

D

ep
ar

tm
en

t o
f E

m
pl

oy
m

en
t,

E
co

no
m

ic
 D

ev
el

op
m

en
t a

nd
 In

no
va

tio
n

Office of Liquor Gaming and Regulation
Hash Algorithms

Version 1.6

Hash Algorithms Version 1.6 2

© The State of Queensland, Department of Employment, Economic Development and Innovation, 2010.

Copyright protects this publication. The State of Queensland has no objection to this material being
reproduced but asserts its right to be recognised as author of its original material and the right to have its
material remain unaltered. Inquiries should be addressed to crown.copyright@qld.gov.au

The information contained herein is subject to change without notice. The copyright owner shall not be liable
for technical or other errors or omissions contained herein. The reader/user accepts all risks and
responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using
this information.

Enquiries about reproduction, including downloading or printing the web version, should be directed to
ipcu@dpi.qld.gov.au or telephone +61 7 3225 1398.

OLGR – Technical Unit is independently certified to ISO 9001:2008 by SAI Global Ltd

Hash Algorithms Version 1.6 3

Contents
1 Introduction 4

2 General 4

3 Regarding Regulated Gaming Equipment 6

4 Submission requirements regarding program hashes: 8

5 Hashing Algorithms - Specifications 9

6 Examples 15

7 Revision History 16

Hash Algorithms Version 1.6 4

1 Introduction

Policy

It is Office of Liquor Gaming and Racing (OLGR) policy for a wide range of Regulated
Gaming Equipment in Queensland, such as gaming machines, jackpot systems and other
regulated gaming systems in general to be able to produce a hash, or fingerprint of their
software or firmware for verification and auditing purposes using an acceptable hashing
algorithm.

Hashing algorithms are also used extensively by the OLGR throughout the submission and
approval process and for auditing purposes.

Purpose

The purpose of this document is to list the acceptable hashing algorithms for use with
OLGR technical requirements documents. For example:

• OLGR EGM Communications Protocol (QCOM)
• Program Storage Device Verification minimum requirements.
• Jackpot System Minimum Requirements.
• Submission Requirements.
• System Auditing.

Scope

This document is applicable to all organisations designing regulated gaming equipment,
systems, or software to any of OLGR’s technical requirements documents, or submitting
software to the OLGR.

Please refer to the revision history for incept dates of each release of this document.

2 General

Please note, the hashing algorithms listed in this document can be classified as “Key-
dependent one way hash functions”. The keys are public so the algorithms should not be
confused with a Message Authentication Code (MAC). They should not be confused with
Digital Signature Algorithms as used in applied cryptography.

Hash Algorithms Version 1.6 5

2.1 List of Acceptable Hash Algorithms:

1. SHA-1 (160 bit Secure Hash Algorithm)

This algorithm is the current algorithm for all digital verification, auditing, submission and
approvals to the OLGR where HMAC-SHA (see below) is not being used.

SHA-1 is an open standard algorithm readily available off the internet. Refer to the FIPS-
180-1 standard for the algorithm. A number of free source code implementations of SHA-1
and associated utilities are also freely available on the internet.

2. HMAC-SHA (utilised by all QCOM v1.6.x EGMs)

HMAC-SHA is the seeded version of the used SHA-1 algorithm. The HMAC-SHA algorithm
utilises 20 byte seed and hash results.

HMAC & SHA-1 are open standard algorithms, readily available off the internet. For SHA-
1, refer to the standard FIPS-180-1 and for HMAC-SHA, refer to the standard RFC-2104. A
number of source code implementations of HMAC-SHA are also freely available off the
internet. For examples of HMAC-SHA for testing purposes, refer to the standard: RFC-
2202.

HMAC-SHA must be utilised by all QCOM v1.6.x EGMs as their program hash algorithm.
This new algorithm replaces the old PSA32 algorithm currently utilised by QCOM v1.5
EGMs.

