catch debris, a downstream 

confluence (Figure 1) may cause flow to back up towards the station (Figure 2), or tidal influence. 

Figure 2 shows that between 12:00 on the 30th of January 2019 and 00:00 on the 2nd of February, the water level and 

discharge were rising and falling with each other. However, after 00:00 on the 2nd of February, the water level and 

discharge diverge, with water height increasing without an equivalent increase in discharge – this is caused by the 

water height of the larger waterway pushing back into the smaller tributary.  

Figure 2 Backpressure from the confluence shown in Figure 1 causing disruption to the height – discharge 

relationship at a monitoring site 

Figure 1 Example of a 

downstream confluence. 

The pink marker shows a 

monitoring site on a 

tributary ~1.6 km upstream 

of its confluence with the 

main branch. The blue 

marker shows the 

moderate flood level of the 

main branch. The 

equivalent elevation 

contour is marked in 

orange. 
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Velocity Monitoring and Indexing 

To determine discharge at a site not suitable for a rating curve (such as a tidal system, or the site described 

above), it is necessary to directly measure water velocity in addition to height and area. There are two main 

methods that can be used for continual velocity measurement; submerged acoustic doppler instruments, such as 

an Acoustic Doppler Velocity Meter (ADVM), and surface velocity monitoring, such as particle image velocimetry 

(PIV), radar, and laser doppler velocimetry (BoM 2021). These methods each have their own benefits and 

drawbacks. The major considerations are generally applicability to specific waterways (due to channel profile/width, 

water clarity, etc.), cost, on-going maintenance and the associated risks to staff, and the risk of damage to the 

monitoring equipment. To meet the GBRCLMP’s needs and logistical requirements, the GBRCLMP has adopted 

ADVMs to measure water velocity in real time at tidal sites since 2014. An ADVM is an acoustic doppler instrument, 

permanently installed in situ, oriented perpendicular to flow direction. The data produced by the ADVMs have been 

used to calculate GBRCLMP loads and yields as a major deliverable for the Paddock to Reef Integrated Monitoring 

and Reporting Program, under the Reef 2050 Water Quality Improvement Plan (Wallace et al. 2016).  

High frequency sound bursts (pings) are utilised by acoustic doppler instruments to collect water velocity data from 

within the water column using paired acoustic transducers that emit and receive pings from different directions. These 

pings reflect off particles suspended in the water and echo back to the instrument. The water velocity is calculated 

based off the phase change (the time shift, measured in degrees of one wavelength) between two consecutive pulses 

with a known delay – the change in delay between the two pulses that are received by the instrument indicates how 

far the particle has moved between pulses. The time delay between the ping and the echo determines how far from 

the instrument each particle is. In order to correctly correlate pings and echoes, each ping consists of a series of 

coded pulses – this also assist with filtering out ambient noise (Teledyne RD Instruments, 2011). The orientation of 

the ADVM means that it can profile the velocity of water across the full width of the channel, with the data being 

collated into predefined sections, or bins, across the channel. At least 20 bins are designated across a channel (BoM 

2019b). 

One of the limitations of an ADVM is that it only assesses a horizontal slice of the water column that is level with the 

ADVM – this slice is not necessarily representative of the entire water column. To correct for this, gaugings must be 

completed across a range of flow conditions. During gaugings, the ADVM will read once per minute while stream 

discharge is gauged (Figure 3), then gauged discharge is divided by a standard cross section to calculate mean 

velocity. The average gauged velocity is then regressed against the ADVM measured velocity at the time of gauging 

to compute a velocity-velocity relationship, or Velocity Index (VI). With sufficient gaugings, a VI can be developed 

and used to adjust the ADVM velocity to local conditions. Each site has its own unique VI that may vary over time. 

