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Important things you should 
know about this final report 

Report subject to change  
This report is subject to change as the assessments undertaken have been based solely upon 
hydrological modelling and are subject to continuous improvement. Aspects of these assessments that 
are affected by hydraulics will need to be verified during the hydraulic modelling phase. Therefore the 
estimates presented in this report should be regarded as interim and possibly subject to change as 
further iteration occurs in conjunction with the hydraulic modelling phase of the Brisbane River 
Catchment Flood Study. 

Exclusive use  
This report and hydrologic model data has been prepared by Aurecon at the request of the State of 
Queensland acting through the Department of State Development, Infrastructure and Planning 
(“Client”). 

The basis of Aurecon’s engagement by the Client is that Aurecon’s liability, whether under the law of 
contract, tort, statute, equity or otherwise, is limited as set out in the Conditions of Contract schedules: 
DSDIP-2077-13 and agreed variations to the scope of the contract (terms of the engagement). 

Third parties  
It is not possible to make a proper assessment of this report without a clear understanding of the terms 
of engagement under which the report has been prepared, including the scope of the instructions and 
directions given to and the assumptions made by the consultant who has prepared the report.  

The report is scoped in accordance with instructions given by or on behalf of the Client. The report 
may not address issues which would need to be addressed by a third party if that party’s particular 
circumstances, requirements and experience with such reports were known; and the report may make 
assumptions about matters of which a third party is not aware.  

Aurecon therefore does not assume responsibility for the use of, or reliance on, the report by any third 
party and the use of, or reliance on, the report by any third party is at the risk of that party. 

Limits on scope and information  
Where the report is based on information provided to Aurecon by other parties including state 
agencies, local governments authorised to act on behalf of the client, and the Independent Panel of 
Experts appointed by the client, the report is provided strictly on the basis that such information that 
has been provided is accurate, complete and adequate. Aurecon takes no responsibility and disclaims 
all liability whatsoever for any loss or damage that the Client or any other party may suffer resulting 
from any conclusions based on information provided to Aurecon, except to the extent that Aurecon 
expressly indicates in the report or related and supporting documentation, including the hydrologic 
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models, analytical tools and associated datasets and metadata, that it has accepted or verified the 
information to its satisfaction.  

Legal documents   
The report may contain various remarks about and observations on legal documents and 
arrangements such as contracts, supply arrangements, leases, licences, permits and authorities. A 
consulting engineer can make remarks and observations about the technical aspects and implications 
of those documents and general remarks and observations of a non-legal nature about the contents of 
those documents. However, as a Consulting Engineer, Aurecon is not qualified, cannot express and 
should not be taken as in any way expressing any opinion or conclusion about the legal status, 
validity, enforceability, effect, completeness or effectiveness of those arrangements or documents or 
whether what is provided for is effectively provided for. They are matters for legal advice.  

Aurecon team   
The Aurecon Team consists of Aurecon as lead consultant, supported by Deltares, Royal 
HaskoningDHV, and Don Carroll Project Management and Hydrobiology.   
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Executive summary 

Brisbane River catchment flood study 
The State of Queensland, Australia, initiated a comprehensive hydrologic assessment as part of the 
Brisbane River Catchment Flood Study (BRCFS) in response to the devastating floods in January 
2011 and subsequent recommendations of the Queensland Floods Commission of Inquiry. In 
accordance with this recommendation, the State of Queensland is managing the conduct of this study 
in a number of separate phases. Aurecon Team, consisting of Aurecon, Deltares, Don Carroll project 
management and Royal HaskongDHV, was commissioned to undertake the second phase of the 
study: a Comprehensive Hydrologic Assessment (CHA). The main objective of the CHA is to produce 
a set of competing methods for estimating design floods in the Brisbane River catchment, followed by 
an extensive reconciliation process to identify the most reliable design flood estimates of a range of 
flood flows for annual exceedance probabilities across the entire Brisbane River system. The CHA 
needs to consider two scenarios, referred to as ‘no-dam’ and ‘with-dam’. The dams referred to are the 
major water storages that exist within the catchment; these are Somerset Dam and Wivenhoe Dam, 
both of which have flood mitigation capacity. Other reservoirs considered are the Cressbrook Creek, 
Lake Manchester, Moogerah and Perseverance dams.  

The results of the comprehensive hydrologic assessment will serve as input for a hydraulic 
assessment, which is also part of the Brisbane River Catchment Flood Study. The main purpose of the 
hydraulic assessment is to derive flood levels, whereas the hydrologic assessment serves to derive 
flood flows (peak discharges and volumes). 

Objective of this report 
This report describes one of the methods considered for estimating design floods in the Brisbane River 
catchment: a Monte Carlo Simulation technique. The report describes, in detail, the methodology and 
data sources. Monte Carlo Simulation results are discussed in a follow-up report in which results of 
three design flood estimation techniques are reconciled. 

Monte Carlo simulation  
In the Monte Carlo Simulations approach, a large number of synthetic events is simulated with the 
combination of a hydrological model and a reservoir simulation model. Flood flow exceedance 
probabilities at key locations are derived from the model simulation results. The method has the 
advantage over more “traditional” approaches in flood risk analysis in that it explicitly considers all 
relevant physical processes that contribute to flood events. A practical disadvantage is that it is 
generally more complex to implement. The main challenge in the MCS approach is to generate 
realistic and representative synthetic flood events. This means the synthetic events should correctly 
account for probabilities of occurrence of factors contributing to flood flows such as rainfall (depth, 

 

 
Project 238021  File 238021-0000-REP-WW-0002_Monte Carlo Simulation Report.docx  

 15 May 2015  Revision 4  Page I 
 



 

duration, spatial and temporal patterns), antecedent moisture conditions, initial reservoir volumes and 
ocean water levels. Furthermore, the likelihood of combined occurrences (correlations) of these 
factors needs to be taken into account. And, finally, the relevant physical processes in the catchment 
during flood events need to be correctly simulated. 

Components of the computational framework 
The Monte Carlo Framework consists of three major components: 

1. Pre-processing: a combination of advanced statistical techniques to generate a large set of realistic 
and representative synthetic flood events. These events are characterised by rainfall, antecedent 
moisture conditions, initial reservoir volumes and ocean water levels 

2. Processing: simulation of the synthetic events with a combination of a hydrological model (URBS) 
and a reservoir simulation model (RTC tools) to obtain peak discharges and flow volumes at each 
location of interest 

3. Post-processing: Statistical techniques to combine the results of I and II to derive annual 
exceedance probabilities for a range of flood flows across the entire Brisbane River system 

 

 
Schematic view of the Monte Carlo Simulation framework 
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Sources of data, models and statistics 
As described in the previous section, the Monte Carlo simulation framework contains a large number 
of components, consisting of models, statistics and data. Some models have been developed within 
the context of the current study; others were taken from other sources, often with minor adaptations. 
The most prominent source was Australian Rainfall and Runoff (ARR): the national guideline 
document for the estimation of design flood characteristics in Australia. ARR is published by Engineers 
Australia. 

Rainfall statistics: IFD curves 
The relation between rainfall depth (or intensity), rainfall duration and frequency is described by IFD-
curves, ie Intensity-Frequency-Duration curves. These curves have been obtained from different 
sources, such as ARR and GTSMR (Generalised Tropical Storm Method – Revision, Bureau of 
Meteorology). The different sources were used for different ranges of duration and frequency. The 
report of Aurecon (2014a) describes how these IFD curves have been combined into a single IFD 
table. The same sources were used to translate point rainfall statistics to catchment rainfall statistics 
by means of areal reduction factors. The IFD curves describe “burst” statistics, which means they refer 
to time intervals with fixed durations that generally do not correspond to the beginning and ending of 
rainfall events. 

Rainfall patterns 
The IFD curves in combination with areal reduction factors describe statistics of the area-averaged 
rainfall depth in a catchment. Besides rainfall depth, the spatial and temporal pattern of rainfall also 
influences peak flows and flow volumes. Realistic synthetic spatio-temporal rainfall patterns, provided 
by the STEPS model of the Bureau of Meteorology, are used in the Monte Carlo simulation framework.  

Monte Carlo sampling techniques 
The choice of sampling method is crucial for the BRCFS-hydrology phase. There are several 
candidate methods, each with their own advantages and disadvantages. The following three methods 
have been considered and tested: 

1. The Cooperative Research Centre – Catchment Hydrology (CRC-CH) method (Rahman et al, 
2001; 2002)  

2. The Total Probability Theorem (TPT) method (ARR, 2013a) 
3. The Complete Storm Simulation (CSS) Method, a method that was developed within the context of 

the current study 
 
The TPT method was chosen as the preferred method for the current study through the Pilot Study 
investigation, because this method provided the best match between the rainfall IFD curves on one 
hand and the available synthetic spatio-temporal rainfall patterns on the other hand. The other two 
methods (CSS and CRC-CH) are nevertheless considered very promising for future applications of 
Monte Carlo applications, especially if more synthetic spatio-temporal rainfall patterns become 
available. 

Initial losses 
Initial losses refer to the proportion of the rainfall that is absorbed by the soil at the beginning of the 
event. They are a measure of the antecedent moisture conditions of the soil. Information on initial 
losses in the Brisbane River Catchment is available from the URBS model calibration as carried out by 
Seqwater (2013a). Analyses were carried out for seven sub-catchments, in which initial losses were 
assumed uniform over the entire sub-catchment. In the current study, statistical distribution functions 
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were derived from the resulting initial losses of Seqwater (2013a). Furthermore, the likelihood of 
combined occurrences high (low) initial losses in the various subcatchments were quantified and 
implemented in the Monte Carlo framework. 

Ocean water levels 
Statistics of peak ocean water levels in Moreton Bay were adopted from GHD (2014). Furthermore, 
the (weak) correlation between rainfall depth and peak ocean water levels was taken into account by 
adopting a recently developed correlation model from ARR (Zheng et al, 2013a,b). Realistic time 
series for ocean water levels are generated through a combination of a “mean” time series of 
astronomical tide, in combination with a standardised storm surge hydrograph. The latter was based 
on recorded time series for the Sunshine coast as derived by (Aurecon, 2013b). 

Ocean water levels do not affect flows in the hydrological model and therefore will not be of influence 
on design flood flows as computed in the current studies. The ocean water levels serve as input for the 
hydraulics phase of the Brisbane River catchment flood study. 

Reservoir volumes 
A 123-year reservoir model simulation was carried out by the Queensland Department of Science, 
Information Technology, Innovation and the Arts (DSITIA). The output consisted of a 123-year series 
of reservoir volumes for six dams in the area: Cressbrook Creek, Lake Manchester, Moogerah, 
Perseverance, Somerset and Wivenhoe. The resulting series were used in the current study to derive 
relevant statistics of initial reservoir volumes. Furthermore, the likelihood of combined occurrences of 
high (low) initial volumes in the various reservoirs were quantified and implemented in the Monte Carlo 
framework. 

Hydrological model  
The Brisbane River catchment hydrological model was developed by Seqwater and implemented in 
the URBS hydrological model suite (Carroll, 2012a). The model was calibrated by Seqwater (2013a) 
and subsequently recalibrated by Aurecon (2014b). In the model, the Brisbane River catchment is 
divided into seven distinct sub-catchment models based on review of topography and drainage 
patterns, major dam locations, key locations of interest for real time flood operations, and 
consideration of the best use of available data including water level gauges. Dams and reservoirs are 
modelled within URBS as well, with the exception of Wivenhoe Dam and Somerset Dam.  

Reservoir simulation model 
Wivenhoe Dam and Somerset Dam are modelled in RTC tools, an open source, modular toolbox 
dedicated to real-time control (RTC) of hydraulic structures like weirs, pumps, hydro turbines, water 
intakes, etc. The Dam Operations Module is based upon the Loss of Communications (LOC) 
emergency flood operation procedure described in the Flood Manual (Seqwater, 2013b). 

Framework implementation in Delft-FEWS 
The Monte Carlo Simulation model for the BRCFS was implemented in the Delft-FEWS framework. 
Delft-FEWS is a component-based modelling framework that incorporates a wide range of general 
data handling utilities and open interfaces to many hydrological and hydraulic models that are 
commonly used around the world, including the URBS hydrological model and RTC tools for reservoir 
modelling. Delft-FEWS can be used for data storage and retrieval tasks, simple forecasting systems 
and in highly complex operational forecasting systems. The advantage of using FEWS for all 
communication between components is that intermediate results (time series data) can be inspected 
for checking and debugging. Moreover, the modular setup of FEWS enables to replace components 
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without much effort. A further advantage is that institutes like Seqwater and the Bureau of Meteorology 
are familiar with Delft-FEWS. This means the framework can easily be transferred to these and others 
institutes, which provides great opportunities to develop similar tools for other catchments.  

Output 
The output of the Monte Carlo Simulations framework consists of design peak flows and associated 
annual exceedance probabilities. Furthermore, the framework produces hydrographs that correspond 
to these design flood flows. These results are produced for 23 locations of interest in the Brisbane 
River catchment, but this number can be increased if desired. The computation results of the 
framework are discussed in a separate report on the reconciliation of results of the comprehensive 
hydrologic assessment. In that report, MCS design flood flows are compared to design flows of two 
other methods: statistical flood frequency analysis and the design event approach. Based on the 
comparison, a choice is made on the reconciled design flood flows that form the primary output of the 
comprehensive hydrologic assessment. 

Conclusions 
The proposed Monte Carlo Simulation approach provides what is required for the BRCFS-hydrology 
phase: a joint probability approach for the derivation of design flows and volumes, taking into account 
spatial and temporal variation of rainfall over the Brisbane River catchment. The method has the 
advantage over more “traditional” approaches in flood risk analysis in that it explicitly considers all 
relevant physical processes that contribute to flood events. A practical disadvantage is that it is 
generally more complex to implement. Computation times for a single output location near the 
catchment outlet are in the order of five hours on a 64 bit machine, Windows 7, Solid State Drive 
(SSD) with 16Gb and 4 cores (duplicated, so actually 8 cores). For upstream locations with smaller 
catchment areas the runtime is in the order of two to three hours. 
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1.1 Project overview 
The Queensland Floods Commission of Inquiry Final Report, which was issued in March 2012, 
contains a recommendation (Recommendation 2.2) that requires a flood study be conducted of the 
Brisbane River catchment. In accordance with this recommendation, the State of Queensland is 
managing the conduct of this study in a number of separate phases, namely: 

 Phase 1: Data Collection, Collation, Review and Storage of Existing Data (complete) 

 Phase 2: Comprehensive Hydrologic Assessment (current) 

 Phase 3: Comprehensive Hydraulic Assessment 

 Phase 4: Brisbane River Floodplain Management Study and Brisbane River Floodplain 
Management Plan  

 
The Aurecon Team, consisting of a combination of Aurecon, Deltares, Don Carroll project 
management and Royal HaskoningDHV, was commissioned to undertake the Comprehensive 
Hydrologic Assessment (CHA). This assessment needs to be comprehensive with a requirement for 
various methodologies to be utilised and for them to corroborate each other. The study needs to 
include a Monte Carlo framework that can account for the variability of nominated input parameters, 
including rainfall, both spatially and temporally, antecedent conditions and reservoir levels.  

The main objective of the CHA is to develop and apply a state of the art method that produces 
consistent and robust hydrologic models and analytical techniques that will enable the CHA to provide 
best estimates of a range of flood flows for annual exceedance probabilities across the entire Brisbane 
River system. The method needs to be able to account for two scenarios: the conditions referred to as 
‘no-dam’ or pre-dams, and the conditions ‘with-dam’ or post-dams. The dams referred to are the major 
water storages that exist within the catchment; these are Somerset Dam and Wivenhoe Dam, both of 
which have flood mitigation capacity. Other reservoirs considered are the Cressbrook Creek, Lake 
Manchester, Moogerah and Perseverance dams. 

The hydrologic assessment methodology also needs to be iterative, both within itself and in 
conjunction with the subsequent hydraulic study, so as to ensure consistency with the hydraulic 
modelling and its determination of flood levels in the Lower Brisbane River and its tributaries. The 
combined output from the hydrologic assessment and the hydraulic modelling assessment will be 
used to underpin the Brisbane River Floodplain Management Study (BRFMS) and the Brisbane River 
Floodplain Management Plan (BRFMP). 

1 Introduction 
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1.2 Objective of this document 
The current document describes the enhanced Monte Carlo Simulation (MCS) framework and 
methodology. 