3. CRC (Cyclic Redundancy Check)

16 & 32 bit CRCs may still be utilised but purely for error checking applications, for example
CRCs in communications protocols and critical memory / data integrity. If a particular
application of a hashing algorithm has any aspect of security, then CRCs must not be used.

Hash Algorithms Version 1.6 6

3 Regarding Regulated Gaming Equipment

This section applies to regulated gaming equipment, such as Gaming Machines and
Jackpot Triggering Devices etc that are required to produce a ‘program hash’. The
remainder of the document will refer to them simply as a ‘Device’ . However where
required, particular reference is made to Gaming Machines and the QCOM Protocol.

3.1 Data that must be included in an overall Device program hash.

The program hash calculation must encompass all data stored within the Device for which it
is physically possible to be executed by the Device’s CPU/s (regardless of whether or not
this is normally done by the device during operation). “CPU” refers to the CPU(s) & micro-
controllers (including FPGAs & CPLDs) which may control, or could potentially affect
play/gamble outcomes and critical meters or areas, or data which is considered a
significant integrity or security risk by the regulator. This also includes data which can be
loaded and executed from Device RAM.

At this time this does not include peripheral device programs such as banknote or coin
acceptor program data, or configuration data which may change on a day to day basis.

If unsure of whether to include a Program Storage Device into the hash calculation, then
either include it by default, or check with the OLGR.

Acceptance of the data and device set to be included in the hash calculation is at the
discretion of the Executive Director of the OLGR.

With the increased use of new devices containing file systems, such as flash chips, the
above requirement may not be suitable in all cases. If a storage device has a file system
then approval may be granted for the hash calculation to encompass only the file data on
the device.

Also, to expedite hash calculations with regards to QCOM Gaming Machines, sound and
graphics data may be exempted from direct inclusion in the hash calculation. This
exemption may be granted provided the following conditions are met:

1. A hash result of the excluded sound and graphics data must be hard coded in the data

region that is contained in the hash calculation.

2. The sound and graphics data must be verified against this hard coded value at least
every time the CPU is reset.

3. OLGR is provided with a method of verifying that the hash of the sound and graphics in

source code is identical to the hard coded value.

3.2 Regarding unused space on storage devices.

Hash Algorithms Version 1.6 7

Typically, all unused space on a Program Storage Device must be also included in the
program hash calculation, however, if the Device has remote upgrade capability, then
unused data space does not have to be included in the hash calculation. However, other
requirements may apply, check with the OLGR.

For slightly better protection against Trojans, unused data space contained on a Program
Storage Device that is included in the hash could be filled with non-algorithmically
generated random white noise which has been run through a compression algorithm to
prevent it from being compressed any further. (Pseudo Random Number Generators are
not suitable as white noise generators as the algorithm makes the data highly
compressible). This is not mandatory in any case.

3.2.1 Devices with File Systems

If a Device has a file system which does not lend itself well to making perfect copies of itself
(e.g. flash memory) then only the contents of files themselves are required to be included in
the hash calculation. File system directories, file allocation tables, sector/cluster headers
and footers etc do not have to be included in the hash calculation.

3.2.2 Devices with multiple Program Storage Devices

It is preferred for Devices with multiple physical or logical Program Storage Devices, if the
overall hash calculation result is a result from an independent hash calculation over each
physical/logical Program Storage Devices within the Device, ‘exclusive-OR’ed’ (XOR)
together (as opposed to daisy chaining an overall result together).

A Device may calculate its program hash in any desired program memory byte/bit order
and in parallel over separate systems.

The Device must combine multiple hash results (e.g. from different sub-systems) into one
result via modulo 2 addition (XOR).

Hash Algorithms Version 1.6 8

4 Submission requirements regarding program
hashes:

1. The OLGR must be supplied with exact details of how the Device performs the hash

over its software/firmware. I.e. the methodology, byte/word order of the data included in
the hash calculation.