Figure 3 Velocity Indexing – the average velocity of the entire cross section (blue) is measured (gauged), 

using a boat mounted, downward facing ADCP (green), that is towed backwards and forwards across the 

waterway. This is paired with the average velocity recorded by the ADVM (red). 
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Initially, Velocity Indexing relationships were derived using simple linear regression relationships at each ADVM 

site (BoM 2019b). However, a simple linear regression assumes a consistent velocity index relationship across all 

conditions – high flow gaugings have confirmed the relationship can vary between tide and event conditions.  

To account for these additional factors, the raw channel aligned (x) velocity is decomposed using Complete 

Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) (Torres et al. 2011). CEEMDAN is 

used to decompose the raw x-velocity into an event velocity component (frequency greater than 24 hours), and two 

tidal velocity components (Tide A with a frequency of 12 hours, and Tide B with a frequency of 24 hours). When 

these factors are considered along with water height, cross channel (y) velocities and sufficient gaugings, a more 

representative relationship across the full range of flows can be determined. The actual factors used in the velocity 

index depends on the significance of factors, and the availability of gaugings (Figure 4).  

The use of tidal and event components as independent factors allows for high flow gaugings to better influence the 

upper stages of a velocity index, without impacting on the tidal ranges of the velocity index. The size of flow events 

(distinct from the event velocity) are taken into account with “Magnitude”, calculated by multiplying the event velocity 

(m/s) and river height (m). When high flow gaugings are not available, the “measured” inputs into the velocity indexing 

relationship can be estimated using methods similar to those traditionally used in estimating high flows for height-

discharge relationships, or from combining upstream tributaries. Although these estimates can be suitable in the 

absence of legitimate gaugings, they might not be as reliable to use once relevant gaugings have been completed. 

Examples of high flow velocity estimates derived from gauged upstream inputs are shown as red dots in the charts 

in Figure 5 and Figure 6. 

Figure 5 compares the raw and indexed velocities, where the VI regression is limited to low flows (event velocities < 

0.4 m/s) and high flow estimates. As can be seen in Figure 5C, the residuals of the gauged velocities from 0.4 m/s 

to 0.9 m/s are generally improved by the application of this VI. Most of these gaugings are more recent, and can be 

seen in Figures 5A and 5B, with indexes >170.  

Figure 6 shows the same comparison between raw and indexed velocities. However, the VI regression used in Figure 

6 included all gauged flows, and excluded the high flow estimates. A marked improvement can be seen between 

Figure 5B and Figure 6B in the larger gauged events (Index >170). The exclusion of the high flow estimates does 

have an impact on the residuals of the high flow estimates. This is expected, as the currently gauged velocities peak 

at 0.9 m/s, whereas the peak velocities recorded in the channel exceed 2 m/s. 

 

  

Figure 4 Example of a CEEMDAN derived velocity indexing relationship 

Murray River at Bilyana 

• 260 Gaugings over 3 years 

• Measured flows ranged from -42.28 to 121.88m3s-1. 

• Measured channel velocities ranged from -0.28 to 0.78 ms-1. 

Velocity Indexing relationship between the gauged velocities (𝑦) and the H-ADCP velocities (𝑋𝑉𝑒𝑙 and 𝑌𝑉𝑒𝑙) and water 
height (Height) in these measurements is described by:  

𝐶𝐸𝐸𝑀𝐷𝐴𝑁𝑋𝑉𝑒𝑙 → 𝑇𝑖𝑑𝑒𝐴 + 𝑇𝑖𝑑𝑒𝐵 + 𝐸𝑣𝑒𝑛𝑡 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝐸𝑣𝑒𝑛𝑡 ∗ 𝐻𝑒𝑖𝑔ℎ𝑡 

𝑦 =  0.3672 𝑇𝑖𝑑𝑒𝐴 −  0.4124𝑇𝑖𝑑𝑒𝐵 +  0.1687𝐸𝑣𝑒𝑛𝑡 + 0.01557𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 + 0.8048𝑌𝑉𝑒𝑙 + 0.04482 

(R2 = 0.92) 
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Once sufficient high flow gaugings are collected, the high flow estimates can be excluded from velocity indexing 

calculations, as the gauged velocities are more reliable than the upstream estimates. The velocity index relationship 

did not substantially change for the gauged range once high flow gaugings were used in the regression. Thus, for 

situations where high flow gaugings are not logistically feasible or possible, estimated high flow velocities can be 

used in lieu of high flow gaugings. Figure 5 also shows that the high flow event relationship could be adjusted by high 

flow event gaugings independent of tidal low flow gaugings, as can be seen by the different shifts between the higher 

and lower magnitude gaugings.  