1.3 Scope 
The client’s request for proposals (DSDIP, 2013), describes a number of requirements for the MCS 
framework, which can be summarised as follows: 

 The proposed MCS framework should ensure that the hydrologic modelling captures all the 
significant flood generating and modifying influences appropriately and that all dominant 
correlations are well reflected in design flows. The critical elements of the flood formation and flood 
modification processes are: 
− The magnitude of design rainfall depths/intensities over the catchment and their variation with 

average exceedance probability (AEP), rainfall duration and location within the catchment 
− The large degree of spatial and temporal variability of storm rainfalls over the catchment and its 

impacts on (a) the peak magnitudes and hydrograph shapes of design inflow floods for different 
AEPs, (b) the flood operation of Somerset and Wivenhoe Dams, and (c) the relative magnitudes 
of flood contributions from different sub-catchments and their interactions to produce critical flood 
levels at sites of interest 

− The extent to which storm event rainfalls are correlated with pre-event rainfalls over different time 
periods: (a) pre-event rainfall over periods of days to weeks which determines the initial wetness 
state of the catchment (initial losses) and initial inundation conditions of floodplains; and (b) pre-
event rainfall over a season or multi-year period which determines the initial volume in the dams 
at the onset of the flood event 

− The extent to which storm event rainfalls over the catchment are correlated with the forcing 
factors that produce high storm tides and thus determine the downstream boundary conditions for 
hydraulic modelling of floods in the lower Brisbane River system 

− Modelling of any significant features in the Lower Brisbane River floodplain which have the 
potential to modify flood hydrographs significantly 

 The framework should consider the following two principal approaches for the stochastic simulation 
of rainfall that are currently being applied in Australia: the TPT approach and the CRC-CH approach 
(explained in Section 3). The relative advantages and limitations of the two approaches need to be 
evaluated and a methodology has to be proposed that incorporates the best elements of both 
approaches, together with any enhancements necessary to overcome perceived limitations. 
Alternative approaches, besides TPT and CRC-CH may also be proposed and considered, if 
advantages of the alternative approach can be demonstrated 

 Correlations between storm inputs, initial conditions in the catchment, reservoir volumes and ocean 
level anomalies need to be taken into account 

 
This document describes the setup of the MCS framework and the analyses that were carried out 
since project commencement. 
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1.4 Outline 
Section 2 provides an overview of the components of the proposed MCS framework. Section 3 
discusses the sampling methods for rainfall with special emphasis on joint probability methods: CRC-
CH, TPT and a suggested third approach, CSS. Section 4 describes the derivation of catchment 
average rainfall depths, based on IFD curves. Section 5 describes the ‘redistribution’ of catchment 
rainfall, using synthetic spatio-temporal patterns as generated by the BoM. Section 6 describes the 
statistics and correlations of the other random variables of the MCS framework (besides rainfall). 
Section 7 describes the hydrological model and the reservoir simulation model. Section 8 describes 
the derivation of exceedance frequencies of flood levels. Section 9 describes the proposed 
implementation of the framework in the Delft-FEWS software environment, as well as discussing 
expected computation times. Section 10 draws the main conclusions. 

The appendix describes a pilot study for the joint probability approach with comparisons between the 
performances of the TPT and CRC-CH methods. 

1.5 Choice of sampling method 
Eventually, the TPT method was chosen as the preferred method for the current study, because this 
method provided the best match between the rainfall IFD curves on one hand and the available 
synthetic spatio-temporal rainfall patterns on the other hand (see Section 5 for a detailed explanation). 
The other two methods (CSS and CRC-CH) are nevertheless considered very promising for future 
applications of Monte Carlo applications, especially if more synthetic spatio-temporal rainfall patterns 
become available. To document the knowledge on CSS and CRC-CH methods that was developed 
during the current studies, the report therefore also contains analyses that are specific to these two 
methods, even though in the end they haven’t been used to compute design flows for the Brisbane 
River catchment flood studies.  

The steps in the TPT approach (ARR, 2013) can be summarized as follows: 

1. Choose a range of durations around the critical storm duration. For each duration carry out the 
following steps (2-4): 

2. Divide the range of relevant values of the AEP of the rainfall depth into Nb bins of equal size in 
terms of their standardized normal variate 

3. For each bin, take Ns samples of the remaining random variables (initial losses and rainfall 
patterns) and run the hydrological model to evaluate the conditional exceedance probability of peak 
discharge and water levels, given the rainfall depth 

4. Derive the exceedance probabilities of a range of discharges or water levels through application of 
the total probability theorem. 

 
The TPT and CRC-CH methods differ in their sampling schemes. The TPT method uses an efficient 
stratified sampling scheme, which is not incorporated in the CRC-CH approach because the latter 
uses variable event durations. 
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2.1 Flood processes in the Brisbane river catchment 
The Brisbane River catchment has a total catchment area of 13,750 km2 to the Port Office Gauge 
which is located in the heart of Brisbane City. The catchment is bounded by the Great Dividing Range 
to the west and a number of smaller coastal ranges including the Brisbane, Jimna, D’Aguilar and 
Conondale Ranges to the north and east. Most of the Brisbane River catchment lies to the west of the 
coastal mountain ranges. The catchment is complex in nature, combining urban and rural land, flood 
mitigation dams, tidal influences and numerous tributaries with the potential for individual or joint 
flooding. 

 

 
Figure 2-1 Brisbane river catchment, showing the seven sub-catchments of the URBS hydrological model 

2 Proposed computational 
scheme of the MCS 
framework 
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The Brisbane River has a total length of 309 km. The river system consists of the Brisbane River and 
six major tributaries. Cooyar Creek, Emu Creek and Cressbrook Creek are all major tributaries of the 
Upper Brisbane River. The Stanley River catchment is the only major tributary that flows from the 
Conondale and D’Aguilar Ranges. Lockyer Creek flows from the escarpment of the Great Dividing 
Range and joins the Brisbane River just downstream of Wivenhoe Dam. The remaining tributary is the 
Bremer River which rises in the Little Liverpool Range and joins the Brisbane River at Ipswich.  

The Brisbane River is tidal to just below Mt Crosby Weir, which is located some 90 km from the mouth 
of the river. The Bremer River is also tidal in its lower reaches and it is affected by backwater when the 
Brisbane River is in flood. The Bremer River passes through rural and agricultural land as well as 
through numerous townships and two major cities. As such, flooding in the river has the potential to 
affect large numbers of residents and cause damage to businesses and industries.  

The Brisbane River itself has two major dams located in its upper reaches, both of which were built to 
supplement Brisbane’s water supply and to provide flood mitigation. Wivenhoe Dam was built in 1984 
and has a catchment area of approximately 7,020 km2. Somerset Dam on Lake Somerset is located 
upstream of Lake Wivenhoe on the Stanley River near Kilcoy, and has a catchment area of 1,340 km2. 
Therefore, approximately only half the overall catchment is regulated. There are also numerous 
smaller dams located within the catchment on the tributaries of the Brisbane River. 

The largest recorded gauge heights in the city of Brisbane, since European settlement in 1824, were 
in 1841 and 1893, with a depth of approximately 6.5 m above the highest tide level (Van den Honert 
and McAneney, 2011). Both events occurred in the pre-dam situation. The largest flood of the 20th 
century was in January 1974, when a gauge height of 5.45 m+AHD was recorded at the Brisbane City 
gauge. During the recent floods of 2011, the peak level at the same gauge reached 4.46 m+AHD. The 
peak level of the 2011 flood was attenuated due to the mitigating effects of the Wivenhoe dam, which 
was constructed in response to the 1974 event.  

The floods of 1893 and 1974 were both caused by excessive rainfall from decaying tropical cyclones. 
The 2011 floods were caused by the interaction of a low-pressure system situated off the mid and 
south Queensland coasts, and monsoonal troughs (Van den Honert and McAneney, 2011). In general, 
extreme events in the Brisbane catchment are caused by cyclones, East Coast lows and tropical 
storms. Extreme rainfall events in the Brisbane river catchment occur more frequently during La Niña 
years and are characterised by several hundreds of millimetres of rainfall over a period of three to five 
days falling in most parts of the catchment.  

The main factors that influence flood levels in the Brisbane river catchment are: 

1. Rainfall depth. Rainfall is the driving force of flood events and (extremely) high rainfall depths 
most likely result in (extremely) high flood levels 

2. Event duration. High flood levels in the Lower Brisbane River are typically associated with periods 
of three to five days with several hundreds of millimetres falling over most of the catchment. For 
smaller tributaries, high flood levels can be the results of high rainfall depths occurring in short 
duration events. The flash flood in the Lockyer catchment in January 2011, causing several 
fatalities, is an example of such an event 

3. Spatial-temporal distribution of rainfall. This distribution is relevant because it determines eg the 
percentage of rainfall falling upstream of the major dams, the co-incidence of flood peaks from the 
tributaries and runoff percentages 

4. Antecedent soil moisture conditions (initial losses). The antecedent soil moisture conditions 
strongly affect initial rainfall losses and, hence, runoff percentages. For example the 2013 rainfall 
event occurred after a relatively dry spell and resulted in runoff percentages upstream of the 
Wivenhoe dam of only about 30%, while runoff percentages during the 2011 event, which occurred 
after a very wet spell, were in the order of 65% 
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5. Reservoir volumes. The reservoir volumes at the start of a rainfall event largely determines the 
volume that can be safely stored for the purpose of flood peak attenuation 

6. Ocean water levels: High ocean water levels can increase flood levels in the Lower Brisbane 
River and lower Bremer River. Note that ocean water levels do not affect flows in the hydrological 
model and therefore will not be of influence on design flood flows as computed in the current 
studies. The ocean water levels “only” serve as input for the hydraulics phase of the Brisbane River 
catchment flood study 

 
These factors are all incorporated into the MCS framework. This means that the relevant statistical 
properties of these factors, including mutual correlations, need to be quantified. Furthermore, the 
influence of these factors on the flood levels needs to be determined. This is done with a combination 
of a hydrological model and dam operations model, both briefly described in Section 2.2. Section 2.3 
provides a brief overview of the MCS framework, which combines the statistics and hydrological 
modelling. Details of the framework are provided in subsequent sections of the report.  

2.2 Hydrological model and dam operations model 
The Brisbane River hydrological model was developed by Seqwater and implemented in the URBS 
hydrological model suite (Carroll, 2012a). The model was calibrated by Seqwater (2013a) and 
subsequently recalibrated by Aurecon (2014b). In the model, the Brisbane River catchment is divided 
into seven distinct sub-catchment models (see Figure 2-1) based on review of topography and 
drainage patterns, major dam locations, key locations of interest for real time flood operations, and 
consideration of the best use of available data including water level gauges. Dams and reservoirs are 
modelled within URBS as well, with the exception of Wivenhoe Dam and Somerset Dam. The latter 
two are modelled in RTC tools, an open source, modular toolbox dedicated to real-time control (RTC) 
of hydraulic structures like weirs, pumps, hydro turbines, water intakes, etc. Figure 2-2 and Figure 2-3 
show the computational workflow for the ‘no dams’ and ‘with dams’ scenarios. More details on the 
hydrological and dam operation models are provided in Section 7. 

 

 
Figure 2-2 Computational workflow for the ‘no dams’ scenario 
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Figure 2-3 Computational workflow for the ‘with dams’ scenario 

2.3 Monte Carlo Simulation workflow 
Figure 2-4 shows the computational scheme of the proposed setup of the MCS framework and the 
chapters in which each component is described. The procedure in this Figure is carried out separately 
for each river location/gauge of interest. The scheme can be applied for a TPT or CRC-CH based 
sampling method (see Section 3 and Appendix A for an explanation of these methods), but also for 
potential alternative sampling strategies. 
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Figure 2-4 Schematic view of the proposed Monte Carlo Simulation framework. It also shows the chapters in which 
each component is described. 

 
The three stages of Figure 2-4 and the steps of the computation can be summarised as follows. 

I. Pre-processing (steps 1-4): Generate N synthetic events, characterized by rainfall depth, rainfall 
duration, spatial and temporal distribution of rainfall, initial losses, reservoir volumes and ocean 
water levels. In the sampling process, mutual correlations between these variables are taken into 
account 
1. For each event, select (TPT-method, see chapter 3) or sample (CRC-CH method, CSS 

method, see chapter 3) the rainfall duration and the AEP of the rainfall depth 
2. For each event, derive the catchment-average rainfall depth, based on the duration and AEP 

of step 1. Here, the catchment refers to the upstream catchment of the river gauge/location 
under consideration. Two alternative methods are available for this purpose: 

a. Use the available IFD curves from the Bureau of Meteorology (Green et al, 2012) and 
CRC-FORGE correction factors for more extreme events to derive point rainfall 
intensities for each of the sub-area of the URBS model. Subsequently apply an Areal 
Reduction Factor (ARF) to the rainfall intensities (ARR, 2013c) and derive the 
catchment average rainfall depth 

b. Derive the catchment average rainfall depth directly from catchment-averaged IFD 
curves. These curves have been derived from series of observed catchment averaged 
rainfall depths 

Step 1: Rainfall sampling  

- duration
- AEP of depth

Step 6: URBS/RTC runs 

- hydrological modelling
- reservoir modelling

Step 5: URBS/RTC input 
- rainfall time series
- initial losses
- reservoir volumes 
- ocean water levels

0.1 0.0010.01
AEP

Step 8: Derive frequency curves 

- AEP of Q&V

Step 7: URBS/RTC output 

- max Q&V at output

Q

Processing
chapter 7

Pre-processing

Post-processing
chapter 8

Step 4: Sampling of other variables

- initial losses
- ocean water levels
- reservoir volumes
- baseflow

Step 2: Catchment rainfall depth 

- catchment IFD curves

Step 3: Rainfall patterns 

- spatio-temporal patterns
- scale to rainfall depth

chapter 6

chapter 4chapter 3

chapter 5 
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Option a is implemented in the framework, option b was used as a verification 
3. For events with rainfall AEP>1/2000, sample one of the synthetic rainfall patterns as 

generated by the BoM stochastic space-time simulation model and reported in SKM (2013) 
and Jacobs (2014) and scale the rainfall intensities of these patterns in such a way that the 
catchment average total rainfall depth of each event is in accordance with step 2. For events 
with rainfall AEP<1/2000, GTSMR based patterns (BoM, 2003) are used to model the spatio-
temporal rainfall distribution 

4. For each event, sample initial losses, reservoir volumes, ocean water levels and baseflow. In 
the sampling process, mutual/spatial correlations and correlations with rainfall intensities are 
taken into account were relevant. Continuing losses are assumed a function of the AEP of the 
rainfall. This function is derived in the reconciliation process, where MCS results are 
compared with results of other methods 

II. Processing (steps 5-7): Simulate the N synthetic events with the URBS hydrological model and 
RTC dam operations module and derive the (N) peak discharges and flow volumes at the 
catchment outlet 
5. Prepare input files for the URBS/RTC models, based on the sampled values of steps 1-4 
6. Simulate the N synthetic events with the URBS hydrological model and RTC dam operations 

model 
7. Derive the N peak discharges and flow volumes at the catchment outlet 

III. Post-processing (step 8)  
8. Apply MCS post-processing to peak discharges and flow volumes for a set of pre-defined 

Average Return Intervals (ARI) or Annual Exceedance Probabilities (AEP) 
 
The computation scheme of Figure 2-4 provides what is required for the BRCFS-hydrology phase: a 
joint probability approach for the derivation of design flows and volumes, taking into account spatial 
and temporal variation of rainfall over the Brisbane River catchment. The above description of the 
MCS framework is very general. Details will be given in the subsequent sections of this report. 

2.4 Separate simulations for each location of interest 
In total 23 different locations within the catchment have been identified for assessment in the Brisbane 
River catchment study. During the early stages of the project it has been suggested by the IPE that a 
single simulation might be sufficient to generate representative rainfall for the downstream and 
upstream locations simultaneously. This would indeed be the case if the spatial and temporal patterns 
accurately describe the probability distributions of all sub-areas in the catchment. However, the 
authors believe that this is not the case. As explained in Section 2.3, the synthetic rainfall patterns 
generated by the BoM stochastic space-time simulation model will be scaled in such a way that they 
correspond to the areal rainfall statistics. Since each location of interest has its own drainage area and 
therefore its own areal rainfall statistics, the rescaling needs to be done separately for each output 
location of interest.  

Nevertheless, it can be expected that for some clusters of output locations a single run will provide 
similar results as the proposed approach in which separate runs are carried out for each location 
individually. This might be the case for the cluster of locations along the Lower Brisbane River 
(Savages crossing, Mount Crosby weir, Moggill, Centenary Bridge and Brisbane). For the moment, 
this option is not implemented in the framework, but this could be facilitated if desired. 
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3.1 Introduction 
The choice of sampling method is crucial for the BRCFS-hydrology phase. There are several 
candidate methods, each with their own advantages and disadvantages. Currently, there are two 
published MCS methods for estimating design floods in Australia: the Cooperative Research Centre – 
Catchment Hydrology (CRC-CH) method (Rahman et al, 2001; 2002) and the Total Probability 
Theorem (TPT) method (see eg ARR, 2013a). The TPT and CRC-CH methods differ in their sampling 
schemes, but also in the type of rainfall statistics that is used. CRC-CH method uses storm event 
statistics, whilst the TPT method is based upon storm burst statistics. These differences will be 
discussed in the current section. Furthermore, an alternative sampling method, the Complete Storm 
Simulation (CSS) Method, is introduced. 