2. For Devices (such as gaming machines and other JTD’s) where the OLGR (or ATF) is

also building and reconciling built code with production code, a utility program and/or
procedure must also be provided where required, that converts the Device’s object
code into one or more files, in such a way so that if a byte order hash over those files is
performed, then the combined result (via XOR) would yield the same result as the
Device’s program hash calculation. (These files are required for upload onto the OLGR
program hash server which generates hashes for use with QCOM and system audits.)

4.1 Retired Hash Algorithms (For Information Only):

PSA32 (utilised by all QCOM v1.5.x Gaming Machines)

This algorithm is basically a standard Cyclic Redundancy Check (CRC) algorithm but with a
slight modification to further randomize the result. Refer to the algorithm section for more
information.

This algorithm has been retired and is in the proce ss of being phased out.

Hash Algorithms Version 1.6 9

5 Hashing Algorithms - Specifications

5.1 The HMAC-SHA Algorithm

Refer standard FIPS-180-1 for the SHA-1 algorithm and standard RFC-2104 for HMAC-
SHA algorithm. These two standards are freely available from the internet.

5.2 The PSA32 Algorithm (retired)

This algorithm is a slightly modified 32 bit, CRC algorithm, operating one byte at a time.
The modification is that each partial CRC result (i.e. after each byte) is exclusive OR'ed
with the current unsigned 32 bit wide, 8 bit check-sum, see below. The standard 32 bit
CRC algorithm is provided in the Appendix.

ie. In "C" notation, the PSA32 algorithm:

unsigned long int Checksum = 0; // 32 bit unsigned int
unsigned long int CRC = Seed; // 32 bit unsigned int

Seed

unsigned char *b = StartOfProgramSpace; // pointer to 8 bit unsigned char

do {
 Checksum += *b; // "b" is 8 bits (one byte) of Program Data
 // CRC_Calc is a function performing a standard 32 bit Cyclic

Redundancy Check
 CRC = CRC_Calc(*b, CRC) ^ Checksum; // Note the XOR ^ !!!
 b++;
} while (!EndofProgramSpace);

Notes

Refer below for the CRC32 algorithm regarding the CRC_Calc() function above.

32 bit algorithms are a fairly weak for a one way hashing function, so to compensate the
above algorithm should be used on a periodic basis with a variable seed. It is not a major
concern if more than one program works out to have the same hash for a given seed. But it
should be noted that this is possible.

Hash Algorithms Version 1.6 10

5.3 The CCITT 16 bit CRC Algorithm

This is the well known standard 16 bit Cyclic Redundancy Check represented in “C” and
used in many applications. (It is provided here for reference only.) For example, this
algorithm is used for OLGR EGM Protocol (i.e. “QCOM”) message CRC generation.

//// crcccitt.h

extern unsigned int CRCccittTable[256];

#define CRCccittMACRO(b, crc) (CRCccittTable[(crc ^ b) & 0xff] ^ (crc >>
8))
// Returns (unsigned int) CCITT CRC, b is an unsign ed char, crc is an
unsigned int

unsigned int CRCccitt(unsigned char b, unsigned int CRC);
unsigned int CRCccittBlock(unsigned char *b, unsign ed int CRC, unsigned
int Length);

//// crcccitt.c

#include "crcccitt.h"

// 16 bit CCITT CRC repeats every 32767 iterations when performed over
uniform data
// ie there is one reserved value

// This CCITT CRC routine is basically a LSB first HDLC CCITT CRC but with
the following differences:
// 1) The Seed is bit reversed
// 2) The result is bit reversed