  

Figure 5 Regression trained to low flow gaugings (raw event velocity <0.4 m/s) and 

high flow estimates. Event gaugings are a lighter shade of blue. 
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Once the ADVM raw velocity time series data has been velocity indexed (outputting a timeseries of "Calculated 

Velocity"), the cross-sectional area of the stream at each timestamp is determined. Cross sectional areas are 

calculated for the full range of heights and a height to area lookup table is created (called a stage-area rating, or a 

height-area rating). The height is then converted to area from the stage-area rating. For each timestamp, the 

calculated velocity (m/s) is multiplied by the cross-sectional area of the stream (m2) to determine timeseries discharge 

(m3/sec, or cumecs) (Levesque et al., 2012).  

 
 
 
 
 
 
  

Figure 6 Regression trained only to gauged flows, with estimates excluded.  Estimates are plotted in red 

for reference. 
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Tidal discharge data 

Due to the constant fluctuations in discharge caused by the rise and fall of the tides, tidal discharge is generally only 

meaningful for loads as a daily average (Ruhl et al., 2005); however, the GBRCLMP requires flow data more frequent 

than daily to compute loads. To address this problem, flow data were detided using a low pass filter (initially the 

Godin filter was used for GBRCLMP). Filters such as the Godin filter or Butterworth filter are commonly used to 

remove a tidal signature from flow data; however, they each have their own strengths and weaknesses (Walters et 

al. 1982, Ruhl et al., 2005). The unfiltered tidal discharge data shown in Figure 7 is overlayed with the result of three 

different tidal filters. The Godin and Butterworth filters are pre-existing filters, and the ccInterp filter has been 

developed by Stephen Wallace (Appendix B). 

 

 

All filters perform relatively well for large, long duration flow events (Figure 7A), and they all remove small variations 

in tides well. However, shorter duration flow events (Figure 7B) are overly attenuated by the Godin filter. This 

attenuation can also be seen across very small events during low flows midway through Figure 7C. Since Godin is a 

Figure 7 Examples of filters applied to tidal flow data 
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smoothing filter, baseflows are detided well by the Godin filter – the Butterworth is not as effective at detiding 

baseflows, with some residual tidal signal remaining after processing (Figure 7D). The Butterworth filter is also prone 

to downward drops before an event (ringing), in response to the sudden rise. The Godin filter does not have the same 

degree of ringing; however, the smoothing effect can result in Godin filtered discharge apparently rising before the 

start of the event (Figure 7B,C). The Butterworth filter is heavily impacted by ringing during low flows as well as before 

sharp rises, as can be seen by the oscillations in Figure 7D.   

The ccInterp filter is a best-of-both-worlds filter, where it resembles Godin during low flows (Figure 7C,D), and 

Butterworth during high flows (Figure 7A,B). The nature of the ccInterp filter is that it dampens rather than accentuates 

noise unlike the Butterworth filter, while also being responsive at the beginning and peak of flow events. 

There are several potential issues that arise from the use of ADVMs in the tidal zone. One of these is the fluctuating 

salinity over the tidal cycle – the salinity of the water will impact the ADVMs calculation of velocity and needs to be 

accounted for. This is done by pairing ADVMs with a conductivity sensor and re-configuring the ADVM throughout 

the tidal cycle as the salinity changes.  