3.2 Brief description of methods 
The steps taken in the CRC-CH methodology (Rahman et al, 2001; 2002) can be summarized as 
follows: 

1. Sample the storm event duration 
2. Sample the rainfall depth, conditioned on duration, from IFD curves 
3. Sample a rainfall temporal pattern 
4. Sample the initial loss 
5. Run the rainfall runoff-routing model to derive the peak discharge or peak water level at the 

catchment outlet 
 
More details on the method can be found in Appendix A.  

The steps in the TPT approach (ARR, 2013) can be summarized as follows: 

1. Choose a range of durations around the critical storm duration. For each duration carry out the 
following steps (2-4): 

2. Divide the range of relevant values of the AEP of the rainfall depth into Nb bins of equal size in 
terms of their standardized normal variate 

3. For each bin, take Ns samples of the remaining random variables (initial losses and rainfall 
patterns) and run the hydrological model to evaluate the conditional exceedance probability of peak 
discharge and water levels, given the rainfall depth 

4. Derive the exceedance probabilities of a range of discharges or water levels through application of 
the total probability theorem 

 

3 Rainfall sampling 
methods 

 

 
Project 238021  File 238021-0000-REP-WW-0002_Monte Carlo Simulation Report.docx   

15 May 2015  Revision 4  Page 10 
 



 

The TPT and CRC-CH methods differ in their sampling schemes. The TPT method uses an efficient 
stratified sampling scheme, which is not incorporated in the CRC-CH approach because the latter 
uses variable event durations. The CRC-CH method is therefore considered unsuitable for extreme 
floods (Mirfenderesk et al, 2013). This is for instance demonstrated in the paper of Rahman et al 
(2002b), which showed a significant variability of estimated peak discharges for high Average Return 
Intervals (ARI). This could be resolved by increasing the number of samples. However, that would lead 
to millions of hydrological model runs to reduce the variability to a desired level for low values of the 
AEP, making the method untenable. 

For this reason, an alternative approach was trialled to replace crude Monte Carlo sampling scheme 
as commonly applied in the CRC-CH method by “importance sampling”. Importance sampling 
(Engelund & Rackwitz, 1993; Koopman et al, 2009) is a Monte Carlo sampling technique in which the 
percentage of extreme events can be increased by adapting the sampling distribution functions. The 
applicability of the method was tested for a hypothetical catchment, similar to the example used by 
Rahman et al (2002). Details are presented in the appendix of this document, results are briefly 
summarised here.  

Both the crude Monte Carlo and importance sampling approaches were applied using N=20,000 
simulated storm events, representing a series of 4,000 years (5 storms per year on average). The 
procedure was repeated 10 times to assess the variability in the Monte Carlo estimates, and the 
results are shown in Figure 3-1. Two disadvantages of the crude Monte Carlo sampling method are 
clearly demonstrated in this graph: 

 The variation in estimated design discharges increases with decreasing value of the annual 
exceedance probability 

 For annual exceedance probabilities that are smaller than the reciprocal of the number of simulated 
years (4,000 in this case) there are no estimates available 

 
If importance sampling is applied, the variance in estimated peak discharges decreases dramatically 
and estimates are available for a much wider range of AEPs. This clearly demonstrates that the CRC-
CH can also be applied for extremely low AEPs without the need for millions of model simulations. 
This creates opportunities for using the CRC-CH method in applications were probabilities of extremes 
are relevant, such as dam design studies. 
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Figure 3-1 Annual exceedance probability and corresponding peak discharges as estimated from 10 different MC runs 
with crude Monte Carlo and 10 different MC runs with Monte Carlo with importance sampling: 20,000 samples 

 
During the initial stages of the BRCFS it was proposed to explore a third method, which was referred 
to as Complete Storm Simulation (CSS) Method. The essence of this third method is as follows: 

1. Derive distribution functions for the area-average rainfall depths from historical records in each of 
the sub-catchments of the Brisbane River (Figure 3-2) 

2. Sample the catchment total rainfall depth from the fitted distribution for the catchment under 
consideration 

3. Select a synthetic space-time rainfall field from the BoM model and scale this event in such a way 
that the rainfall depth is in accordance with step 2 

 
Like the CRC-CH, the CSS approach is based on event statistics. However, no use is made of IFD 
tables. The duration of rainfall is determined by the synthetic rainfall patterns from the BoM (see 
Section 5). It is assumed that the synthetic rainfall patterns represent the distribution of storm 
durations for a given rainfall depth. This assumption is a weak point of the CSS approach, which 
needs to be addressed.  
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Figure 3-2 Fitted GPD distribution function to the average rainfall depths over the full Brisbane catchment of 44 
calibration events obtained from Seqwater 

3.3 Required input statistics 
The TPT, CRC-CH and CSS differ in the type of rainfall statistics that are used. The TPT method is 
based on storm burst statistics, the CRC-CH and CSS are applied to storm event statistics (even 
though CRC-CH could also be applied to bursts statistics). This is reflected in a number of other 
differences between the methods:  

 The CRC-CH method takes the storm duration as a random variable; the TPT method considers a 
fixed set of potentially critical durations and selects the maximum peak discharge over the 
considered durations. The duration is not a random variable in the TPT approach but rather a 
yardstick to measure rainfall depth. The CSS method does not consider the duration explicitly as a 
random variable, the duration of rainfall is determined by the synthetic space-time rainfall fields from 
the BoM 

 The CRC-CH and CSS methods use a parameter, λ, which represents the number of events per 
year. The TPT method uses rainfall statistics that is already defined in terms of exceedance 
probabilities per year 

 As a consequence of the difference in rainfall statistics (burst- versus event-based), the distributions 
of other random variables differ between TPT method on the one hand and CRC-CH and CSS 
methods on the other. However, the probability distributions of initial losses, initial reservoir storage 
levels and temporal patterns should be consistent with the rainfall statistics (see Section 3.6) 

3.4 Rainfall duration 
The probability distribution of event durations is required in the CRC-CH approach and can be derived 
from observed durations of historical events. For this purpose, an exponential function is fitted to the 
observed durations. This was done for three test-locations in the upper Brisbane River Catchment: 
Ravensbourne, Emu Creek and Kirkleagh. The results are shown in Figure 3-3. Trend lines have been 
fitted to the various stations results to highlight the difference in behaviour. It appears that the duration 

 

 
Project 238021  File 238021-0000-REP-WW-0002_Monte Carlo Simulation Report.docx   

15 May 2015  Revision 4  Page 13 
 



 

distributions of Ravensbourne and Emu Creek are similar, whereas the rainfall events recorded at the 
Kirkleagh station tend to last longer. This is likely due to its location closer to the coast. 

 

 
Figure 3-3 Probability distribution of event duration for three test-stations in the upper Brisbane 

 
The duration statistics depend on the definition of an event. Using a definition with a long dry period 
before and after the event leads to aggregation of short events to fewer long events. Thus, a long dry 
period shifts the distribution to longer durations. This will be further elaborated in Section 4.2.2. 

3.5 Advantages and disadvantages of the sampling methods 

3.5.1 CRC-CH versus TPT method 
The CRC-CH method is referred to as conceptually superior to TPT by Mirfenderesk et al [2013]. The 
CRC-CH methodology considers whole storm events and is therefore more suitable for volume- 
sensitive applications, compared to the TPT method (Carroll, 2012b, Aurecon, 2013a). Although it is 
suggested that the CRC-CH method is not suitable for extreme floods (Mirfenderesk et al, 2013) 
because of sampling requirements, it was demonstrated in section 3.2 that this can be solved through 
application of importance sampling. The latter implies that the CRC-CH is an attractive alternative for 
the TPT, particularly for applications where runoff volumes are important as is the case for the 
Brisbane River Catchment Flood Study.  

The TPT method has some practical advantages over the CRC-CH method. First of all, the 
methodology builds on the existing Design Event Analysis (DEA) and will therefore be more readily 
taken up by the industry’s practitioners (Mirfenderesk et al, 2013). Related to this issue is the fact that 
the available IFD curves from the Bureau of Meteorology can be applied directly in the TPT method to 
quantify the natural variability in rainfall intensities, since these IFD curves were derived using storm 
bursts. For the event-based CRC-CH method, these curves need to be transformed to IFD curves 
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based on events, which means an empirical relationship is required that will introduce additional 
uncertainties and, potentially, errors. A better alternative for the CRC-CH approach would be to derive 
IFD curves for events directly from rainfall data, but this would be a costly and time-consuming 
process. Furthermore, their derivation inherently requires a degree of subjectivity in terms of the 
definition of an “event”, and such a definition may have significant influence on the resulting design 
discharges. For instance, in the original paper on the CRC-CH method (Rahman et al, 2002) an event 
is defined as “a period of ‘significant rainfall’ that is separated from previous and subsequent events by 
a ‘dry period’ of e.g. 6 hours”. For example, this would mean that two subsequent days with high 
rainfall in the afternoon hours would be considered as separate events, while for the Brisbane River 
catchment the combined rainfall in these two days may actually be critical. For bursts, this dilemma 
plays no role, as the definition of bursts and associated statistics are well-defined. 

A disadvantage of the TPT approach is that the concept of a single critical duration may introduce a 
probability bias, for example if in reality several durations contribute to the exceedance probability. For 
larger catchments that consist of multiple sub-catchments, each having their own runoff 
characteristics, it is very well possible that several rainfall durations contribute to the probability of an 
extreme discharge. 

A summary of the two methods is provided in Table 3-1. 

Table 3-1 Summary of advantages and disadvantages CRC-CH and TPT 

Feature CRC-CH TPT 

Flood Volumes  x 

Extreme Events x  

DEA   

IFD (BoM) x  

Event Definition x  

Probability Bias  x 

3.5.2 CSS methodology 
The main potential advantage of the CSS method is that statistical extrapolation is applied on total 
rainfall depth instead of rainfall intensities. This seems to fit better with a relatively large area like the 
Brisbane River catchment, where total volumes are more relevant than short intensities. Furthermore, 
the CSS method has the advantage that it appears to be rather straightforward in application.  

The CSS approach does not make use of IFD tables. It assumes that synthetic storms are available 
that characterizes the depth duration relationship, in this case we propose using the synthetic BoM 
storm patterns. According to the BoM (Alan Seed, personal communication) these patterns may not be 
representative; the patterns are plausible realisations of rainfall events, but they cannot be considered 
to represent a correct distribution of event durations. This may introduce a bias in the CSS approach if 
certain durations are under- or overrepresented in the set of storm patterns. 

The CSS approach has not been applied before, which means the application within the BRCFS is 
somewhat experimental. In order to verify the critical assumption of the method that the BoM storm 
patterns represent a correct distribution of storm durations, event-based IFD tables were derived from 
the time series generated by the CSS method. This allows for validation of the method that is needed 
to obtain the same level confidence as for the other two methods. This validation is carried out in 
Section 5.4.4. 
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3.5.3 Conclusion 
The TPT approach is most likely to be accepted by ‘the industry’, because it is built on the DEA 
approach and uses the well-established BoM burst IFD tables. The CRC-CH methodology on the 
other hand has the potential of better inclusion of long duration events and volumes, which is critical 
for the Brisbane River catchment. The practical applicability of the CRC-CH method depends on the 
existence of a reliable transformation procedure of burst statistics into event statistics, which is 
explored in Section 4. The CSS method is similar to the CRC-CH method, but focuses on total 
catchment event depth. All three methods fit within the proposed Delft-FEWS framework of Section 2. 

3.6 Consequences for other random variables 
The choice for burst- or event-based rainfall statistics has a number of consequences for the 
probability distributions of other random variables in the Monte Carlo sampling. This concerns the 
variables that are correlated with the rainfall. For independent variables (eg surge level1) the 
probability distribution does not depend on the choice of rainfall statistics. 

Two of these correlated random variables are the initial losses and initial reservoir storage levels. 
Their values depend on the starting point of the hydrological model simulation. If the hydrologic 
simulation is undertaken only for a burst rainfall period, then the initial loss will be lower and the 
reservoir levels higher, due to pre-burst rainfall. In contrast, if the simulation is done for complete 
storm events, there is no pre-burst rainfall because all rainfall is included in the pluviograph. 
Consequently, the initial losses will be higher and the reservoir levels at the start of the simulation are 
more likely to be lower.  

In the proposed MCS method of Figure 2-4, use is made of spatio-temporal patterns of synthetically 
generated rainfall events. These events are selected and rescaled in such a way that the sampled 
burst depth of the catchment under consideration is replicated. These events will also provide a pre-
burst rainfall which will automatically lead to a decrease of initial losses at the moment the actual burst 
starts. In the TPT method, which uses bursts, a correction is therefore applied on the initial losses that 
takes this pre-burst rainfall into account. The correction is based on the amount of pre-burst rainfall in 
the selected synthetic rainfall pattern. This means all pre-burst rainfall of the synthetic pattern is 
subtracted from the initial loss, taking into account that initial losses cannot be less than zero.  

For reservoir levels, similar corrections are required. However, statistics of initial water levels are 
derived from simulations with rainfall bursts, which means the correction for initial reservoir volumes is 
needed for the event based methods like CSS and CRC-CH. The proposed correction is to add the 
volume equivalent of the net rainfall to the initial reservoir volumes. 

The spatial and temporal storm patterns that are used to distribute the average rainfall over space and 
time should be consistent with the choice for a burst- or event-based sampling. The typical rainfall 
pattern for a complete storm event differs (more variable) from that of a short period of intense rainfall 
within that storm (more uniform). Carroll & Rahman (2005) quantify this variability through 
parameterization of temporal patterns using the multiplicative cascade model. In our approach this is 
automatically taken care of by the synthetic rainfall patterns. In the event based CRC-CH approach, a 
synthetic rainfall pattern will be selected for which the total depth and duration are in accordance with 
the depth and duration as sampled from the probability distributions. For the burst-based TPT 
approach, a synthetic rainfall pattern will be selected which contains a burst period for which the total 
depth and duration are in accordance with the sampled depth and duration. These differences in 
selection procedures of storm patterns will automatically result in patterns that are consistent with the 
considered approach (burst versus event). 

1 “Independent” in this case refers to the fact that ocean water levels are not influenced by rainfall. Note, however, that in a 
statistical sense these two variables are dependent.  
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Figure 3-4 Schematic view of the TPT, CRC-CH and CSS methods 
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4.1 Introduction 
This section discusses the rainfall statistics which is arguably the most important input variable to the 
hydrological model. Rainfall statistics are generally described by an Intensity-Frequency-Duration 
(IFD) table. The rainfall in the IFD curve is the rainfall depth (mm) over a given time interval [Chow, 
Maidment and May, 1988]. Alternatively, the total rainfall depth (in mm) is given, which is equal to the 
rainfall intensity multiplied by the duration. In the current report rainfall depth is generally used instead 
of intensity. It was nevertheless decided to maintain the term “IFD” to refer to rainfall statistics as this 
is the terminology that the reader is most likely familiar to. 

There are two fundamentally different ways of deriving rainfall statistics: The first approach is to define 
a ‘window’ of fixed duration and to measure the average rainfall over this window. The annual maxima 
(AM) or peaks over threshold (POT) in this series form the basis for the IFD burst-tables that were 
derived by the Bureau of Meteorology (BoM) and CRC-FORGE. The second approach is to identify 
rainfall events and to construct a bivariate probability distribution of event duration and average rainfall 
for these events. In the first case, the duration is a yardstick that is used to measure rainfall depth. In 
the latter case, the duration is a property of the event that has a probability distribution of its own.  

The BoM IFD tables were created by analysing rainfall records from a single gauging station and 
applying a time interval of some duration as a yardstick to measure total rainfall depth over that 
duration. Hence, the durations in these IFD tables are not related to the duration of actual rainfall 
events. A duration in the BoM IFD table can be an excerpt from a much longer rainfall event. The BoM 
does not provide event-based IFD tables.  

To establish event-based IFD tables from raw rainfall time series data is extremely laborious. The 
CRC-FORGE project has taken many BoM staff years to complete the burst IFD tables. Moreover, 
these burst-IFD tables are now considered a standard reference and it is highly desirable to be able to 
use these tables as a basis for the BRCFS. On the other hand, as stated in the previous chapter, there 
are some advantages in using events statistics in the joint probability approach, which is why these 
statistics are preferred in the CRC-CH and CSS methods. In order for these methods to become 
‘standard practice’, event statistics should become available without having to redo the laborious work 
of the BoM. The solution may be found by establishing a link between the required event-IFD tables 
and the BoM burst-IFD tables.  

