Using precision technologies to
understand within-field variability

Department of Agriculture and Fisheries

Sun City Exports, Woodridge, Western Australia

Key outcomes

e Crop soil sensing imagery and soil mapping layers
showed differences in soil and crop growth.

e Soil variability was due to differences in soil moisture
based on topography and subtle differences in soil
texture (given the sandy soil type).

e Modelling of water flow and drainage identified an
area of water accumulation at the lowest elevation.

Background

Francis Tedesco had not previously implemented any
precision agriculture (PA) technologies prior to his
involvement in this project.

He had observed variability across individual fields,
such as the site of this case study; a pivot quarter
of approximately 9 ha. There was some soil texture
variability evident at this site, with areas that were
wetter and visibly darkerin colour.

Francis was involved in work predicting carrot yields
from remotely sensed satellite imagery, yield mapping
using a yield monitor on the carrot harvester and in
quantifying and understanding the variability across
this pivot quarter.

Activities
Soil mapping

Electromagnetic (EM38), elevation and radiometric soil
mapping was carried out to identify and understand
any variability in the soil, based on visible differences
across the field.

The soil mapping was carried out at 12 m swaths across
the field. After processing the soil sensing data, the
resulting maps were used to locate sample points
within each zone (based on both ECa, elevation and
radiometric data) (Figure 1).

Soil samples were collected at each of these
sample points to a depth of 60 cm and analysed
for soil texture, electrical conductivity (EC), soil pH,
exchangeable cations and nutrients.
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Grower: Sun City Exports, Center West

Location: Woodridge, Western Australia
Area: 530 ha

What they grow: carrots

Soils: sands

Topography: undulating sands

Average annual rainfall: 970 mm (winter
dominant)

Precision technologies implemented: Yield
mapping, EM38 and gamma radiometric

soil mapping and yield prediction from high
resolution satellite imagery through VG16009

Laboratory analysis of soil samples did not indicate any
difference in soil EC, and there were only very subtle
differences in soil texture. However, there were obvious
visible differences in colour and wetness of the soil in
different areas of the field.

“Landscape variability and the soil type is impacting
on soil moisture status across the field. Soil mapping
and soil moisture sensing has helped quantify this and
identified zones that could be used for variable rate
irrigation.” — Francis Tedesco
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Figure 1. Soil sampling points located across different EM38 zones (centre) and soil sample cores from high EM
zone (left) and low EM zone (right). EM38 detects apparent differences in electrical conductivity (ECa) which is
influenced by clay content, soil moisture and soil salt content. Blue areas indicate higher ECa. Differences were
even more evident in the subsoil.
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Figure 2. Elevation (left) and water flow model (right) based on the elevation data for this pivot quarter.

Drainage modelling Given the predominantly sandy soil type, this is likely
to reflect subsurface water movement to this point in

the field. This is the likely cause of variability and the
visible differences evident in the soil.

Given the topography of the field and the spatial
pattern in EM38 data, the high resolution elevation
data collected as part of the soil mapping exercise was
used to model drainage across this pivot quarter. This
model indicates an area of water accumulation at the
lowest part of the field (Figure 2).
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Soil moisture monitoring

Wildeye soil moisture monitors were installed to
observe how soil moisture might vary across this
pivot quarter, given the area of water accumulation
at the lowest elevation. This information will help
with understanding irrigation requirements across
the pivot quarter. The location of these sensors are
shown in Figure 3. Both the elevation and EM38 soil
mapping data were used to locate the Wildeye soil
moisture sensors.

The Wildeye data did indicate differences in soil
moisture across the field (Figure 5):

e Wildeye-1 consistently monitored as significantly
wetter than the other monitoring sites at three
depths (15, 30 and 45 cm), and remained wet for
more than half of the growing period. This supports
the drainage model, which indicates that soil water
would be accumulating in this area of the field.

® Both Wildeye-3 (medium-high elevation) and
Wildeye-4 (high elevation) exhibited good soil
moisture at each depth. Although the Wildeye-4
data indicated lower soil moisture at 30 cm
throughout the crop.

e Wildeye-2 did have periods of low soil moisture
throughout the crop, suggesting some crop stress
may have occurred. The radiometric data and
the EM38 subsurface data does indicate that
this area of the field has differences in soil type
characteristics, which could be impacting on
soil:water interactions and water movement in
this area (Figure 4). Infiltration of water from the
sand would be slowed when it reached the heavier
texture. Water then drains in a horizontal direction,
based on the elevation, to the lower area of the
field. This would explain the lower soil moisture
level at Wildeye-2, and the higher soil moisture
levels at Wildeye-1.