Another of the limitations of using ADVMs for velocity monitoring within the tidal zone is that the ADVM must be fully 

submerged to take a reading. It requires enough water above and below the instrument to allow for the spread of the 

acoustic beam, as the water surface and riverbed will introduce interference to the return signal. The ADVM units 

that the GBRCLMP use have a spread of 20:1 (300 kHz model) or 24:1 (600 kHz model), meaning that for every 20 

or 24 meters of travel respectively, the height and width of the beam is ±1 m. The ADVM should be mounted high 

enough to avoid interference from the riverbed, while still being as low as possible to avoid excessive surface 

interference.  

When using the velocity indexing method, the ADVM does not need to measure the full width of the channel. In most 

circumstances, the velocity of a subsection of the stream can be used as a representative raw input for the velocity 

index relationship, and the velocity index relationship will correct the partial section to the gauged discharge of the 

entire stream. In situations where it is not possible to avoid interference in the ADVM signal, it is possible to determine  

more meaningful velocity index on a subsection of the stream.  

In most cases in estuaries, the ADVM will be mounted at or below the peak of the neap tide. When the tide drops 

below the instrument, long gaps of up to 12 hours can routinely occur. When this occurs, the data before and after 

the gap will be coded as QC60 (Estimate), denoting the gap (Figure 8). The filtered tidal discharge data downgrades 

the quality to the lowest quality that was used to produce that filtered data. Downgrading quality for long gaps has 

the added benefit of also flagging any potential discrepancies arising from (for example) salt-wedge impacts or non-

stabilised internal temperature correction in the ADVM.  Velocities below the instrument are interpolated linearly 

between the last outgoing tide and the next incoming tide. Anything over 12 hours is considered a gap and is not 

interpolated, although ideally, low tide gaps should not exceed 6 hours at a time for good quality data. Gaps in 

timeseries discharge data can introduce and accentuate cyclical noise into the signal when filtered, and produce a 

cumulative bias due to false assumptions about flow conditions between the last outgoing tide and the next incoming 

tide up to 6 hours later. 

During low flow conditions, tidal variability very often exceeds the event magnitude. The result is either a high degree 

Figure 8 Example of the merged discharge data, highlighting the use of modelled data through low flow 

periods. 
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of ringing, or nonsensical filter output (such as negative discharges); therefore, low precision modelled flow is inserted 

in place of ADVM discharge (Figure 8). Modelled daily interval flow data is supplied on an annual basis by the Water 

Quality Modelling team, in the Department of Environment and Science (DES) for this purpose (Waters et al. 2014). 

Although not particularly suitable for event flows, during baseflow periods the lack of fine scale temporal detail in the 

modelled data is not of a concern for load calculation purposes. This is due to low variability of discharge, and the 

infrequent concentration data collection (i.e. monthly). However, there are methods available that will produce better 

results than leaving gaps in the record and interpolating linearly. One such method is an application of Empirical 

Dynamic Modelling, a machine learning approach, as described below. 

rEDM machine learning for infilling gaps 

Empirical Dynamic Modelling (EDM) is a machine learning approach that can predict real time tidal or event discharge 

that can produce a continuous timeseries of discharge data without gaps. When a tidal filter is applied to the discharge 

data with EDM inserted into gaps where water is below the ADVM or the ADVM wasn’t recording, it will produce a 

better quality filtered timeseries, with less ringing. When the interpolated gaps between dry periods are interpolated 

with a better quality EDM discharge,  the result is less ringing, more realistic discharge data, with less bias introduced 

than a straight line interpolation, which therefore doesn’t have to be excluded to only be replaced with low precision 

modelled data. 

Empirical dynamic modelling infers spatially and temporally nonlinear relationships between multiple timeseries of 

data in a training set, and then apply these same relationships to predict a past or present timeseries. The absence 

of defined parametric equations in this approach provides a flexible framework that can adapt to a wide range of 

varying circumstances within similar subsets of data. A set of indicative predictors are trained to a target discharge, 

either tidally filtered or unfiltered discharge. When the derivative of the local height is used as a predictor (change in 

height over time), EDM can be used to calculate tidal discharge in real time. To predict the underlying flow signal 

without tide, the height derivative is simply omitted as a predictor. 