To relate event-IFD tables to burst-IFD tables, general expressions for the IFD relations are first 
derived. The coefficients of these relations can be fitted to observational data or to the BoM IFD 
tables. Next, a transformation procedure is derived to generate event-IFD tables from burst-IFD tables.  

4 Derivation of catchment 
rainfall depth 
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In Section 4.2 and Section 4.2.6, differences between burst statistics and event statistics are 
discussed and a mapping relationship between burst- and event-IFD tables is proposed. Section 4.3 
describes the transformation from point IFD tables to catchment IFD tables. 

4.2 Events versus bursts IFD tables 

4.2.1 Burst-IFD tables 
The BoM IFD tables are sometimes referred to as ‘burst’-IFD rainfall tables. These tables describe the 
probability that the rainfall depth over a given duration exceeds a given value in any one year. The 
duration is a yardstick that is used to measure the rainfall depth. It has no probability distribution. A set 
of IFD tables for Australia were derived by the BoM in 1987 and included in Volume 2 of ARR (1987). 
A Log-Pearson Type III distribution was fitted to the annual maximum series of the available rainfall 
data at the time using the method of moments.  

A revision of the IFD tables was carried out in 2012-2013. Notable differences to the 1987 study are 
the use of a Generalised Extreme Value (GEV) distribution and different fitting procedures: for the 
short duration rainfall, a Bayesian Generalised Least Squares Regression (BGLSR) was used 
(Johnson et al, 2012a) and for the longer durations the L-moments fitting procedure (Hosking and 
Wallis, 1997). A spatial smoothing method was applied to obtain a spatially coherent signal as well as 
remove the inherent noise in the point data from rain gauges (The, 2012). The interaction between 
topography and rainfall was taken into account and an adjustment for inconsistencies across durations 
and AEP was applied. 

The updated IFD tables for locations in Australia are made available through the BoM website 
www.bom.gov.au. The burst-IFD information for various probability ranges will be obtained from 
different sources (see Aurecon, 2014a):  

 For T=1 to 100 (AEP = 63% to 1%): the IFD curves from the BoM are used 

 For T=100 to 2000 (AEP = 1% to 0.05%): the results from CRC-FORGE are used. These are 
defined in terms of growth factors (ratios to the 1% AEP). The CRC-FORGE tables are valid up to 
five-day duration. For longer durations, the table are extrapolated 

 For T>2000 (AEP < 0.05%): the IFD of the PMP are used as the reference.  
For this, the AEP of the PMP is estimated using the procedure described by Laurenson and 
Kuczera (1999). The result for shorter durations are extrapolated to get the PMP for durations 
longer than five days. Between 0.05% and AEP of PMP the intensities are interpolated using the 
ARR (1999) method. Beyond the AEP of the PMP, the intensities are extrapolated on log-log scale 

4.2.2 Event-IFD tables 
In contrast to the burst-IFD tables, the event-based IFD tables are derived by first defining and 
identifying rainfall events. Next, a bivariate probability distribution of duration and rainfall depth can be 
constructed. This distribution gives the probability in any given year of the occurrence an event of a 
specified duration during which a specified rainfall depth is exceeded. It thus includes the probability of 
an event exceeding a specified duration. Taking the probability distribution of durations out of the 
bivariate event rainfall distribution leads to an event-IFD table that looks similar to the burst-IFD table, 
although the two tables are fundamentally different because of their differing assumptions.  

The conditional probability of rainfall depth (R) on duration (D) can be described as: 

(R, )( | )
( )

P DP R D
P D

=     (1) 
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Where duration P(D) is assumed to be exponentially distributed. 

An event can be defined, for example, by defining the event as the rain period between two relatively 
dry spells for example as adopted by Rahman et al, 2002. The rain periods are easily found, 
especially for extreme events. The preceding and post event dry spells are the critical part of the event 
definition. Specifically, the maximum rainfall during the dry spell and the minimum duration need to be 
specified. The choice for a definition will influence the number of events and their statistics. Rahman et 
al. (2002) define an event by pre- and post-event dry spells of six hours duration each. The average 
rainfall over the six-hour dry period must be smaller than 0.25 mm/hr and no single hour during the dry 
spell should have more than 1.2 mm of rainfall. However, other definitions are possible.  

Figure 4-1 shows the frequency distribution of event durations at Emu Creek, for several lengths of the 
dry period before and after the rainfall event. The graph shows that using a longer dry period in the 
event definition leads to fewer short duration events and more long duration events, as a result of 
aggregation of several short rainfall events to fewer long events. The choice of event duration 
distribution clearly depends on the rather subjective definition of the beginning and ending of an event. 
Furthermore, duration statistics also depend on the number of events considered in a year, since 
usually only the “larger” events are relevant.  

 

 
Figure 4-1 Frequency distributions of event durations from rainfall data at Emu Creek, for various durations (from 6 to 
48 hours) of the dry period before and after the event in the definition of a rainfall event 

 
Rahman et al (2002) used an exponential distribution to the empirical duration exceedance 
frequencies of selected events, and this approach was adopted in the current studies. Figure 4-2 
indicates that durations of storm events at Emu Creek indeed obey an exponential distribution with an 
average duration of about 22 hours. In this case, events were selected that exceed a threshold rainfall 
depth that was chosen such that 5 events per year were selected.  
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Figure 4-2 Fit of the exponential distribution function through empirical frequencies of observed event durations at 
Emu Creek 

 
Once the rainfall events have been identified, the procedure (based on Rahman et al 2002) to derive 
event-IFD tables is as follows: 

 For each event, determine the total duration, rainfall depth and mean rainfall depth 

 Classify the events in duration classes. For the analyses presented in the next sections, six classes 
were used (2-4, 4-6, 6-10, 10-16, 16-24 and >24 hours) 

 Define a ‘representative duration’ per class, typically the median duration of all events in that class 

 Rescale the depth of all events in a class to the representative duration, using an empirical log-log 
relationship between depth and duration within the class 

 Compute the statistics of the intensities per class as the probability of exceedance of a rainfall 
depth, given an event occurring that falls in that duration class 

 
The IFD table derived in this way defines the probabilities of rainfall depths for a rainfall event, 
conditional on the duration. To derive event-IFD tables for all sub-areas in the Brisbane catchment 
using this procedure would require processing of hundreds of time series from BoM rainfall gauging 
stations and applying the same smoothing and adjusting of IFD coefficients as was done in the CRC-
FORGE or the BoM IFD revision project. This is beyond the scope of the BRCFS. Instead, a region-
wide mapping of burst-IFD tables to event-IFD tables is attempted (see Section 4.2.3). 
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4.2.3 General description of IFD relations 
The recently developed IFD tables for locations in Australia are made available through the BoM 
website www.bom.gov.au. They can also be derived from a sixth order polynomial and a set of 
coefficients A-G that differs per location:  

2 3

4 5 6

ln( ) ln( ) ln( ) ln( )
                         ln( ) ln( ) ln( )

depth A B dur C dur D dur
E dur F dur G dur

= + + + +

+ +
 (2) 

Where depth is expressed in mm and duration (dur) is expressed in hours. This empirical relation can 
be simplified to a first order relation, thus neglecting the second and higher order terms as: 

ln( ) ln( )depth A B dur= +   (3) 

Figure 4-3 is a log-log plot of event-depth and duration and a regression line from which the 
coefficients A and B can be derived. In this case, A is equal to 1.67 and B is 0.50. The regression can 
be limited to the most extreme events only, which is shown by the second regression line (A=2.83, 
B=0.46) in Figure 4-3. However, the selection of the most extreme events (highest ARI) is done using 
equations (4) and (5), which requires the coefficient B. The process thus becomes iterative.   

Next, the relationship is generalized to include a dependency on annual exceedance probability 
(AEP), or in this case Annual Recurrence Interval (ARI), which is the inverse of the exceedance 
frequency F. To do so, it is first assumed that the coefficient B in equation (3) is independent of ARI.  

 

 
Figure 4-3 Double-log plot of event depth (mm) versus duration (hrs), example from Emu Creek data. Two regression 
lines are shown: for all events (orange) and for the most extreme events only (green) 
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Next, the extremity of each event-depth is determined as the deviation from the regression equation 
(3): 

ln( ) ln( )A depth B dur= −   (4) 

Or: 

exp( ) B

deptha A
dur

= =    (5) 

The a-values for all events are fitted to an exponential distribution: 

( )ln ARIa a β= +    (6) 

Which assumes an exponential distribution of event depths for a given duration: 

( )( ) ( )ln ARI ' ' ln ARIBdepth dur α β α β= + = +  (7) 

Combining equations (3), (5) and (6), we arrive at the following general expression for an IFD curve: 

( )ln( ) ln( ) ln ln(ARI)depth B dur α β= + +  (8) 

This expression is fitted to both the burst- and event-depths and durations from the observational time 
series at gauging stations in the study area. The three coefficients in equation (8): B, α and β are fitted 
in a series of regression analyses. This approach is similar to that adopted by Carroll (2008) where 
equation (8) is expressed in terms of intensity rather than depth. 

4.2.4 Mapping of burst-IFD tables to event IFD tables 

4.2.4.1 Approach  
Once the coefficients of the general IFD expression (8) have been determined, event- and burst-IFD 
tables can be related to each other. This is done using the following mapping equation (based on 
Mirfenderesk et al, 2013): 

( ) ARI rqevent

burst

depth p dur
depth

=   (9) 

Inserting equation (8) into equation (9), we can derive that q=Bevent-Bburst and, by setting ARI=1, that 
p=αevent / αburst. To find r, we derive: 

( ) 1ln(ARI)ln ln ARI
ln(ARI)

burst event event

event burst burst

r ααb 
ααb 

−  +
=    +  

 (10) 

Which implies that r depends on ARI, whereas equation (9) assumes that r is a constant. For practical 
reasons, the simplified equation (9) is used. The dependency on ARI is weak and for large ARI (of 
around 1000, so that ln(ARI)=7), we find that: 

71 ln
7 7

burst event event

event burst burst

r ααb 
ααb 
  +

≈    +  
  (11) 

The coefficients p, q and r are determined from regression of equation (9) in log-space. Once the 
coefficients are known, equation (11) provides a general transformation from burst- to event-IFD 
tables.  
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4.2.4.2 Validation of assumptions 

The crucial assumptions and approximations made in the derivation of the general IFD equation (8) 
and the burst-to-event mapping equation (9) are: 

1. Neglect of the higher order terms in the BoM burst depths (equation (2)) 
2. Exponential distribution of event-depth for a given duration (equation (7)) 
3. Assuming a constant parameter r in the mapping equation (9) 
 
The effect of these approximations on the rainfall depth for several durations or ARI’s has been 
investigated in three case studies, based on observational data from three test-stations.  

Assumption 1 
The neglect of higher order terms in equation (2) was verified by fitting the BoM table data for Emu 
Creek to equation (2). The results for AEP 1%, 10% and 50% are shown in Figure 4-4. The deviations 
of the depth values for the durations and AEPs shown in the graph are 3% on average and 6% at 
most. It is therefore considered acceptable to neglect the higher order terms of equation (2). 

 

 
Figure 4-4 BoM IFD data (symbols) fitted to equation (2) (dashed lines) for three different AEP’s 

 
Assumption 2 
Equation (7) is validated on BoM IFD data for Emu Creek in Figure 4-5. Although the longer duration 
graphs are slightly curved, the exponential approximation is reasonable except for the longest duration 
curve. The average deviation of the fitted rainfall depth from the BoM IFD data is 5% and 11% at most. 
The exponential distribution is therefore considered to be acceptable. 
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Figure 4-5 Event-depth as a function of ARI for several durations, according to the BoM IFD tables for Emu Creek. 
Exponential fits are shown as thin black lines 

 
Assumption 3 
The third assumption is that the parameter r in the mapping function (equation (9)) is constant. In 
Figure 4-6, the empirical event graphs are compared to empirical burst graphs that are transformed 
using equation (9). The differences are not visible in the figure. They are less than 1%. This can be 
explained by the generally very weak dependency of the mapping on ARI. The parameter r is a very 
small number (typically 0.01) and has little effect. Even disregarding the ARI dependency of the 
mapping equation altogether (by setting r=0) leads to deviations in rainfall depth of 5% at most. 

 

 
Figure 4-6 Event-IFD curves (symbols) compared to transformed burst-IFD tables. Both graphs are based on Emu 
Creek rainfall data 
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4.2.5 Procedure for generating event IFDs 

4.2.5.1 Generating event data from rainfall records 
Empirical event and burst IFD curves were derived for three gauging stations in the Brisbane River 
Catchment (see Table 4-1). 

Table 4-1 Case study stations and length of the observational records 

Station Id Latitude Longitude Series 

Emu Creek 143010 -26.9771 152.28566 1993-2013 

Kirkleagh 040318 -27.0258 152.5642 1965-1981 

Ravensbourne 040270 -27.3628 152.1594 1959-1990 
 
The raw gauging data are defined on fixed intervals (Ravensbourne and Kirkleagh) or variable 
intervals (Emu Creek). In the latter case, the gauging data are first transformed into a regular 6-minute 
fixed interval time series. The first step in the procedure to generate burst or event IFD tables is to 
identify a list of rainfall events from the time series of rainfall gauging data. A rainfall event is defined 
as a period of more than 0.25 mm/hour average rainfall and/or hourly intervals of more than 1.25 mm 
of rainfall depth. The start and end of each event are defined by dry periods of minimum duration 
durdry. During these dry periods the average rainfall must be less than 0.25 mm/hour and no hourly 
rainfall during this period should exceed 1.25 mm. 

4.2.5.2 Generating burst-IFD tables 
Empirical burst-IFD tables were derived from the list of rainfall events as follows: 

1. Separate analyses are done for durations of 1, 2, 3, 6, 12, 24, 48 and 72 hours 
2. For each duration, a moving time interval is used to determine, for each event, the maximum 

rainfall depth over that duration. If the duration of the event is shorter than the length of the interval, 
the event depth is used as the depth for that duration 

3. The annual recurrence interval (ARI) of each rainfall depth is calculated by dividing the total length 
of the observational period by the rank of the observed rainfall depth in the series of depths. This is 
done separately for each duration 

4. The coefficient B is determined by a linear regression on the log of the duration and event depth of 
all events (equation (3)) 

5. A value of a is determined for each burst using equation (5) 
6. The coefficients α and β are determined from a linear regression of a versus ln (ARI), following 

equation (9). The regression is done using only events having an a-value higher than a threshold of 
20. This is equivalent to setting the number of events per year 

 
Once the coefficients B, α and β are known, the IFD burst-table can be constructed for any depth, 
duration and ARI.  

4.2.5.3 Generating event-IFD tables 
The empirical event-IFD tables were derived from the list of rainfall events as follows: 

1. The annual recurrence interval (ARI) of each event depth is calculated as the total length of the 
observation period divided by the rank of the observed depth in the full series of event depths 

2. The coefficient B is determined by a linear regression on the log of the duration and event depth of 
all events (equation (3)) 

 

 
Project 238021  File 238021-0000-REP-WW-0002_Monte Carlo Simulation Report.docx  

 15 May 2015  Revision 4  Page 26 
 



 

3. A value of a is calculated for each event using equation (5) 
4. The coefficients α and β are determined from a linear regression of a versus ln (ARI), following 

equation (9). Only events having an a-value higher than a threshold of 20 are used in the 
regression 

 
Once the coefficients B, α and β are known, the IFD event-table can be constructed for any depth, 
duration and ARI.  

4.2.6 Results 
The event- and burst- IFD statistics were derived for all three stations following the procedures 
described in the previous sections. These statistics are fundamentally different in nature (per-event 
frequencies instead of per-year, classification of durations instead of a fixed duration), but they can be 
compared by accounting for the number of events per year and adjustment of the values for various 
event durations within a class to a representative duration per class, as described by Rahman et al. 
(2002). The adjusted event-based IFD frequencies are by definition lower than those in the burst-IFD 
tables, because the latter include shorter duration events for a fixed duration.  

4.2.6.1 Mapping of burst and event IFD tables 
The results for the mapping parameters p, q and r are given in Table 4-2. The parameters for each 
station are in the same order. The average values over all three station are p=0.56 and q=0.29. The 
value of coefficient r is negligible, ie close to zero. 