// Some short examples
// data 0x0F seed 0xAA55 result is FD75
// data 0x01 seed 0x0000 result is 1189
// data 0x00 0x00 seed 0xffff result is 0xF0B8

unsigned int CRCccittTable[] =
{
 0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x 6536, 0x74BF,
 0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0x E97E, 0xF8F7,
 0x1081, 0x0108, 0x3393, 0x221A, 0x56A5, 0x472C, 0x 75B7, 0x643E,
 0x9CC9, 0x8D40, 0xBFDB, 0xAE52, 0xDAED, 0xCB64, 0x F9FF, 0xE876,
 0x2102, 0x308B, 0x0210, 0x1399, 0x6726, 0x76AF, 0x 4434, 0x55BD,
 0xAD4A, 0xBCC3, 0x8E58, 0x9FD1, 0xEB6E, 0xFAE7, 0x C87C, 0xD9F5,
 0x3183, 0x200A, 0x1291, 0x0318, 0x77A7, 0x662E, 0x 54B5, 0x453C,
 0xBDCB, 0xAC42, 0x9ED9, 0x8F50, 0xFBEF, 0xEA66, 0x D8FD, 0xC974,
 0x4204, 0x538D, 0x6116, 0x709F, 0x0420, 0x15A9, 0x 2732, 0x36BB,
 0xCE4C, 0xDFC5, 0xED5E, 0xFCD7, 0x8868, 0x99E1, 0x AB7A, 0xBAF3,

Hash Algorithms Version 1.6 11

 0x5285, 0x430C, 0x7197, 0x601E, 0x14A1, 0x0528, 0x 37B3, 0x263A,
 0xDECD, 0xCF44, 0xFDDF, 0xEC56, 0x98E9, 0x8960, 0x BBFB, 0xAA72,
 0x6306, 0x728F, 0x4014, 0x519D, 0x2522, 0x34AB, 0x 0630, 0x17B9,
 0xEF4E, 0xFEC7, 0xCC5C, 0xDDD5, 0xA96A, 0xB8E3, 0x 8A78, 0x9BF1,
 0x7387, 0x620E, 0x5095, 0x411C, 0x35A3, 0x242A, 0x 16B1, 0x0738,
 0xFFCF, 0xEE46, 0xDCDD, 0xCD54, 0xB9EB, 0xA862, 0x 9AF9, 0x8B70,
 0x8408, 0x9581, 0xA71A, 0xB693, 0xC22C, 0xD3A5, 0x E13E, 0xF0B7,
 0x0840, 0x19C9, 0x2B52, 0x3ADB, 0x4E64, 0x5FED, 0x 6D76, 0x7CFF,
 0x9489, 0x8500, 0xB79B, 0xA612, 0xD2AD, 0xC324, 0x F1BF, 0xE036,
 0x18C1, 0x0948, 0x3BD3, 0x2A5A, 0x5EE5, 0x4F6C, 0x 7DF7, 0x6C7E,
 0xA50A, 0xB483, 0x8618, 0x9791, 0xE32E, 0xF2A7, 0x C03C, 0xD1B5,
 0x2942, 0x38CB, 0x0A50, 0x1BD9, 0x6F66, 0x7EEF, 0x 4C74, 0x5DFD,
 0xB58B, 0xA402, 0x9699, 0x8710, 0xF3AF, 0xE226, 0x D0BD, 0xC134,
 0x39C3, 0x284A, 0x1AD1, 0x0B58, 0x7FE7, 0x6E6E, 0x 5CF5, 0x4D7C,
 0xC60C, 0xD785, 0xE51E, 0xF497, 0x8028, 0x91A1, 0x A33A, 0xB2B3,
 0x4A44, 0x5BCD, 0x6956, 0x78DF, 0x0C60, 0x1DE9, 0x 2F72, 0x3EFB,
 0xD68D, 0xC704, 0xF59F, 0xE416, 0x90A9, 0x8120, 0x B3BB, 0xA232,
 0x5AC5, 0x4B4C, 0x79D7, 0x685E, 0x1CE1, 0x0D68, 0x 3FF3, 0x2E7A,
 0xE70E, 0xF687, 0xC41C, 0xD595, 0xA12A, 0xB0A3, 0x 8238, 0x93B1,
 0x6B46, 0x7ACF, 0x4854, 0x59DD, 0x2D62, 0x3CEB, 0x 0E70, 0x1FF9,
 0xF78F, 0xE606, 0xD49D, 0xC514, 0xB1AB, 0xA022, 0x 92B9, 0x8330,
 0x7BC7, 0x6A4E, 0x58D5, 0x495C, 0x3DE3, 0x2C6A, 0x 1EF1, 0x0F78
 };

unsigned int CRCccitt(unsigned char b, unsigned int CRC)