The EDM tools are accessed through an R Package called rEDM, and its use is detailed in Appendix A. 
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Summary 

The use of ADVMs for tidal sites and those with variable backpressure have been an important addition to the 

GBRCLMP expansion into end-of-system monitoring. Where sites have a good record of gaugings in a range of flow 

conditions, a good quality velocity index can be calculated for that site. The velocity index for a tidal site will use a 

decomposition of the ADVM velocity to assess tide and event components separately, which improves the fit during 

all flow situations without the assumption that the velocity index is the same during event flows and baseflows.  

Different tidal filters have been evaluated for detiding discharge data from GBRCLMP sites, and it has been 

determined that a novel detiding method called ccInterpFilter performed better than the currently available filters. 

When there is a weak freshwater discharge signal in a strongly tidal stream, as typically occurs during baseflow 

periods, the resultant filtered discharge is of a lower quality due to logistical and technological limitations. The low 

quality filtered discharge is replaced with a low precision modelled input (daily timestep) instead.  

The degree of uncertainty in calculated discharge data can be improved with the insertion of more meaningful 

interpolations, infilling gaps and replacing low quality values in the ADVM dataset. The rEDM machine learning 

method for predicting tidal discharge is an appropriate method for determining these interpolated values, especially 

when compared with highly biased and presumptive linear interpolations. The rEDM method performs well for events 

that fall within the measured range of the ADVM, and can accurately predict gaps due to water level falling below the 

ADVM or instrument malfunction. 
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Appendix A 

rEDM Derived Discharge 
In the current study, the rEDM model was trained to velocity indexed, tidally filtered ADVM discharge data, with 

upstream discharge data, upstream rainfall data, and tidally filtered local height data used as model inputs. The site 

used for the initial trial was Mulgrave River at Deeral (MRD), a GBRCLMP site with a good history of gaugings (190 

gaugings between 2015 and 2022), a well-established velocity indexing relationship (R2 = 0.97), and an upstream 

DRDMW Gauging Station (Mulgrave River at Fisheries – MRF – approximately 44 km upstream, Gauging Station 

Number 111005A).  

The predictive inputs into the model were: 

• The upstream discharge, as measured at MRF by DRDMW 

• Accumulated rainfall at MRF over the prior 6 hours, 24 hours, 72 hours, and 7 days. Each accumulated total 

excludes the periods shorter than it, to prevent stacking of the data.  

• Tidally filtered water height from MRD. The filter used was a Combined, Cumulative Interpolation Filter 

(ccInterpFilter), with a filtering period of 24 hours, developed by Stephen Wallace for the purposes of tidal 

filtering – see Appendix B for more detail. 

The target for rEDM for detided discharge was velocity indexed, tidally filtered (ccInterpFilter) discharge. 

The predictors listed are the ones that were used in this trial of rEDM. There are a number of other inputs that have 

been considered, and either trialled and disregarded, or passed over for this trial.  

• The daily modelled discharge generated by DES (Waters et al. 2014) was trialled as an input but did not 

improve the output of rEDM, and so was not included. Daily modelled data from DES is also only provided 

on a yearly basis, and is therefore at best only useful retrospectively and not able to be used as a predictor 

for real time discharge.  

• There is a discharge monitoring station (Mulgrave River at Peets Bridge) that captures more of the MRD 

catchment (66%, compared to 45% captured at MRF). However, rEDM was tested in this case with a less 

representative input, as not all sites will have such a representative upstream gauging station. 

• There is also rainfall data available from multiple other locations within the Mulgrave catchment that could 

be included.  

The data used for this trial spanned assorted periods between December 2015 and June 2021. This period was 

selected as it had previously been processed, reviewed, and reported by the GBRCLMP. The training period selected 

was 01 January 2018 – 01 June 2019. This training period included a combination of low flows and events (including 

the largest event measured in this trial), as well as two distinct wet seasons.  