Table 4-2 Mapping parameters for burst to event IFD table for the three test stations 

Station Id P q r 

Emu Creek 143010 0.63 0.25 0.011 

Kirkleagh 040318 0.56 0.30 -0.001 

Ravensbourne 040270 0.50 0.31 -0.013 

Average - 0.56 0.29 -0.001 
 
When using the per-station coefficients from Table 4-2, the mapping of event and burst-IFD tables is 
almost perfect. However, for the BRCFS, a general transformation for all locations in the area is 
required. To verify if such a general transformation exists, the averaged coefficients are used to 
transform the burst IFD tables for each station into event IFD tables. This mapping is considerably less 
perfect (see Figure 4-7). The average deviation of the depths shown in this graph for Emu Creek is 
8%. The largest deviations occur for the shortest durations. They are in the order of 20%. For the 
BRCFS, however, the longer durations (> 24 hours) and recurrence periods (> 10 years) are most 
important. The deviations for this part of the IFD table are around 3 or 4%. 
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Figure 4-7 Empirical event IFD curves for Emu Creek and transformed burst-tables using the mapping equation (9) and 
average coefficients 

 
The burst-IFD statistics from the three test stations were compared to the burst IFD tables from the 
BoM website (http://www.bom.gov.au/water/designRainfalls/revised-ifd/) at nearby locations. 

 

 
Figure 4-8 Empirical burst-IFD table for Emu Creek (dashed lines) compared to BoM data (symbols) 
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Figure 4-9 Empirical burst-IFD table for Kirkleagh (dashed lines) compared to BoM data (symbols) 

 
The results (see Figure 4-8 for Emu Creek and Figure 4-9 for Kirkleagh) show some deviations. These 
can be attributed to several causes: 

1. The spatial averaging (regional frequency analysis) that is done by the BoM to obtain consistent 
IFD tables across the country 

2. Statistical uncertainty due to the relatively short period of observations for the three test stations 
3. The neglect of higher order terms in equation (2) and the differences in the fitting procedure for ARI 

dependency 
 
The neglect of higher order terms was found to be small previously (see Figure 4-7), so the third 
cause will only account for a small part of the deviations. Since similar deviations are found for all 
three test stations, the first cause is probably most relevant. The BoM has included a large set of 
stations in the frequency analysis, some of which have much longer observational records (also before 
1959). It is likely that these data from neighbouring stations gave rise to different overall IFD 
relationships.  

The observational periods at the three test stations are relatively short. The BoM IFD tables are based 
on a regional analysis, including data from more distant gauging stations, some of which have over 
100 years of measurements. This regional analysis produces spatially consistent IFD tables on a 
national level, however potentially at the cost of deviations from local (point) measurements which 
include local orographic effects.  

The average difference in rainfall depth between the IFD at the three test stations and the BoM IFD 
tables for durations between 1 and 72 hours and recurrence periods between 1 and 100 years was 
found to be around 5%. The largest differences of more than 30% were found for durations of more 
than 48 hours and recurrence periods of 20 years or longer. In conclusion, the deviations of the point 
burst IFD curves at the three test stations are at least equal to the uncertainty associated with the 
mapping of burst IFD tables to event IFD tables. 
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4.2.6.2 Comparison with the CRC-CH method 

The empirical event IFD tables that are derived using the CRC-CH method typically display a 
curvature (Figure 5 in Rahman [2002]) for longer durations and recurrence periods. The event-IFD 
curves from CRC-CH tend to constant rainfall intensity for long duration-extreme events. This 
behaviour is not captured by the IFD graphs produced by the method described here, because the 
general IFD relation (9) does not allow for such a curvature. According to Figure 5 in Rahman [2002], 
the neglect of a curvature of the event-IFD graphs can lead to a serious underestimation of the most 
extreme rainfall intensities. For event durations of 100 hours and ARI=100, the difference in rainfall 
depth can be as large as a factor of 10. 

An analysis of the rainfall data from the test stations following the CRC-CH approach was done to 
investigate the curvature effect. Indeed the results showed an upward curvature of the IFD tables (see 
Figure 4-10). However, the curvature is found for shorter recurrence periods (ARI=1, 2, 5) instead of 
for the longer ARI’s as reported by Rahman et al (2002). Moreover, the results proved to be rather 
sensitive to the settings of the procedure, such as the number of duration classes or bins. The 
uncertainty of the curvature of the IFD curves is considerable. 

 

 
Figure 4-10 Event IFD Curves for Emu Creek, derived using the CRC-CH method (6 duration classes) 

 
Moreover, there are some inconsistencies in the curvature phenomenon. In the CRC-CH method, the 
curvature is described by a second order polynomial. This polynomial will continue to curve upward for 
longer durations even until the intensity starts to increase with increasing duration, which is not 
realistic. In Rahman [2002] and in Figure 4-10, this unrealistic effect occurs beyond the range of the 
graph. 

The curvature is not observed in the BoM burst IFD tables. Although the burst- and event-statistics 
need not follow the same pattern, they are expected to show similar behaviour for the longest 
durations and long recurrence periods, because the probability in this regime is determined by the 
most extreme and long-lasting rain storms. If the event IFD shows a curvature in this regime, it is also 
expected in the burst-IFD.  
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To conclude: although the neglect of a curvature of the event-IFD graphs could lead to an 
underestimation of the event rainfall intensities, preference is given to the more robust equation (9) 
without any such curvature. The main reasons for this are: 

 The uncertainty of the extend of the curvature  

 The unrealistic effect that the curvature produces for long durations  

 The fact that a curvature is not observed in the BoM burst-IFD tables 

4.2.6.3 Sensitivity analysis 
In the procedure for deriving empirical IFD tables (both event and burst), the first step is to generate a 
list of events. For this, a definition of an event is needed. For the results described so far, an event 
was defined by two dry periods of 24 hours preceding and following the event. A sensitivity analysis 
was done to investigate the effect of applying a different duration of these dry periods in the event 
definition. Table 4-3 shows the average mapping parameters over the three test stations for various 
dry period durations.   

Table 4-3 IFD mapping parameters for different event definitions (dry period duration) 

Dry period duration p Q R 

3 hrs 0.63 0.47 -0.003 

6 hrs 0.57 0.46 0.004 

12 hrs 0.58 0.37 -0.008 

24 hrs 0.57 0.29 -0.001 

48 hrs 0.53 0.27 0.004 

72 hrs 0.52 0.25 0.003 
 
These results show that the mapping parameters in equation (9) are fairly constant, except for the 
shortest dry period durations. Parameters p and q have values between 0.5-0.6 and 0.25-0.45 
respectively. The parameter r is always a small number, indicating a very weak dependency on 
recurrence period. The largest variations of the parameters in Table 4-3 (except for the values for a 
dry period of 3 or 6 hours) lead to changes in the event-depths for various durations and recurrence 
periods of around 15%. This suggests that the mapping of burst- to event IFD tables is fairly robust. 
Table 4-4 shows the selected values of p, q and r as implemented in the MCS framework.  

Table 4-4 Selected IFD mapping parameters 

parameter value 

p 0.63 

q 0.29 

r 0.00 
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4.3 Areal IFD curves 

4.3.1 Introduction 
The Monte Carlo sampling scheme requires IFD curves for the average rainfall over an upstream 
catchment of a location of interest where the frequency analysis of the runoff peak flows and heights 
and runoff volumes will be carried out. This section describes how these areal IFD curves are derived. 
Two different methods are described. The first is the proposed method for the MCS framework, the 
second is used as comparison/validation. 

4.3.2 Method 1: point rainfall and areal reduction factors 
The IFD for a sub-area for rainfall bursts is given by the IFD of the BoM grid point that is nearest to the 
centroid of the sub-area. Through application of the mapping relation as described in the previous 
sections, event IFDs can be derived for each of these subareas as well. The sub-areas are relatively 
small (up to 100 km2) and the IFD tables generally vary only gradually, except in steep areas where 
orographic effects dominate.  

The IFD of a sub-catchment is given by the area-weighted sum over all sub-area IFDs that fall within 
sub-catchment, multiplied by an Areal Reduction Factor (ARF): 

R
R ARF

i i
i

catchment
i

i

A

A
=

∑
∑

  (12) 

Where Ri is the rainfall depth of subarea i and Ai is the surface area of subarea i.. Equation (12) is 
applied to each combination of frequency and duration to derive spatial IFD curves. 

The areal reduction factor (ARF) is applied to take into account that the (sub-)catchments under 
consideration are much larger than the sub-areas. Point IFD relationships that are used for the sub-
areas are therefore not directly applicable to an entire sub-catchment. The area-averaged IFD should 
take into account the statistical effect that point rainfall has higher peak intensities than area-averaged 
rainfall. The ARF is applied to take this effect into account. It is relevant to note that the ARF depends 
on the size of the (sub-)catchment under consideration and on the rainfall duration. Figure 4-11 shows 
the ARF from ARR (2013c) that is used in the Monte Carlo framework. Formally, this ARF is valid for 
areas between 1 and 10,000 km² and durations up to 100 hours. With 13,500 km² and consideration of 
durations up to 168 hours, the full Brisbane River catchment is slightly beyond the valid range, 
however it is assumed that extrapolation of the ARF using this figure is still valid.  

 

 

 
Project 238021  File 238021-0000-REP-WW-0002_Monte Carlo Simulation Report.docx  

 15 May 2015  Revision 4  Page 32 
 



 

 
Figure 4-11 ARF from ARR (ARR, 2013c) 

4.3.3 Method 2: Catchment IFD curves 
An alternative approach is investigated in which catchment averaged IFD curves are used to translate 
the duration and AEP of rainfall depth into catchment average rainfall depth. The IFD-curves have 
been provided to the project team by WMAWater (2014). The catchment averaged IFD curves have 
been derived through application of the following procedure:  

1. Selection of rainfall data of stations in or near the (sub-)catchment under consideration 
2. Derivation of a series of catchment average rainfall depth through spatial interpolation 
3. Selection of rainfall extremes (annual maxima or peaks-over-threshold series) for different burst 

durations 
4. Fitting of extreme value distribution functions (GEV) to derive IFD curves 
 
WMAWater has provided a set of GEV distribution function parameters that describe catchment IFD 
curves (WMAWater, 2014). These distribution functions were derived for the upstream catchments of 
23 river locations in the Brisbane River catchment and for 10 durations (1-10 days). Catchment rainfall 
data was derived on daily resolution. A conversion factor was applied to translate daily rainfall depth to 
estimated 24-hour rainfall depths.  

4.3.4 Comparison 
Figure 4-12 shows a comparison between the catchment IFD curves from both approaches for the 
upstream catchment of location ‘Somerset’, which is essentially the catchment of the Stanley River. It 
shows that differences for this location are large for the rare to extreme range of AEP events. The 
2013 ARR IFD curves from the BoM were used in this comparison. 
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Figure 4-12 Comparison of catchment IFD curves as derived from BoM point rainfall IFDs and ARR Areal Reduction 
factors (full lines) and from catchment average rainfall time series (symbols) 

 
Another noticeable aspect of the IFD curves as derived from the catchment average rainfall time 
series is that the GEV distributions for different durations sometimes cross for low values of AEP; see 
the example of Figure 4-13. This means, for example, that the 5-day rainfall depth for 1/1,000 AEP is 
higher than the 6-day rainfall depth for 1/1,000 AEP, which is impossible. This may be caused by the 
use of conversion factors to convert daily restricted rainfall to unrestricted rainfall (Peter Stensmyr, 
WMAWater, personal communication). These are duration-dependent, and therefore may cause the 
maximum five-day rainfall to be larger than the maximum six-day rainfall. It is therefore concluded, 
also after consultation of WMAWater, that the IFD curves as derived from on catchment average 
rainfall time series are valid up to the range of 100 years ARI (AEP between 1/2 and 1/100). 
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Figure 4-13 Example of crossing IFD curves 

 
The Figures on the following pages make a comparison between the catchment IFD curves from both 
approaches for the range of AEP’s of 1/2 to 1/100 for various locations. It shows the two approaches 
produce IFD curves that are in the same order of magnitude, but at the same time that differences are 
not negligible. For locations in the Lower Brisbane catchment, which is the main focus of the MCS 
analysis, differences appear to be small for durations of 2 days and more. For these locations (Mount 
Crosby weir, Savages Crossing, Moggill, Brisbane) the choice of catchment IFD curve is therefore 
expected to have little influence on the derived return values as computed with the MCS framework. 

As stated before, the catchment IFD curves of WMAWater are expected to be valid for the range of 
AEP’s from 1/2 to 1/100. For the Monte Carlo simulations in the BRCFS, IFD curves for lower AEP are 
also required. The IFD curves from WMAWater would therefore need to be “embedded” in the 
conventional IFD curves that were derived from point rainfall and ARF’s. In doing so, another issue 
that needs to be dealt with is the fact that the IFD curves from WMAWater are not available for 
durations <24 hours. This means that also for durations <24 hours, IFD curves need to be adopted 
from the BoM IFD curves. These are all complicating steps that, in the end, are expected to have little 
effect on derived return values. For this reason it was decided not to implement the catchment IFD 
curves of WMAwater in the MCS framework. 
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Figure 4-14 Comparison of catchment IFD curves as derived from BoM point rainfall IFDs and ARR Areal Reduction 
factors (full lines) and from catchment average rainfall time series (symbols), location Brisbane 

 

 
Figure 4-15 Comparison of catchment IFD curves as derived from BoM point rainfall IFDs and ARR Areal Reduction 
factors (full lines) and from catchment average rainfall time series (symbols), location Loamside 
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Figure 4-16 Comparison of catchment IFD curves as derived from BoM point rainfall IFDs and ARR Areal Reduction 
factors (full lines) and from catchment average rainfall time series (symbols), location Moggill 

 
Figure 4-17 Comparison of catchment IFD curves as derived from BoM point rainfall IFDs and ARR Areal Reduction 
factors (full lines) and from catchment average rainfall time series (symbols), location Mount Crosby 
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Figure 4-18 Comparison of catchment IFD curves as derived from BoM point rainfall IFDs and ARR Areal Reduction 
factors (full lines) and from catchment average rainfall time series (symbols), location Savages Crossing 

4.4 Conclusions 
The mapping equation (9) for point rainfall is a reasonable method to generate event tables from BoM 
burst tables. The mapping parameters (coefficients p, q and r in equation (9)) are fairly similar for the 
three test stations Emu Creek, Ravensbourne and Kirkleagh in the upper Brisbane catchment. Thus, 
the mapping is thought to be sufficiently general for the area around the test stations.  

For larger areas, this remains to be seen. A previous mapping study for the area around the Gold 
Coast, similar transformation functions and coefficients were found (Carroll, personal communication), 
which gives some confidence in the general nature of the event-to-burst mapping. The differences 
between empirical event-IFD tables and transformed burst-IFD tables is in the order of 15%. A 
curvature of the event-IFD tables, as found by Rahman (2002), would give rise to larger deviations. 
However, the nature of the curvature itself is rather uncertain and we concluded that there are good 
reasons not to include this in the mapping of event to burst IFD tables. 
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5.1 Introduction 
The previous section described methods to derive the catchment rainfall depth. These methods 
provide spatially uniform rainfall fields in the sense that the AEP of the rainfall depth is constant all 
over the catchment. The next step in the Monte Carlo Simulation is to generate spatio-temporal rainfall 
patterns that are more realistic, ie more in consistent with actual storm events (see, for example, 
Figure 5-1. For this purpose, an innovative method for stochastic generation of space-time rainfall 
fields developed by the Bureau of Meteorology was incorporated in the MCS framework. 

 

 
Figure 5-1 Example of spatial variation of rainfall, observed during ex-tropical Cyclone Marcia, February 2015; Figure 
Courtesy of Michel Raymond, Seqwater 

5 Spatio-temporal rainfall 
patterns 
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5.2 BoM synthetic rainfall patterns 
Data of stochastically generated space-time rainfall patterns for the Brisbane River catchment was 
provided to the BRCFS project by Seqwater. The method of generating the synthetic events is 
described in SKM [2013]: 

These synthetic flood events were produced using a world-leading technique for stochastic generation 
of space-time rainfall fields, which were generated from radar data. A multiplicative-random cascade 
approach was used to generate 90 replicates of stochastic space-time rainfall patterns across the 
Brisbane River catchment. The position of the catchment was moved around within the generated 
spatial domain of the stochastic space-time data to six different possible positions and different 
segments of time were selected from 10 of the longer replicates. This resulted in 600 space time 
patterns that were adopted for the stochastic simulation. The generated space time patterns were 
verified against spatial patterns observed in historical rainfall events that have occurred in the 
Brisbane River catchment between 1954 and 2012. 

 

 
Figure 5-2 Flow cart for production of space-time rainfall patterns (copied from SKM 2013).  

 
Data in SKM [2013] is provided for nine events. In 2014, additional storm pattern were derived based 
on the 2013 event (Jacobs, 2014), as part of the Brisbane River Catchment Flood Study. 

Per event there are nine ‘replicates’. The replicates for each single event cover the same period, 
however the length of the period (number of days) is different for each event. Based on the nine 
‘replicates’ of the nine events, the Brisbane River catchment is placed at six locations (see Figure 6-1 
of SKM, 2013) in the 256 km by 256 km square (the model domain of the BoM simulation model). 