{
return CRCccittMACRO(b,CRC);
}

unsigned int CRCccittBlock(unsigned char *b, unsign ed int CRC, unsigned
int Length)

{
int i;

for (i = 0; i != Length; i++) {
 CRC = CRCccittMACRO(b[i],CRC);
 }
return CRC;
}

5.4 The 32 bit CRC Algorithm

This is the standard 32 bit Cyclic Redundancy Check algorithm represented in “C” source
code. It is used in many applications including the PSA32 algorithm.

(Note, the CRC-32 algorithm shown below is not the PSA32 algorithm, but it does
form a significant part of the overall method. Ref er to the previous section on the
PSA32 for more information.)

//// CRC32.h

Hash Algorithms Version 1.6 12

extern unsigned long int CRC32Table[256];

#define CRC32MACRO(b, crc) (CRC32Table[((int)crc ^ b) & 0xff] ^ ((crc >> 8) & 0x00FFFFFF))

// returns unsigned long crc value, b unsigned char , crc unsigned long int

// This macro below is equivalent to arj & pkzip CR Cs (ie. it inverts the input bytes)

//#define CRC32MACRO(b, crc) (CRC32Table[((int)crc ^ b ^ 0xff) & 0xff] ^ ((crc >> 8) |

0xff000000))

unsigned long int CRC32(unsigned char b, unsigned l ong int CRC);

unsigned long int CRC32Block(unsigned char *b, unsi gned long int CRC,unsigned int Length);

//// CRC32.c

#include "crc32.h"

/*

 * Copyright (C) 1986 Gary S. Brown. You may use t his program, or

 * code or tables extracted from it, as desired wit hout restriction.

 */

/* First, the polynomial itself and its table of fe edback terms. The */

/* polynomial is */

/* X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+ X^5+X^4+X^2+X^1+X^0 */

/* Note that we take it "backwards" and put the hig hest-order term in */

/* the lowest-order bit. The X^32 term is "implied "; the LSB is the */

/* X^31 term, etc. The X^0 term (usually shown as "+1") results in */

/* the MSB being 1. */

/* Note that the usual hardware shift register impl ementation, which */

/* is what we're using (we're merely optimizing it by doing eight-bit */

/* chunks at a time) shifts bits into the lowest-or der term. In our */

/* implementation, that means shifting towards the right. Why do we */

/* do it this way? Because the calculated CRC must be transmitted in */

/* order from highest-order term to lowest-order te rm. UARTs transmit */

/* characters in order from LSB to MSB. By storing the CRC this way, */

/* we hand it to the UART in the order low-byte to high-byte; the UART */

/* sends each low-bit to hight-bit; and the result is transmission bit */

/* by bit from highest- to lowest-order term withou t requiring any bit */

/* shuffling on our part. Reception works similarl y. */

/* The feedback terms table consists of 256, 32-bit entries. Notes: */

/* */

/* The table can be generated at runtime if des ired; code to do so */

/* is shown later. It might not be obvious, bu t the feedback */

/* terms simply represent the results of eight shift/xor opera- */

/* tions for all combinations of data and CRC r egister values. */

/* */

/* The values must be right-shifted by eight bi ts by the "updcrc" */

/* logic; the shift must be unsigned (bring in zeroes). On some */

/* hardware you could probably optimize the shi ft in assembler by */

/* using byte-swap instructions. */

Hash Algorithms Version 1.6 13

unsigned long int CRC32Table[] = { /* CRC polynomia l 0xedb88320 */

0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x0 76dc419, 0x706af48f, 0xe963a535,