A four-month subset of the training period from January 2018 to May 2018 (the calibration period) was used to prove 

the calibration process was effective, and the outputs of the calibration period are displayed in Figure 9. As can be 

seen (and as would be expected), the rEDM output aligns very well to the training data set (R2 = 0.964, Figure 13A). 

The raw rEDM output has also been processed using a six-hour ccInterpFilter. This is not specifically required, but 

can be useful when a site is trained only to rainfall data, which can be more sporadic in nature than upstream flows, 

and so has been included here to demonstrate its influence (or lack thereof). 
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The relationships that were determined by rEDM in the training set were then applied to several validation sets of 

varying characteristics to ensure that the relationships identified by the training set apply to data equally well from 

outside the training set. It was assumed that the model would be flexible enough to adapt to new data if outputs of 

the validation data trials fitted the measured discharge well. 

Figure 1 Raw and Filtered rEDM outputs at Mulgrave River at Deeral (01/01/2018 – 01/05/2018) from the 

calibration period, compared to the measured, tidally filtered ADVM data 

Figure 10 High flow validation at Mulgrave River at Deeral (30/12/2020 – 08/06/2021), comparing raw 

and filtered rEDM outputs to filtered ADVM discharge. 



 

14 

The first validation trial used data from a high flow period. The period selected for this validation dataset was from 

the 30 December 2020 to 08 June 2021. This period included the second largest measured event from MRD, as well 

as several other significant events. The outputs of the high flow validation dataset can be seen in Figure 10. The 

rEDM outputs are quite a close match to the observed discharge data (R2 = 0.941, Figure 13B), and in some cases 

the rEDM output was more responsive than the filtered ADVM discharge, which is impacted by smoothing from the 

filter. 

The second validation data set to be trialled was a period of low flow events. The time period that was selected for 

this validation period was from the 18th Dec 2015 until the 18th May 2016 due to the numerous small events that 

occurred between these dates. The smaller range of discharge also allowed for the examination of potential issues 

in extremely small events and base flows. The outputs of this validation dataset can be seen in Figure 11.  

There are multiple sources of uncertainty with the velocity indexed, tidally filtered, ADVM data that are exacerbated 

at lower flows, resulting in a large portion of low flow data being replaced with daily modelled data from DES (Figure 

8). The true detail of very low flows is often obscured by artifacts introduced by data gaps, and changes in water 

composition and density (e.g. salt wedge ingress), and the smoothing effects of the tidal filters – in effect, the signal 

to noise ratio. Filtering of the tidal data can potentially remove existing detail or introduce non-existent detail through 

cyclic noise arising from gaps in the record. As a result of this, although the rEDM outputs do not match the low flow 

events as recorded by the ADVM exactly, they could in fact be more accurately representing the effective discharge 

past the site. In the case of particularly short events (<12 hours), the rEDM output is likely to be more accurate, as 

tidal filters would treat them as a tidal signature and remove them.  

As an indication of the issues arising from low flow uncertainty, Figure 12 shows the same time period and rEDM 

outputs as Figure 11, comparing against raw, unfiltered, ADVM data. This shows events derived from rEDM can be 

smaller than the tidal fluctuation. This makes it difficult to distinguish legitimate small events from tidal discharge 

alone and is a significant advantage of the rEDM method. 

Figure 2 Low flow event validation at Mulgrave River at Deeral (18/12/2015 - 18/05/2016), comparing raw 

and filtered rEDM outputs to filtered ADVM discharge. 
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When the rEDM is trained to the full range of expected flows (peak discharge ~ 2300 Cumecs, Figure 9), it performs 

similarly well during calibration (R2 = 0.96, slope = 0.86, Figure 13A) and validation (R2 = 0.94, slope = 0.979, Figure 

13B). However, when the rEDM is trained on a smaller event (peak discharge ~ 1100 Cumecs, Figure 10, Figure 

Figure 3 Unfiltered ADVM discharge data at Mulgrave River at Deeral (18/12/2015 - 18/05/2016), 

compared to the rEDM outputs from the low flow event validation period. 