Table 5-1 gives an overview of the ten events on which the 660 synthetic rainfall patterns are based, 
the applicable minimum and maximum duration (hours), minimum and maximum ARI and the number 
of spatial patterns. For each event, a list is provided with the maximum burst rainfall depth in mm for 
different time frames (eg 24 hours; 36 hours; 48 hours; 72 hours; 120 hours; 168 hours) as well as the 
burst offset. Furthermore, for each storm pattern a detailed spreadsheet was provided, listing: 

 A time series of rainfall for each of the 534 subareas  

 Averaged rainfall in 12 sub-catchments (Table 5-2) 
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This data was used in the current studies to extract space-time patterns for each chosen duration. 

Table 5-1 Overview of space-time rainfall patterns in Excel spreadsheets 

Event Min-max applicable 
duration (h) 

Min-max applicable ARI 
(years) 

Number of patterns 

1996 24-72 1-1000000 60 

1999 24-72 1-1000000 60 

2008 24-112 1-1000000 60 

2009 normal 24-72 1-1000000 60 

2009 slow 24-167 1-1000000 60 

2010 24-24 1-1000000 60 

2010-2011 24-168 1-1000000 120 

2011 24-35 1-1000000 6 

24-168 1-1000000 54 

2012 24-167 1-1000000 60 

2013 24-142 1-1000000 60 
 
Table 5-2 The 12 ‘sub-catchments’ listed in the spreadsheet 

Somerset Dam Lower Lockyer 

Upstream of Linville All Lockyer 

Linville to Gregors Creek Bremer, Warrill and Purga 

Gregors Creek to Wivenhoe Lower Brisbane Only 

All Upstream of Wivenhoe Dam Moggill 

Upper Lockyer Outlet 

5.3 Basic statistics for burst rainfall of the synthetic events 
The spatial average rainfall was calculated for nine sub-catchments based on the data of the 534 
subareas. Based on these data the maximum 24 hour burst amount is calculated for each of these 
nine sub-catchments. This is done for all the events and for all patterns.  
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Figure 5-3 shows in a boxplot the variation of the maximum 24 hours burst rainfall per catchment – 
based on 60 patterns per historic event. It should be noted that the time of occurrence of the burst can 
differ between the sub-catchments. The boxplots clearly show that rainfall amounts of the patterns are 
strongly related to the original event – eg the patterns that are based on the 2010 event have lower 
maximum 24 hours amounts than the patterns based on the 2012 event. Also noticeable is that within 
one event, the maximum 24 hours burst within one catchment can vary significantly between the 60 
patterns.  

The relative contribution of each of the eight catchments to the total amount of 24 hour burst rainfall is 
calculated in percentages. Figure 5-4 shows the results. The same procedure was carried out for the 
48 hours burst. In that case there are fewer events because not all events have hourly data for 48 
hours or longer (see also the maximum applicable duration in Table 5-1), in that case just the total 
amount was taken. The results are plotted in Figure 5-5 and Figure 5-6. 
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Figure 5-3 Boxplots of maximum 24 hours burst per catchment [mm] based on 60 patterns per event2. The boxes are 
formed by first and third quartile – the median is plotted as a black dot – the whiskers are at maximum 1.5 time the 
interquartile range. Outside this range points are plotted as individual outliers 

 

 
Figure 5-4 Boxplots of the relative contribution (%) of each catchment within the total max 24 hour burst3 

2 Notice: per catchment the time frame of 24 hours can differ 
3 Notice: per catchment the time frame of 24 hours can differ 
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Figure 5-5 Boxplots of maximum 48 hours burst per catchment [mm] based on 60 patterns per event. The boxes are 
formed by first and third quartile – the median is plotted as a black dot – the whiskers are at maximum 1.5 time the 
interquartile range. Outside this range points are plotted as individual outliers 

 

 
Figure 5-6 Boxplots of the relative contribution (%) of each catchment within the total max 48 hour burst 
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5.4 Incorporation in the MCS framework 

5.4.1 Scaling factor for rainfall depth 
Section 2 described the proposed setup of the MCS framework. Sampling of the synthetic storms and 
subsequent scaling is done in step 3 (see Figure 2-4). In steps 1 and 2, the rainfall duration and 
(catchment-average) rainfall depth were sampled. The most straightforward sampling method for the 
synthetic rainfall patterns is to give each pattern (660 in total) an equal probability of being sampled, ie 
1 in 660. However, this will lead to samples of storm patterns for which the duration and depth of the 
rainfall are not in accordance with the sampled rainfall depth and duration in step 1 and 2 of the MCS 
procedure. This means a filter criterion is required to make a selection of the rainfall patterns for which 
depth and duration match within acceptable limits with the sampled depth and duration in step 1 
and 2. 

With respect to rainfall depth, the crucial criterion in the selection process is the scaling factor that 
needs to be applied. The scaling factor is related to the rainfall depth of the catchment and storm 
duration under consideration. The synthetic rainfall pattern that is selected in step 3 needs to be 
scaled in such a way that the catchment rainfall depth is in accordance with the derived value of step 2 
for the duration under consideration. Define the following quantities: 

R1 = catchment average rainfall depth as derived in step 2 of Figure 2-4 

R2 = catchment average rainfall depth from the sampled synthetic rainfall pattern 

C = scaling factor: C = R1/R2 

The rainfall intensities of the sampled synthetic rainfall pattern are multiplied with the scaling factor, C, 
to ensure that the catchment rainfall depth is in accordance with the derived value of step 2. To 
prevent that unrealistic storm patterns are created in the up-scaling process, the scaling factor should 
be limited to a certain range. According to Alan Seed of the BoM (personal communication) the scaling 
factor should not be outside the range [0.5, 2]. The allowed scaling factor of 2 in rainfall depth is 
therefore the first filter criterion that is applied in the selection process of the synthetic rainfall patterns.  

Subsequently, a filter criterion for duration is required. Note that in case of the CSS and CRC-CH 
method, the duration and depth refer to the full event, whereas for the TPT method, duration and 
depth refer to a burst that occurs somewhere within an event. The selection methods for the synthetic 
patterns are further discussed separately for the three MCS sampling techniques (CRC-CH, TPT and 
CSS) in the following sections. 

5.4.2 CRC-CH method 
Ideally, there are multiple synthetic events to choose from, so we take variability of spatial and 
temporal patterns into account for each combined “class” of duration and depth. For the CRC-CH 
method, this is not the case unfortunately. This can be seen in Figure 5-7, which shows a comparison 
between sampled combinations of depth and duration and combinations of depth and duration of the 
660 BoM synthetic rainfall patterns (blue dots). Only events with rainfall AEP>1/2,000 were considered 
because for more extreme events, GTSMR based spatio-temporal patterns are used instead of the 
BoM synthetic rainfall patterns (see Section 5.6). Figure 5-7 shows that, especially for short duration, 
high rainfall depth events there are essentially no synthetic events to choose from.  
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Figure 5-7 Comparison of sampled combinations of depth and duration in the CRC-CH method for events with rainfall 
AEP>1/2,000 (blue dots) and combinations of depth and duration of the 660 BoM synthetic rainfall patterns (red dots) 

 
This is especially a problem for the smaller upstream catchments, where short duration events are 
expected to be critical for flood levels. To conclude: for the CRC approach as currently implemented in 
the MCS framework to be successful, additional synthetic rainfall patterns are required, especially 
ones with high rainfall depth in a relatively short duration. Since these patterns could not be provided 
within the remaining timeframe of the project, it was decided not to choose the CRC-CH method to 
produce the final output of the current project: flood frequency curves and food hydrographs for 23 
locations. 

5.4.3 TPT method 
The TPT does not suffer from the above described problem because it uses rainfall bursts instead of 
rainfall events. Each synthetic event has only one event duration, but consists of multiple bursts for 
multiple burst durations. As a consequence, the TPT method generally has more synthetic patterns to 
choose from that sufficiently match the sample depth and duration. Figure 5-8 shows burst rainfall 
depths for 9 durations as derived from the data on the synthetic rainfall events (red dots). Each vertical 
line corresponds to a single duration and consist of 660 burst rainfall depths, ie one duration for each 
synthetic pattern. The two curves shown in this figure are the IFD curves that correspond to AEPs of 
1/2 and 1/2,000. This curves represent the upper and lower bounds of the sampled rainfall depth (at 
least for events with AEP> 1/2,000, as stated earlier for more extreme events other patterns are used). 
A comparison between the red dots and the two curves reveals that for each duration there are plenty 
synthetic events to choose from, taking into account that a scaling factor of 2 is allowed.  
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Figure 5-8 IFD curves for AEP = 1/2 and AEP = 1/2000 versus combinations of depth and duration of bursts in the 660 
BoM synthetic rainfall patterns (red dots) 

 
There is an additional requirement in the selection process for the synthetic rainfall patterns in the TPT 
approach: the burst rainfall patterns should not include sub-bursts of higher recurrence intervals, 
because this would interfere with the assumption that is made in the TPT approach of a critical 
duration for a sub-catchment of interest. This can be explained as follows: Consider a catchment that 
is sensitive to rainfall duration of 24 hours. In the TPT approach, several durations are considered and 
the duration that generates the highest peak discharge is selected as being the critical one. Suppose 
that, when considering the 48-hour duration, a temporal rainfall pattern is selected that includes a 24-
hour burst in which most of the rain falls. This rainfall pattern would generate a high peak flow, 
because the catchment is sensitive to the 24-hour burst. This would lead to the false conclusion that 
the 48-hour duration is most critical and that the probability of high peak flow is derived from the 
probability of 48-hour rainfall depth. This problem can be avoided by excluding rainfall patterns that 
include sub-bursts with lower annual exceedance probabilities. In practice this can mean that quite a 
substantial number of rainfall patterns are filtered out. In order to prevent that too many storm patterns 
are filtered out this way, the within-burst filter criterion is relaxed to some extent. After extensive 
analysis of the influence of within-burst patterns on peak discharges, the following set of filter criteria 
was implemented:  

If bursts with duration D are considered (in the TPT method), the following sub-bursts are not allowed: 

1. Sub-bursts with durations between D/3 and D are not allowed to have a lower AEP than the burst 
with duration D 

2. Sub-bursts with durations between D/5 and D/3 are not allowed to have an AEP that is more than 
twice as low as the burst with duration D 

3. Sub-bursts with durations less than D/5 are not allowed to have an AEP that is more than three 
times as low as the burst with duration D 
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Storm patterns that violate any of these three criterions are filtered out. The motivation to be less 
stringent for bursts with durations <D/3 is that for catchments for which duration D is critical, durations 
<D/3 are generally not as critical as long as the AEP of the within burst is not too extreme. For the 
same reason an even more lenient filter criterion can be applied for durations <D/5.  

The above set of criteria was found to result in the optimal within-burst filter. A more stringent set of 
criteria reduces the number of valid synthetic storms to sample from, which has the undesired effect of 
a reduction in variability of spatio-temporal rainfall patterns. A less stringent set of criteria lead to the 
undesired effect that within bursts are increasing the peak discharge. This is demonstrated in Figure 
5-9, which is the result of simulations in which a less stringent filter criterion was applied. The Figure 
shows simulated peak discharges versus the AEP of the rainfall event at location Tinton, for burst 
durations of 24 hours. The circles indicate events with “within bursts”. The colour of the circle indicates 
the magnitude of the within burst in terms of AEP ratios. For example, a red colour indicates the 
existence of a within burst rainfall depth with an AEP that is a factor 2-3 smaller than the AEP of the 
24 hour rainfall depth. This Figure clearly shows that the events with within-bursts dominate the upper 
range of peak discharges. The presence of within burst criteria in this example will lead to an increase 
of the peak discharge for given AEPs, which is undesired. A stricter set of filter criteria is therefore 
required, such as the one described above.  

Note that the selected set of filter criteria can only work if a sensible upper limit is set on the bursts 
durations to be considered in the TPT method. This upper limit needs to take the size of the catchment 
into account, as short durations (<24 hours) are generally critical for small catchments (<1000 km2), 
whereas the critical duration tends to increase with increasing catchment size. Table 5-3 shows the 
proposed durations to be considered. Note that these proposed durations will be reconsidered during 
the reconciliation phase. 

Table 5-3 Maximum burst durations considered 

Catchment area (km2) Maximum burst duration (hrs) 

No dams With dams 

<1000 24 - 

<5000 48 - 

<10,000 72 120 

>10,000 96 120 
 

 

 
 



 

 
Figure 5-9 Simulated peak discharges versus AEP of the rainfall event at location Tinton, for burst durations of 24 
hours. The circles indicate events with “within bursts”. The colour of the circle indicates the magnitude of the within 
burst in terms of AEP ratios. For example, a red colour indicates the existence of a within burst rainfall depth with an 
AEP that is a factor 2-3 smaller than the AEP of the 24 hour rainfall depth 

 
Due to the introduction of the filter criteria for rainfall depth (scaling factor <= 2) and within-bursts), the 
number of rainfall patterns to sample from is significantly lower than the total number of 660 patterns. 
The number of available patterns depend on the considered burst duration and the AEP of the rainfall. 
Figure 5-10 shows the number of valid patterns for location Moggill (catchment size 12,500 km2) as a 
function of rainfall AEP for different durations. Figure 5-11 shows a similar plot for location Peachester 
(103 km2), the location with the smallest catchment of the 23 locations of interest. These Figures show 
that in general, the number of available valid rainfall patterns decreases with decreasing rainfall AEP 
and increasing duration. Note that the decrease in valid patterns for increasing durations only holds for 
durations of less than 24 hours. Above this threshold, the number of valid patterns seems to 
“stabilize”. The reason why there are more valid patterns for short durations is that for these durations 
less within-burst periods need to be considered in the filter process. The reason why there are less 
valid patterns for low AEP is that the scaling criterion becomes more relevant for these extreme 
events. 

For location Moggill there are at least 30 valid patterns for each combination of AEP and duration. For 
location Peachester, the number of valid patterns for combinations of low AEP and durations>24 hours 
is very limited. A further inspection of the number of valid patterns in the low AEP range (Table 5-4) 
reveals that in particular the three locations in the Stanley River catchment (Peachester, Somerset 
and Woodford) have low numbers of valid storm patterns for combinations of low AEP and long rainfall 
durations. All other locations have at least 20 valid patterns available for each combination of duration 
and AEP. As stated before, it is not allowed to be more lenient on the within-burst filter criterion for 
these three locations as this would incorrectly influence the derive frequency curves. This means we 
have to accept that for these three locations the number of valid patterns is limited for combinations of 
low AEP and long rainfall durations. Fortunately, longer durations are not critical for these relatively 
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small catchments and are therefore not taken into account in the TPT analysis (see Table 5-3). 
Furthermore, the added value of using realistic spatio-temporal patterns over spatially uniform patterns 
is relative low for smaller catchments.  

 
Figure 5-10 Number of valid rainfall patterns per duration and AEP after application of the within burst filter criterion; 
Location Moggill 

 

 
Figure 5-11 Number of valid rainfall patterns per duration and AEP after application of the within burst filter criterion; 
Location Peachester 
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Table 5-4 Number of valid rainfall patterns per duration for AEP=1/2000, after application of the within burst filter 
criterion. Numbers lower than 20 are highlighted with a grey colour 

location Area 
(km2) 

duration (hrs) 

3 6 12 18 24 36 48 72 96 120 144 

Amberley 902 131 163 107 57 49 36 30 32 43 39 49 

Brisbane 13198 238 121 83 40 36 36 42 40 44 43 44 

Cent. Bridge 12877 239 132 88 41 36 37 43 38 41 44 48 

Fulham Vale 4553 135 159 119 77 56 49 46 58 69 60 51 

Gatton 1527 123 171 136 71 55 55 47 33 44 43 31 

Glen. Grove 2149 131 172 137 66 51 55 48 30 40 38 34 

Greg. Creek 3849 117 150 119 73 58 50 43 56 67 59 51 

Helidon 351 120 153 137 77 59 43 39 29 35 34 37 

Ipswich 1850 144 170 110 62 49 42 29 31 41 43 49 

Kalbar Weir 458 171 162 104 40 45 34 27 30 37 36 46 

Linville 1996 92 140 121 70 56 48 37 63 65 55 50 

Loamside 209 111 128 81 46 38 21 22 24 27 28 38 

Middle Ck 6665 181 167 106 54 44 33 31 40 53 48 53 

Moggill 12578 237 141 89 43 34 36 42 40 42 46 49 

Mt. Crosby 10507 210 160 100 47 37 38 37 41 47 46 48 

Peachester 103 252 118 51 20 11 8 4 15 16 12 17 

Rifle Range 2521 119 174 139 66 55 52 49 27 44 37 37 

Savages Xing 10126 204 163 100 51 39 37 40 41 51 48 48 

Somerset 1324 218 166 72 28 15 11 12 19 18 15 27 

Tinton 423 147 167 130 70 50 40 37 36 48 38 45 

Walloon 634 144 169 125 65 47 48 32 27 35 38 40 

Wivenhoe 6980 184 171 106 55 41 32 33 38 53 46 52 

Woodford 245 269 124 68 29 17 10 10 17 20 13 21 
 
The analyses in this section lead to the conclusion that the application of the synthetic patterns can be 
incorporated well within the TPT sampling method.  