0x9e6495a3,

0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x0 9b64c2b, 0x7eb17cbd, 0xe7b82d07,

0x90bf1d91,

0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1 adad47d, 0x6ddde4eb, 0xf4d4b551,

0x83d385c7,

0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x1 4015c4f, 0x63066cd9, 0xfa0f3d63,

0x8d080df5,

0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3 c03e4d1, 0x4b04d447, 0xd20d85fd,

0xa50ab56b,

0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x3 2d86ce3, 0x45df5c75, 0xdcd60dcf,

0xabd13d59,

0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x2 1b4f4b5, 0x56b3c423, 0xcfba9599,

0xb8bda50f,

0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2 f6f7c87, 0x58684c11, 0xc1611dab,

0xb6662d3d,

0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x7 1b18589, 0x06b6b51f, 0x9fbfe4a5,

0xe8b8d433,

0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7 f6a0dbb, 0x086d3d2d, 0x91646c97,

0xe6635c01,

0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6 c0695ed, 0x1b01a57b, 0x8208f4c1,

0xf50fc457,

0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x6 2dd1ddf, 0x15da2d49, 0x8cd37cf3,

0xfbd44c65,

0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4 adfa541, 0x3dd895d7, 0xa4d1c46d,

0xd3d6f4fb,

0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x4 4042d73, 0x33031de5, 0xaa0a4c5f,

0xdd0d7cc9,

0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5 768b525, 0x206f85b3, 0xb966d409,

0xce61e49f,

0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x5 9b33d17, 0x2eb40d81, 0xb7bd5c3b,

0xc0ba6cad,

0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xe ad54739, 0x9dd277af, 0x04db2615,

0x73dc1683,

0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe 40ecf0b, 0x9309ff9d, 0x0a00ae27,

0x7d079eb1,

0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf 762575d, 0x806567cb, 0x196c3671,

0x6e6b06e7,

0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf 9b9df6f, 0x8ebeeff9, 0x17b7be43,

0x60b08ed5,

0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd 1bb67f1, 0xa6bc5767, 0x3fb506dd,

0x48b2364b,

0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xd f60efc3, 0xa867df55, 0x316e8eef,

0x4669be79,

0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xc c0c7795, 0xbb0b4703, 0x220216b9,

0x5505262f,

0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc 2d7ffa7, 0xb5d0cf31, 0x2cd99e8b,

0x5bdeae1d,

0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9 c0906a9, 0xeb0e363f, 0x72076785,

0x05005713,

Hash Algorithms Version 1.6 14

0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x9 2d28e9b, 0xe5d5be0d, 0x7cdcefb7,

0x0bdbdf21,

0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x8 1be16cd, 0xf6b9265b, 0x6fb077e1,

0x18b74777,

0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8 f659eff, 0xf862ae69, 0x616bffd3,

0x166ccf45,

0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa 7672661, 0xd06016f7, 0x4969474d,

0x3e6e77db,

0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa 9bcae53, 0xdebb9ec5, 0x47b2cf7f,

0x30b5ffe9,

0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xb ad03605, 0xcdd70693, 0x54de5729,

0x23d967bf,

0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb 40bbe37, 0xc30c8ea1, 0x5a05df1b,

0x2d02ef8d

};

unsigned long int CRC32(unsigned char b, unsigned l ong int CRC)

{

return CRC32MACRO(b,CRC);

}

unsigned long int CRC32Block(unsigned char *b, unsi gned long int CRC,unsigned int Length)

{

int i;

for (i = 0; i != Length; i++)

 CRC = CRC32MACRO(b[i],CRC);

return CRC;

}

Hash Algorithms Version 1.6 15

6 Examples

6.1 HMAC-SHA

For examples of HMAC-SHA please refer to RFC-2202 which is readily available from the
internet. For example; refer http://www.slavasoft.com/hashcalc/index.htm for a free HMAC-
SHA1 & SHA1 utility.