Figure 4 Comparing validation to calibration, X axis tidally filtered discharge (cumecs), Y axis 

rEDM derived discharge (cumecs). 
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13C) and then extrapolated to predict a larger event, the rEDM output is stunted to around the magnitude of the 

calibration period, in this case around 1100 cumecs. The validation shows rEDM performs well up until the max 

measured range, and then begins to plateau (R2 = 0.92, slope = 0.58, Figure 13D). The comparison of Figure 13A 

and Figure 13D shows that rEDM is able to match the high flows much better when trained to high flows than when 

trained to low flows.  

In order to evaluate the relative performance of the rEDM outputs of discharge and the daily modelled discharge data 

sourced from DES, the two datasets are plotted side by side against tidally filtered ADVM discharge data in Figure 

14. As can be seen, the daily modelled data is acceptable at low flows, when compared with the filtered ADVM 

discharge. However, once the discharge moves away from baseflow (more than 100 cumecs in this example) the 

daily modelled discharge and the filtered ADVM discharge data begin to diverge.  

The poor correlation in Figure 14B is at least partially the result of comparing hourly data to a daily average. This is 

demonstrated in Figure 15 which shows similar characteristics when comparing daily ADVM to modelled, although 

there is still a significantly better performance of daily ADVM over daily DES modelled (as should be expected). 

Limitations 

As demonstrated in this paper, there is a relationship between discharge and height, upstream discharge, and rainfall 

in the catchment. The rEDM method has been demonstrated to be able to derive the relationships between these 

factors and then apply them effectively to additional data, providing a useful tool for the determination of discharge. 

However, it is very dependent upon the quality and availability of the inputs, as these will impact the reliability and 

stability of the derived model as well as its ability to be applied to new data. Large changes in catchment dynamics 

could have an impact on the effectiveness of the model. It also completely relies on previously measured, velocity 

indexed discharge data to be used as a training set. For a highly representative velocity index, a large event would 

need to have been both measured and gauged in the waterway that is to be modelled.  

Figure 14 Model performance of A) rEDM and B) daily modelled discharge (y-axis) against tidally filtered 

ADVM discharge data (x-axis). 
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In this trial, a period of 18 months has been used as a training dataset, with an additional 12 months of data used for 

validation. This trial has also restricted the input data to a less representative data set in order to test the limits of the 

rEDM method. With a training set that included the largest event recorded at the site (and despite restrictions placed 

on the predictive inputs), the rEDM method produced reliable outputs for a range of conditions that equalled or 

exceeded the accuracy of alternative methods. Additional improvements in the reliability of the output could be sought 

by increasing the representivity or number of the predictive inputs or by increasing the length of the training data set. 

However, there is a risk of over-fitting the model to the training data – if this were to occur, the model could lose the 

flexibility to respond to a wide variety of upstream conditions. In some instances, it may be necessary to use multiple 

upstream rainfall and discharge inputs, especially where there are multiple significant tributaries feeding into the one 

system, or larger geographical areas that may have spatially variable rainfall. 

One major limitation of rEDM is that it is not particularly suitable for the extrapolation of discharge in events that are 

larger than those in the training set, as the models tend to stunt the peaks of events outside training parameters. If a 

larger event does occur, assuming there is confidence in the velocity index extrapolation, the rEDM could be 

recalibrated on the larger event. 

  

Figure 15 Comparison of A) daily mean discharge from ADVM and B) daily modelled 

discharge (y-axis) against rEDM discharge (x-axis) 
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Appendix B  

Combined Cumulative Interpolation Filter 
The author has developed a method of filtering tidal signals from time series data that can be used on both height 
and discharge data, called a Combined Cumulative Interpolation Filter (ccInterpFilter). This method utilises 
Monotone Interpolation, through the function spinterp, part of the pracma R package.  

https://www.rdocumentation.org/packages/pracma/versions/1.9.9/topics/spinterp 

The ccInterpFilter (period of n hours) takes all data in the timeseries and offsets it to ensure that there aren’t any 
negative values. It then accumulates those data, creating a monotonic (constantly increasing) data set. The filter 
generates n timeseries of cumulative data, with a cumulative period of n hours centred on the timestamp, and an 
offset of 1 hour from the previous timeseries.  