5.4.4 CSS method 
Like the CRC-CH, the CSS approach is based on rainfall event statistics. However, in the CSS, no use 
is made of IFD tables. The rainfall depth is determined by fitting a distribution function to historical 
rainfall records. The duration of the rainfall event is determined by the 660 synthetic rainfall patterns 
from the BoM STEPS model. It is assumed that the BoM synthetic rainfall patterns represent the 
spatial and temporal distribution of storm durations for a given rainfall depth. This is potentially a weak 
point of the CSS approach and needs to be verified.  

 

 



 

The CSS method was tested on the total Brisbane River catchment as well as on a number of sub-
catchments. The following steps are taken: 

1. Determine the distribution function for the area-averaged rainfall depths in the total Brisbane 
catchment based on historical records (see Figure 3-2) 

 
Repeat the steps 2-5 N times (eg N=10,000): 

2. Randomly select a number between 0 and 1, representing the rainfall depth exceedance 
probability. Sample the catchment total rainfall depth based on the fitted distribution function (step 
1) 

3. Search for stochastically generated space-time rainfall patterns for the Brisbane River catchment 
(the 660 events provided to the BRCFS project by Seqwater) that matches the rainfall depth found 
in step 2. Hereby a scaling factor is used that is set at a maximum of 2. Randomly select one 
rainfall pattern in case of several matches 

4. Rescale the rainfall amounts of selected synthetic space-time rainfall pattern to match the 
sampled depth 

5. Determine the maximum rainfall depth for the different durations for the total (sub-)catchment 
under consideration 

6. Derive an IFD table for all considered durations and ARIs (AEPs) based on the N sample results 
of 2-5 

 
The resulting rainfall IFD curves from the CSS method were compared with the IFD tables of BoM. 
Figure 5-12 shows the relative difference in rainfall depth (CSS minus BoM IFD divided by BoM IFD) 
as a function of duration for several (sub-)catchments. The lines represent the different ARIs. Figure 
5-13 shows the same results with reverted axes. For the different sub-catchments, the performance of 
the CSS method varies. Overall, the differences with BoM IFD tables are large for 2 years ARI and for 
short durations. The variation of the performance increases with increasing ARI. Overall differences in 
rainfall statistics between the CSS method and the BoM IFD tables are significant and can even be 
higher than 50%.  

 
Figure 5-12 Relative differences in calculated rainfall depth between CSS method and IFD tables as functions of 
duration for the total Brisbane catchment (full Brisbane) as well as for all the sub-catchments. The different colours 
represent different ARI’s 
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Figure 5-13 Relative differences in calculated rainfall depth between CSS method and IFD tables as functions of ARI for 
the total Brisbane catchment (full Brisbane) as well as for all the sub catchments. The different colours represent 
different durations 

 
The main conclusion is that differences in rainfall statistics between the CSS method and the BoM IFD 
tables are significant and can even be higher than 50%. This difference is considered too large to be 
neglected, and implies that the CSS method in the current form with the current data is rejected as a 
method for the BRCFS. Possibly, the deviations from the IFD tables can be reduced by a correction 
function, which, however, would need to be a bivariate duration-depth function. Construction of this 
correction function is considered beyond the scope of the BRCFS project. Moreover, we feel that the 
need for such a correction function reduces the merit of the method.  

For the Brisbane river catchment, as well as the sub catchments the CSS method shows a systematic 
underestimation of the rainfall amount for events with durations of less than 24 hours. Apparently, the 
synthetic rainfall patterns do not represent a correct distribution of short event durations. This is not all 
too surprising, since the synthetic rainfall patterns were selected for large storm events over the total 
Brisbane catchment. It is likely that short and intense convective rainfall events are underrepresented.  

Another issue of the CSS method is the depth distribution function (step 1). This distribution function is 
based on 48 events which are not necessarily representative of a correct peak over threshold 
selection of events. This is likely to be another cause of inconsistencies with the BoM IFD tables. 

5.4.5 Conclusion 
The use of realistic synthetic spatio-temporal rainfall patterns is a potential major advantage over the 
more traditional design event approach, which uses a spatially uniform rainfall distribution (uniform 
with respect to rainfall AEP) and a single standardised temporal pattern. A consistent method for 
incorporating the available 660 synthetic rainfall patterns in the MCS framework is therefore of crucial 
importance. It was found that this is possible if the TPT as the sampling method for rainfall depth and 
duration. This method provided the best match between the rainfall IFD curves on one hand and the 
available synthetic spatio-temporal rainfall patterns on the other hand. For this reason, the TPT 
method is chosen as the preferred sampling method for the current study. The other two methods 
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(CSS and CRC-CH) are nevertheless considered very promising for future applications of Monte Carlo 
applications, especially if more synthetic spatio-temporal rainfall patterns become available. 

5.5 Observed versus synthetic rainfall patterns 
One of the crucial issues in the BRCFS is whether sampled synthetic events in the MCS framework 
are in accordance with observed rainfall patterns. For this purpose we compared the spatial 
distribution of the BoM synthetic events with the rainfall data from the 125 observed events with 
highest catchment total rainfall depth. The data of the 125 event were provided by WMAWater 
(WMAWater, 2014), see Section 4.3.3. 

To compare the spatial statistics of synthetic and observed events, the catchment was divided in five 
sub-catchments: Upper Brisbane, Lower Brisbane, Stanley, Lockyer and Bremer (including Warrill and 
Purga). Furthermore, a sixth sub-catchments was considered: “Upstream Wivenhoe”, ie the 
combination of Upper Brisbane and Stanley. For each event, synthetic or observed, the percentage of 
the total rainfall in the Brisbane catchment fell in each individual sub-catchment was derived.  

For the 125 observed events this resulted in 125 percentages for each sub-catchment. The set of 125 
percentages were translated to histograms and empirical distributions for each sub-catchment. The 
histograms and distributions show the variation in rainfall percentages of each sub-catchment. A 
similar exercise was done for the 660 BoM synthetic events. Figure 5-14 to Figure 5-16 compares the 
results. The Figures show that overall the statistics of BoM synthetic events and observed events 
match reasonably well.  

The most noticeable differences are: 

 For the percentage contribution of the Lower Brisbane, the data shows less variation than the 
synthetic events. According to the data, in almost all events the percentage of the total rainfall that 
falls in the Lower Brisbane is between 10% and 20%, whereas the synthetic events show more 
cases with higher or lower percentages 

 For the percentage contribution of the Upper Brisbane, the data also shows less variation than the 
synthetic events. Differences are especially present in the ‘lower tail’. In other words: the number of 
events in which less than 35% of the total rainfall falls in the Upper Brisbane occur more frequently 
in the set of synthetic events 

 For the Stanley River there also seems to be a mismatch in the lower tail (events with 8-15% rainfall 
in the Stanley sub-catchment) 

 
In spite of these differences, the results are encouraging. Note that: 

 A perfect match can never be expected between statistics of data of different sources 

 The lower variation in percentages in the observed events for the Upper and Lower Brisbane may 
partially be explained by the fact that for the observed events from before 1955 there were a 
significantly lower number of rainfall stations present in the Brisbane River catchment 
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Figure 5-14 Empirical distributions of contributions of individual sub-catchments to the total catchment rainfall 

 

 
Figure 5-15 Histograms of contributions of individual sub-catchments to the total catchment rainfall 
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Figure 5-16 Average contribution of individual sub-catchments to the total catchment rainfall 

 
A better match between statistics of BoM synthetic events and observed events can be obtained by 
awarding (probability) weights to the synthetic events. These weights can be adopted in the MCS 
framework. For example, it was observed that the percentage of synthetic events in which less than 
35% of the total rainfall falls in the Upper Brisbane sub-catchment is ‘too high’. If we award lower 
probability weights to synthetic events with low percentages of rainfall in the Upper Brisbane 
catchment, differences as observed in and Figure 5-15 should be reduced. Similar weight reductions 
can be applied to synthetic events that cause the observed differences in the Lower Brisbane sub-
catchment. Of course this needs to be done carefully in such a way that “all” criteria are met, noting 
that a perfect match cannot be expected (also taking uncertainties in observed data into account). 
Figure 5-17 to Figure 5-19 show the results after introduction of the probability weights. It shows a 
better match between statistics of observed and simulated events in comparison with Figure 5-14 to 
Figure 5-16.  
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Figure 5-17 Empirical distributions of contributions of individual sub-catchments to the total catchment rainfall. 
Probability weights were applied for the BoM synthetic (simulated) events 

 

 
Figure 5-18 Histograms of contributions of individual sub-catchments to the total catchment rainfall. Probability 
weights were applied for the BoM synthetic (simulated) events 
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Figure 5-19 Average contribution of individual sub-catchments to the total catchment rainfall. Probability weights were 
applied for the BoM synthetic (simulated) events 

 
As pointed out previously, there is some degree of uncertainty to what extent the observed 
percentages of contributions from sub-catchments are affected by variations in the density of the 
rainfall station network. The low variation in percentages for the Upper and Lower Brisbane may 
partially be explained by the fact that for the observed events in the period before 1955 there were a 
significantly lower number of rain gauges present in the Brisbane River catchment. Spatial differences 
in rainfall may therefore not (or to a lesser extent) have been observed by the available rain gauges. 

To investigate this hypothesis, a comparison is made between spatial rainfall statistics of pre- and 
post-1955 events. Figure 5-20 shows the comparison of empirical distributions of relative sub-
catchment contributions between pre-1955 and post 1955 events (both based on the data set of ‘top’ 
125 events of WMAWater, 2014). It shows the curves for the pre-1955 events (blue lines) are 
generally steeper than for the post-1955 events (red lines), indicating a lower variability of spatial 
distribution between events. This supports the hypothesis that the lower variation in percentages in the 
observed events for the Upper and Lower Brisbane (compared to synthetic events) is most likely 
(partially) caused by the fact that for the observed events from before 1955 there were a significantly 
lower number of rainfall stations present in the Brisbane River catchment. 

A comparison between statistics of 660 BoM synthetic events and post-1955 events (Figure 5-21 to 
Figure 5-23) shows there is a better match between synthetic events and data than if we compare with 
the observed data over the complete period of observations (Figure 5-14 to Figure 5-16). Of course, 
the match is not perfect, which may also be partially due to limited number of observed events. 
Nevertheless, in our view these Figures indicate that it may be justified not to introduce probability 
weights for the BoM events in the MCS framework to obtain a better fit between observed and 
synthetic data. This has the advantage that each synthetic event is equally likely to be sampled, which 
increases the variability of sampled events. 
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To conclude: the analyses in the current section justify the use of the synthetic rainfall patterns in the 
sense that they can be expected to generate representative spatial rainfall patterns. 

 
Figure 5-20 Empirical distributions of contributions of individual sub-catchments: comparison between 68 pre-1955 
events and 57 post-1955 events 

 
Figure 5-21 Empirical distributions of contributions of individual sub-catchments to the total catchment rainfall.  
Rainfall data was based on post 1955 events only 
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Figure 5-22 Histograms of contributions of individual sub-catchments to the total catchment rainfall. Rainfall data was 
based on post 1955 events only 

 
Figure 5-23 Average contribution of individual sub-catchments to the total catchment rainfall. Rainfall data was based 
on post 1955 events only 
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5.6 Selection of patterns for low AEP-events 
For extreme events, ie events with low rainfall AEP, the selected synthetic rainfall patterns generally 
need to be scaled up with high scaling factors. This is especially the case for rainfall events with 
AEP<1/2,000 per year, for which the IFD curve is derived with the GTSMR method (BoM, 2003). 
Scaling factors higher than 2 may be required and this is undesirable. It was therefore decided to 
adopt a different approach for events with AEP<1/2,000 per year. For this range, GTSMR-based 
rainfall patterns are used (BoM, 2003). This means a single spatial distribution is applied, which 
corresponds to the IFD rainfall depth of a 72-hour, 50-year ARI event. For the temporal distribution, 10 
temporal patterns are adopted from the GTSMR approach for a range of durations (24, 36, 48, 72, 96 
and 120 hours). For a single duration, each of the 10 available temporal patterns has an equal 
probability of being sampled. 

The change in approach in sampling spatio-temporal rainfall patterns is likely to result in 
“discontinuities” in the relation between rainfall AEP and peak discharge at AEP = 1/2,000. To prevent 
this from happening, a gradual changeover is introduced by using a mixture of the two type of patterns 
for rainfall AEPs between 1/2,000 and 1/20,000. For this purpose a variable Ps is introduced that 
represents the probability of sampling a pattern from the set of 660 BoM synthetic patterns. This 
automatically means that the probability of sampling a GTSMR pattern is equal to 1- Ps. The value of 
Ps is a function of the rainfall AEP:  

( ) ( ) [ ]10 10

1 ; 1/ 2000
log 1/ 2000 log ; 1/ 20000,1/ 2000

0 ; 1/ 20000
s

AEP
P AEP AEP

AEP

>
= − ∈
 <

 (13) 

Figure 5-24 shows Ps as a function of AEP. It shows the probability, Ps, of sampling a pattern from the 
set of 660 BoM synthetic patterns gradually decreases from 1 to 0 between AEP = 1/2,000 and AEP = 
1/20,000. 

 
Figure 5-24 Value of Ps as a function of the annual exceedance probability of the rainfall 
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6.1 Introductions 
Section 3 to Section 5 described the procedures to sample rainfall depth, rainfall duration and spatio-
temporal rainfall patterns. The current section discusses the sampling procedures of the remaining 
variables of the Monte Carlo framework:  

 Initial losses 

 Ocean water levels 

 Reservoir volumes  

6.2 Initial losses 

6.2.1 Marginal distributions 
Ilahee et al [2001] proposed a 4-prameter beta-distribution to describe probability distribution of initial 
losses. The 4-parameter beta-distribution distribution has since become the standard in rainfall based 
design studies in Australia. The density function of the 2-parameter beta-distribution function is as 
follows: 

( ) ( )
( ) ( ) ( )

11 1
11

0

1
; , 1 ; 0 1

,
x x

f x B x x dx x
B

βα
βαα β

α β

−−
−−−

= = − ≤ ≤∫  (14) 

This density function is defined on the interval [0,1]. The 2-parameter beta-distribution becomes a 4-
parameter beta-distribution if the limits, 0 and 1, are replaced by additional function parameters xL 
(lower bound) and xU (upper bound): 

( ) ( )
( ) ( )

11

L U
L

1
; x

,U

x x
f x x x

x x B

βα

α β

−− −
= ≤ ≤

−
  (15) 

Recently, an alternative approach was proposed by ARR (2013b). This approach uses a non-
parametric standardised initial loss distribution. In this approach, the quantiles of the initial loss 
distribution are normalised by the median initial loss, ie the initial loss with probability of (non-) 
exceedance of 50%. It is observed by ARR (2013b) that the normalised distribution function is very 
similar for most catchments. If the standardised distribution function is indeed applicable to the entire 
Brisbane River catchment the distribution functions for individual sub-catchments is characterised by a 
single value: the median initial loss. Table 6-1 shows the standardised initial loss distribution as 

6 Sampling of other 
random variables 
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derived from ARR (2013b)4. It is worth mentioning that the ARR2013b draft report has been updated 
in 2014, including an update of the standardised distributions. Changes were minor, however, and the 
distribution function from ARR2013b was suitable the current study, as demonstrated in this section. It 
was therefore decided to stick with the standardised distribution function of ARR2013b. 

The use of the standardised distribution has the advantage that it uses only a single parameter, which 
prevents adverse effects from “overfitting”. However, this advantage only holds if the initial losses 
indeed are distributed according to the standardised distribution. If the latter is not the case, the 4-
parameter distribution has the advantage that it is much more flexible and, hence, better able to 
describe the true probability distribution. This is demonstrated by the fact that the beta-distribution 
provides a very good fit of the standardised initial loss distribution of ARR [2013] if the parameters of 
the beta-distribution are taken equal to the values listed in Table 6-2. The fit is shown in Figure 6-1. 
This implies that if the standardised initial loss distribution function of ARR (2013) is the preferred 
option, the beta-distribution can still be used to describe this distribution function in the computational 
framework, which is convenient for implementation. In that case, the beta-distribution with parameters 
as displayed in Table 6-2 is applied to obtain standardised samples of initial losses. These 
standardised values are subsequently multiplied by the median loss of the sub-catchment under 
consideration to obtain “actual” values of initial losses. 