This information needs to be considered in the
context of the soil type and landscape at this site,
which, given the sand and elevation changes, would
suggest significant subsurface soil water movement.
The wetness at Wildeye-1 likely reflects subsurface
movement of water from the higher elevations within
the field. The true impact of this observed elevation
and soil moisture variability can only be measured
with yield.

Powered by pct-ag.com

DualEM Subsoil

15 Field name H Pivot
Season 2018
20/02/2018
1 Min 389

Min 3.89

Mean 791

Area (ha)

7
Max 1034
D 124

o7 v 15.72%

4 5 6 7 8 9 10
DualEM Subsoil Total 6758
Total Area 854 ha

Powered by pct-ag.com

0.4 Laver name Radiometrics Potassiu
Field name H Pivot
Season 2018

19/02/2018

Min 038
0.2- Min 038
Mean 1
Mode 0.69
Max 177
SD 031
v 30.65%
Total 89
Total Area 887 ha

04 06 08 1 12 14 16
Radiometrics Potassium

Figure 4. Subsurface EM38 and radiometric data showing differences in the area around Wildeye 2.
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Figure 5. Wildeye soil moisture data for Wildeye sensors W1-W4. Note: Two of the Wildeye sensors had a third
sensor at 45 cm due to availability of equipment. Circles indicate the level of wetness for Wildeye-1, and possible
periods of moisture stress around Wildeye-2.
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Yield assessment

Hand harvested yield assessments were completed

at maturity (2 weeks prior to harvest). In total, there
were 12 yield samples collected across the field, with
three points from each of the four zones based on the
elevation, EM38 and high resolution crop NDVI imagery
(Figure 6).

These zones could be classified as:
e low EM38, high elevation

¢ high EM38, low elevation

¢ high EM38, med elevation

e med EM38, med elevation.
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Figure 6. Location of yield sampling point in the field relatve to bot

The yield assessments indicated that there was up to
37 per cent variability in yield across the field. The red/
orange areas in the NDVI imagery had the lowest yields
by up to 20 per cent on average (Figure 7). Grading data
for the hand harvested yield samples did highlight that
there were differences in marketable specifications
(based on Woolworths specifications for pre-packed
carrots) (Table 1).

The lower yielding areas had almost double the waste
percentage. This may be partly due to the fact that the
yield samples were collected two weeks before harvest,
and some of this waste were small carrots outside size
specifications. However, this data highlights that there
were differences in crop growth and maturity across the
field.

L/ A T8 N
the elevation (left) and EM38 (right) maps.

Circles indicate the approximate zones with three yield samples from each of these areas.

Figure 7. High resolution NDVI imagery in carrots capture approximately 8 weeks after planting (left), 13 weeks
after planting (centre) and 15 weeks after planting (right). Blue areas indicate higher biomass and vigour, the
orange and red areas indicate lower biomass and vigour.

Table 1. Average yield and grading data from each of the sampling zones.

Carrot yield

Bion(1£a/s;1$a¥ield (t/ha) Class 1 % Class 2 % Waste %
::‘:vgltvi‘g: ,(‘:\1,|3g)h 74 42.7 68.7 22.1 8.2
:E\[rlaltii,::%\’lvl:)w 9:3 48.5 46 38.1 13.6
ZIESafmﬁ%vgfd 9-4 39.6 51.3 32.8 15.9
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Key learnings

e Yield variability up to 37 per cent measured across
the field. This yield variability matches crop NDVI
imagery from early in the growing period.

e Grading data indicates that there are differences in
maturity across the field, which is also indicated in
the early season NDVI imagery.

e EM38 and radiometric data indicated differences
in soil moisture arising from topography, as well as
subtle differences in soil texture. There is evidence of
a possible heavier texture layer at depth.

e This field has elevation differences that are impacting
on soil water movement, particularly given the
sandy soil type. Drainage modelling highlights an
area of water accumulation at the low end of the
field. This was also evident in Wildeye-1 data, which
indicated this area was consistently wet throughout
the cropping period. While this might have had a
detrimental impact on yield in a heavier soil, there
did not seem to have any impact on yield in this
field. However, other areas of the field still yielded
comparatively well, but were not consistent at high
soil moisture. There is an opportunity to reduce
irrigation across this area with variable rate irrigation
for more efficient water inputs.

e |n contrast, Wildeye-2 data indicated that this area
of the field suffered some low moisture stress over
several periods of the crop, which may have resulted
in the loweryields from this area.
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