Time series generation working example: 

A filter period of 24 hours on a discharge dataset from 00:00 on the 1st Jan until 23:00 on the 31st Jan will 
generate 24 separate timeseries of daily cumulative data, each with 30 timesteps. The first timeseries will 
be daily cumulative totals from 00:00 – 00:00+1 day the second timeseries will be daily cumulative totals 
from 01:00 – 01:00+1 day up to the 24th timeseries, which will be daily cumulative totals from 23:00 – 
23:00+1 day.  

Each of these timeseries is then run through the monotone interpolation (spinterp), returning hourly values. The 
interpolated timeseries are averaged, returning an hourly accumulated interpolated timeseries. The derivative of 
this accumulated timeseries is then determined (to de-accumulate the timeseries), and the offset is removed. An 
example of the filtering can be seen in Figure 16. The R script required to process the data can be found in Figure 
17. 

Figure 16 ccInterpFilter components visualised, with a 24 hour filtering period. 
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ccInterpFilter <- function(ts, hours = 24, type="spinterp") 
{ 
  roundedtime <- round(ts[1,1] , units="hours")+1*60*60  # Trim times up, won't use part hours 
  f.round <- approxfun(ts[,1], ts[,2]) 
  startvalue <- f.round(roundedtime) 
  df <- data.frame(t = roundedtime, startvalue ) 
  colnames(df) <- colnames(ts) 
  ts <- rbind(df, ts) 
   
  # converts time series to daily, and cumulates, interpolates, and then gets the derivative. 
  # does this for each hour, i.e. for 24 hour averaging it will do it 24 times offset an hour each time 
  # the result is the average of all hours interpolated. 
  # ts = dataframe of posixct time, and a value. 
   
  spinterpData <- 0 #initialize 
  for(i in 0:(hours-1))  #Loop through all daily interpolations 
  { 
    # for each 24 hour interpolation, increment the offset by an hour each time 
    daily <- changeInterval(ts, Interval=hours*60, offset=i*60) 
    offset <- min(daily$FMean) 
    daily$FMean <- daily$FMean - offset 
     
    daily$FMean[daily$FMean < 0] <- 0  
    daily[is.na(daily)] <- 0 
    numdate <- as.numeric(as.POSIXct(daily$Date, format=format)) /60/60/24    # convert to numeric 
    spinterpSegment <- spinterpConvert(numdate, daily$FMean, type=type)    # create hourly spinterp data ( interpolation 
of cumulative daily discharge ) 
    spinterpSegment$Data <- spinterpSegment$Data+offset    # remove offset again 
    if (i>0){# after first row 
      pad <- nrow(spinterpData) - length(c(rep(NA, i), head(spinterpSegment$Data, -i)) ) 
      if ( pad > 0) 
      { # pad with na's 
        spinterpData <- cbind(spinterpData, i=c(rep(NA, i), head(spinterpSegment$Data, -i), rep(NA, pad)   )) 
      }else{ 
        spinterpData <- cbind(spinterpData, i=c(rep(NA, i), head(spinterpSegment$Data, -i))) 
      } 
    }else{# first row 
      spinterpData <- spinterpSegment 
    } 
  } 
  setcolnames <- paste("Col", 0:(hours-1), sep = "") 
  setcolnames <- c("Date", setcolnames) 
   
  colnames(spinterpData) <- setcolnames 
  spinterpData <- na.trim(spinterpData)  # trim na's   
  spinterpData <- cbind(spinterpData, avg = rowMeans(spinterpData[-1])) 
   
  spinterpData$Date <- as.POSIXct(spinterpData$Date*60*60*24, origin="1970-01-01") 
  return(spinterpData) 
} 

Figure 17 ccInterp filter script - R programming language 