OpenSLL also has a command line implementation of SHA1 adhering to FIPS-180-1 for
testing purposes.

6.2 Examples of the CRC CCITT, CRC-32, PSA16 and PSA32 algorithms

40 Octets filled with "0x00", Length = 40 bytes
Seeds = 0xffff, 0x1234 CRC CCITT = 0x9BA1, 0x0F61
Seeds = 0xffff, 0x1234 PSA16 = 0x9BA1, 0x0F61
Seeds = 0xfffffff, 0x12345678 CRC-32 = 0x1613C24E, 0xBEC53640
Seeds = 0xffffffff, 0x12345678 PSA32 = 0x1613C24E, 0xBEC53640
char pkt_data[40] = {
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0 0,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00};

40 Octets filled with "0xff", Length = 40 bytes
Seeds = 0x0000, 0x1234 CRC CCITT = 0xFDE6, 0xF287
Seeds = 0x0000, 0x1234 PSA16 = 0x0825, 0x0744
Seeds = 0x00000000, 0x12345678 CRC-32 = 0x653C71C2, 0xDBF94782
Seeds = 0x00000000, 0x12345678 PSA32 = 0x75E30C7A, 0xCB263A3A
char pkt_data[40] = {
 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xf f,
 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xf f,
 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xf f,
 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xf f};

40 Octets counting: 1 to 40, Length = 40 bytes
Seeds = 0x0000, 0x1234 CRC CCITT = 0x0374, 0x0C15
Seeds = 0x0000, 0x1234 PSA16 = 0xC552, 0xCA33
Seeds = 0x00000000, 0x12345678 CRC-32 = 0xA6581D74, 0x189D2B34
Seeds = 0x00000000, 0x12345678 PSA32 = 0x949208D4, 0x2A573E94
char pkt_data[40] = {
 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0 a,
 0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13, 0x14,
 0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d, 0x1e,
 0x1f,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27, 0x28};

16843010 Octets filled with "0xff", Length = 168430 10 bytes

Hash Algorithms Version 1.6 16

Seeds = 0x0000, 0x1234 CRC CCITT = 0xD949, 0x6F13
Seeds = 0x0000, 0x1234 PSA16 = 0x37CA, 0x8190
Seeds = 0x00000000, 0x12345678 CRC-32 = 0xD5781E9F, 0xE5AA45DE
Seeds = 0x00000000, 0x12345678 . PSA32 = 0x632521B2, 0x53F77AF3

7 Revision History

Version Changes QIR Who Release
Date

Incept
Date

1.0 Initial Release RL 30/05/1997

1.1

• Fixed up copyright notice as per
policy

• Added additional PSA examples
• Minor clarifications elsewhere,

refer redline etc

 RL 29/01/1998

1.2

• Converted to Word
• Document is to be generally

released
• Made general clarifications prior

public release of this document

 RL 12/02/2001

1.3

• General review
• Added option on request to

remove direct inclusion of sound
and graphic data from the overall
signature result

 RL 28/06/2004

1.4

• Deleted all references to PSA16
(never utilised)

• Added new Program Signature
Algorithm for use with QCOM
version 1.6.x. Namely HMAC-
SHA

 RL 19/10/2004

1.5

• Draft release 11 April 2008
• Yearly review (QIR 626) removed

references to EGMs, made more
generic, removed references to
‘signatures’, implemented
standard Min.Req template,
clarified section on ‘What data
must be included in the overall
Device program hash?’

626 RL 01/05/2008

1.6
• Updated to new DEEDI report

document template
• QOGR->OLGR

 RL 20/8/2010

Incept date: Where not stated otherwise the incept date for new or changed minimum requirements
in this version of the document is 6 months from the release date of the document in all new
submissions to the OLGR.