Table 6-1 Standardised initial loss distribution, estimated from Figure 5-21 of ARR, 2013. The standardised values 
represent a fraction of the median initial loss 

Probability of exceedance Standardised initial loss[-] 

1 0.25 

0.9 0.45 

0.8 0.6 

0.7 0.7 

0.6 0.85 

0.5 1 

0.4 1.2 

0.3 1.5 

0.2 1.8 

0.1 2.3 

0 3.7 
 

 

4 These values where derived from a graph in AR&R (2013b), as no table was provided. 
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Figure 6-1 Comparison of the standardised initial loss distribution and the fitted standardised beta distribution 

 
Table 6-2 Parameters of the beta-distribution that provide the optimal fit of the standardised distribution of Table 6-1 

parameter value 

a 0.91 

β 2.54 

XL 0.25 

Xu 3.71 
 
Information on initial losses in the Brisbane River Catchment is available from Seqwater (2013a). In 
their study, initial loss parameters for 48 events were based on model calibrations. Analyses were 
carried out for the seven sub-catchments (see Figure 2-1), in which initial losses were assumed 
uniform over the entire sub-catchment. It was recognised by Seqwater (2013a) that: “decreased scale 
(increased number of sub-catchments) could provide an opportunity for applying locally specific loss 
and routing parameters. However increased division and number of models would add greater 
complexity (hence potential for errors) also decreases the potential to make best use of available 
gauge data with consideration of rating uncertainties. The final adopted basin sub-division was 
considered an optimal trade-off between the factors above.” 

Figure 6-2 shows the derived empirical standardised distributions for initial losses of the seven sub-
catchments of the Brisbane River catchment, in combination with the standardised initial loss 
distribution of ARR (2013b) (thick red line). Loss data were adopted from Seqwater (2013a). It shows 
that the standardised distributions of all sub-catchments except Stanley are well in accordance with 
the standardised distribution from ARR (2013b). The main difference is the fact the standardised 
distribution of ARR (2013b) has a lower limit of about 0.2, which means the initial loss is always higher 
than zero. The empirical distributions of the sub-catchments, on the other hand, indicate that initial 
losses of zero may occur. Events with zero initial losses are highly relevant for flood frequency 
analysis as they result in the highest runoff rates. Therefore, a modified version of the standardised 
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distribution function is proposed (dotted red line). This line can be approximated well by a beta-
distribution with parameters listed in Table 6-4. 

 

 
Figure 6-2 Empirical standardised distributions for Initial losses of the 7 sub-catchments, in combination with the 
standardised initial loss distribution of ARR [2013]. Initial Loss data were adopted from Seqwater [2013a] 

 
The initial loss distribution of the Stanley River catchment deviates from the other sub-catchments 
because the median initial loss for this sub-catchment is significantly lower than for other sub-
catchments (see Figure 6-3). This is caused by the fact that the headwaters of the Stanley River more 
frequently receive intense rainfall due to the close proximity to the coast and orographic influences of 
surrounding mountain ranges (Seqwater, 2013a). A separate beta-distribution function was therefore 
derived for the Stanley River sub-catchment (see Figure 6-4 and Table 6-4). 
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Figure 6-3 Derived median initial losses of the seven sub-catchments, based on 38 calibrated events of Seqwater 
(2013a) 

 
Table 6-3 Derived median initial losses of the seven sub-catchments, based on 38 calibrated events of Seqwater 
(2013a] 

Stanley Upper Lockyer Bremer Warri Purga Lower 

28 54 65 57.5 50 52.5 55 
 
Table 6-4 Selected parameters of the beta-distribution that provide the optimal fit for the standardised distribution 
functions of initial losses 

Parameter Stanley River sub-catchment Other sub-catchments 

 0.54 1.15 

 1.62 2.51 

XL 0.00 0.00 

Xu 6.00 3.61 
 
The proposed procedure for generating samples of initial losses is as follows: 

1. Sample a normalised initial loss from the 4-parameter beta-distribution with parameters listed in 
Table 6-4 

2. Multiply the normalised samples of step 1 with the median loss as shown in Table 6-3 
 



 

 
Figure 6-4 Beta-distribution fitted on the (normalised) observed initial losses of the Stanley River sub-catchment 

 
Note: the distribution functions of initial losses as described above have been derived for events, as 
selected by Seqwater [2013a]. The distribution function of initial losses needs to be consistent with the 
sampling scheme as applied for rainfall intensities. If the sampling scheme considers bursts instead of 
events, the distribution functions for initial losses require correction factors. The reason is that initial 
losses for storm bursts are usually lower than initial losses for storm events. Storm events by definition 
start after a period of at least a couple of hours of insignificant rain, whereas storm bursts typically 
occur in the middle of a storm event. Storm bursts therefore start with wetter initial conditions than 
storm events. As discussed in Section 3.6, this is taken into account in the MCS framework by 
subtracting pre-burst rainfall of the sampled synthetic rainfall pattern from the initial loss, taking into 
account that initial losses cannot be lower than zero. 

6.2.2 Mutual correlations between initial losses 
Initial losses data for the Brisbane River are available from Seqwater (2013a). In their study, initial loss 
parameters for 48 events were based on model calibrations. Analyses were carried out for the seven 
sub-catchments (see Figure 2-1), in which initial losses were assumed uniform over the entire sub-
catchment. The resulting 48 values for 7 sub-catchments, were used to derive mutual correlations 
between the seven sub-catchments (Table 6-5). 

Table 6-5 Derived correlations between the seven sub-catchments 

Area Stanley Upper Lockyer Bremer Warril Purga Lower 

Stanley 1.00 0.42 0.51 0.56 0.49 0.47 0.62 

Upper 0.42 1.00 0.81 0.64 0.71 0.64 0.52 

Lockyer 0.51 0.81 1.00 0.81 0.71 0.56 0.60 

Bremer 0.56 0.64 0.81 1.00 0.87 0.60 0.68 
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Area Stanley Upper Lockyer Bremer Warril Purga Lower 

Warrill 0.49 0.71 0.71 0.87 1.00 0.64 0.65 

Purga 0.47 0.64 0.56 0.60 0.64 1.00 0.89 

Lower 0.62 0.52 0.60 0.68 0.65 0.89 1.00 
 
The numbers in Table 6-5 are based on rank correlations and computed as follows: ρ = sin(pτ/2), 
where τ is Kendall’s rank correlation. The motivation for this choice of correlation measure is that it is 
consistent with the applied correlation model as described in Section 6.2.3.  

Figure 6-5 and Table 6-6 show the correlation between sub-catchment initial losses and 
corresponding event rainfall intensities. These correlations were based on 35 calibration events 
adopted from Seqwater (2013a). Figure 6-5 and Table 6-6 display a wide range of correlation 
coefficients, between almost zero and 0.5.  

Table 6-6 Derived correlations per sub-catchment between rainfall depth/intensity and initial losses 

 Stanley Upper Lockyer Bremer Warril Purga Lower 

depth (mm) 0.03 0.17 0.51 0.35 0.43 0.46 0.22 

intensity(mm/hr) 0.02 0.24 0.51 0.37 0.41 0.31 0.21 
 

 

 
Figure 6-5 Correlations per sub-catchment between rainfall depth/intensity and initial losses 

 
The correlations are all larger than zero. This is somewhat surprising, as the initial loss is an indication 
of ‘dryness’ of the catchment. This means that extreme rainfall events apparently generally coincide 
with relatively dry antecedent soil moisture conditions. This may be an artefact of the calibration of the 
rainfall-runoff model.  
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The application of a positive correlation between rainfall depth and initial losses will lead to a reduction 
in flood levels for low AEP values. To prevent that this contributes to an incorrect underestimation of 
flood levels, an additional analysis was carried out on a 123-year series of daily rainfall, provided by 
the Queensland Department of Science, Information Technology, Innovation and the Arts (DSITIA). 
The series consists of catchment average rainfall depths for six reservoirs in the area. For each 
catchment, the series of 123 highest k-day rainfall events (k=1, 2, 3 and 4 days) were selected and for 
each event the (rank) correlation with the rainfall depth of the 10, 30 and 90 days preceding the events 
was established. Table 6-7 shows the derived correlations are all positive, with one exception. This is 
in contradiction with the conclusions above that extreme rainfall events seem to generally coincide 
with relatively dry antecedent soil moisture conditions. Table 6-7 also shows that correlations are weak 
in general (0.37 or lower), which is in line with the analysis of Hinze Dam Alliance (2012) for the Hinze 
Dam along the nearby Nerang river. But at the same time, these correlations indicate that the 
assumption of a positive correlation between initial losses and rainfall totals may be incorrect and may 
contribute to an underestimation of design flood levels. It is therefore proposed to assume there is no 
correlation between event rainfall and initial losses. 

Table 6-7 Derived Spearman rank correlations between rainfall totals of the 123 highest 1,2,3 an 4-day rainfall events 
and the rainfall of the preceding periods (10, 30 and 90 days) for the catchments of six dams 

Pre-burst period 10 days 30 days 100 days 

Burst duration (days) 1 2 3 4 1 2 3 4 1 2 3 4 

Cressbrook 0.30 0.18 0.17 0.12 0.24 0.20 0.11 0.09 0.18 0.13 0.04 0.08 

Manchester 0.20 0.13 0.08 0.08 0.05 0.09 0.03 0.02 0.01 0.06 -0.03 0.02 

Moogerah 0.15 0.11 0.06 0.07 0.18 0.17 0.07 0.07 0.06 0.01 0.01 0.05 

Perseverance 0.29 0.19 0.11 0.09 0.27 0.25 0.11 0.08 0.17 0.09 0.08 0.09 

Somerset 0.37 0.26 0.28 0.27 0.34 0.29 0.20 0.19 0.19 0.12 0.11 0.11 

Wivenhoe 0.20 0.11 0.22 0.25 0.09 0.07 0.10 0.07 0.16 0.07 0.08 0.06 

6.2.3 Sampling procedure 
In the Monte Carlo simulations, the correlations of initial losses in the sub-catchments are incorporated 
using a Gaussian Copula approach (see eg Diermanse and Geerse, 2012; Kaiser and Dickman, 
1962). This method requires the n-by-n correlation matrix, , as input, where n is the number of 
mutually correlated variables. As proven by Fang et al (2002),   should be taken equal to sin (/2), 
where  is Kendall’s rank correlation matrix. Note that correlation matrix   for rainfall and initial losses 
is available from the analyses of Section 6.2.2.The procedure to generate correlated samples is as 
follows: 

1. Derive a lower triangular matrix L for which: LL’= , through Cholesky decomposition of correlation 
matrix  (see, eg Strang, 1982). Note: L’ is the transpose of matrix L 

2. Sample values u1,…,un from the standard normal distribution function; store the results in an 1xn 
vector u  

3. Compute: u*= uL’ 
4. Compute: p =  (u*), where  is the standard normal distribution function 
 

 

 



 

The resulting vector p is a sample of n correlated standard uniformly distributed random variables. The 
p-values represent probabilities of non-exceedance of the individual random variables. The p-values 
can subsequently be translated to “real-world” variables such as rainfall intensities and initial losses 
with the (inverse) probability distribution functions of the individual random variables: 

( )1
i i ix F p−=   (16) 

Where xi is the resulting sample of the ith random variable, Fi is the corresponding probability 
distribution function and pi is the probability of non-exceedance of variable i, as sampled with the 
Gaussian copula. Figure 6-6 shows an example of mutually correlated initial losses that were sampled 
according to this procedure for four sub-catchments (Stanley, Upper Brisbane, Lockyer and Bremer). 
For each sub-catchment, 1000 values for the initial losses were sampled and the associated empirical 
probabilities (blue dots) are compared with the observed empirical probabilities (red dots). It can be 
seen from Figure 6-6 that, for example, the generated sampled losses for Upper Brisbane and Lockyer 
sub-catchments are stronger correlated than the sampled losses for Lockyer and Stanley sub-
catchments, which is in accordance with Table 6-5 and with the observed losses. The fact that this 
procedure provides simultaneous samples of mutually correlated variables makes it a powerful tool for 
Monte Carlo analysis, because this means the samples provide realistic spatial patterns of initial 
losses. 

 

 
Figure 6-6 Correlation plots of simulated and observed initial losses for four sub-catchments (Upper, Stanley, Lockyer 
and Bremer). The axes show empirical probabilities 
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The Gaussian Copula is asymptotically independent, which means there is no increased statistical 
dependence in the tail ends of the distributions. The model is therefore unable to represent situations 
where the dependency between the random variables increases for more extreme values, which could 
potentially have a significant effect on the derived the flood risk. This might also be the case for the 
initial losses of the sub-catchments of the Brisbane River catchment, as extremely wet antecedent soil 
conditions in the sub-catchments are likely to coincide. In that case, other correlation models that 
model asymptotic dependence are required, such as the student-t copula (Fang et al, 2002), the 
threshold-excess logistic model (Zheng et al, 2013) or the Gumbel-Hougard Copula (Diermanse and 
Geerse, 2012). However, the available data set on initial losses is too small to provide evidence for 
asymptotic dependence, which is why the Gaussian copula is considered to be suitable for now. A 
sensitivity analysis could be carried out to assess the potential influence of asymptotic dependence in 
initial losses on the derived flood levels in the Brisbane River catchment. For this purpose, additional 
Monte Carlo simulations could be carried out with the student-t copula. The student-t copula requires 
the correlation matrix, ρ, as input, similar to the Gaussian copula. Furthermore, the student-t copula 
has an additional parameter, υ, which controls the tail dependence. The procedure for the student-t 
copula is as follows: 

1. Compute correlated standard normal variables u*, following the procedure of the Gaussian copula 
2. Sample a value, s, from the χυ2 (chi-square) distribution with υ degrees of freedom 
3. Compute w = υ/s; w is a sample of the inverse gamma-distribution with parameters (υ/2, υ/2) 
4. Compute y = (√w)u*;y is a vector of correlated samples from the student-t distribution with υ 

degrees of freedom 
5. Compute p = tυ(y), where tυ is the student-t distribution with υ degrees of freedom 
 
The resulting p-values are mutually correlated samples from the standard uniform distribution function. 
The p-values can be translated to “real-world” variables through application of equation (16). 
Parameter υ should be greater than or equal to 2. The tail dependence is strongest when υ=2 and 
decreases with increasing value of υ. In the limit υ→∞, the student-t copula is equal to the Gaussian 
copula. Figure 6-7 compares biviariate samples of the Gaussian copula (ρ=0.8) and the student-t 
copula (ρ=0.8, υ=5). The patterns are very similar, except in the tails (p-values near zero and one). 
This is more clearly visible in Figure 6-8, where the samples are plotted against a logarithmic axis. For 
the relatively low probabilities shown in Figure 6-8, the red dots (student-t) are clearly stronger 
correlated than the blue dots (Gaussian). Since both copulas are symmetric, the same holds for high 
p-values (not shown in Figure 6-8). 
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Figure 6-7 Biviariate samples of the Gaussian copula (ρ=0.8) and the student-t copula (ρ=0.8, ρ=5) 

 

 
Figure 6-8 Biviariate samples of the Gaussian copula (ρ=0.8) and the student-t copula (ρ=0.8, υ=2) 

6.3 Ocean water levels 

6.3.1 Marginal distribution of ocean water level 
Frequency distributions for ocean water levels at location Luggage point in Moreton Bay were adopted 
from Table 6-1 of (GHD, 2014). The relation between peak ocean water levels and AEP is shown in 
Table 6-8 and Figure 6-9.  
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Table 6-8 Frequency distribution for ocean water levels, adopted from GHD (2014) 

AEP Water level (mAHD) 

1/5 1.59 

1/20 1.68 

1/50 1.78 

1/100 1.86 

1/500 2.30 

1/2000 2.76 

1/10000 3.25 
 

 

 
Figure 6-9 Frequency distribution for ocean water levels at Luggage point; numbers based on (GHD, 2014) 

6.3.2 Correlation with rainfall depth 
The events that cause extreme rainfall depths in the Brisbane River catchment (Cyclones, East coast 
lows and tropical storms) may also generate a significant storm surge. Increased sea water levels may 
further increase flood levels in the downstream part of the Brisbane and Bremer Rivers. The timing of 
peak flows and peak sea water levels is also relevant in this respect; the storm surge may well be over 
before the peak discharges reach the downstream end of the Brisbane River.  
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For the correlation between rainfall and storm surge, the approach of Zheng et al. (2013a,b) is 
followed, who derived correlations for the entire Australian coast line. They use the threshold-excess 
logistic model of Tawn (1988) to describe the statistical dependence. This model has the following 
bivariate distribution function: 

[ ] ( ) ( )1 1
0 0, exp ; ,XYP X x Y y G x y x y x x y y

ααα − − ≤ ∩ ≤ = = − + ≥ ≥  
  (17) 

Where X and Y are random variables, x and y are potential realisations of X and Y, G is the bivariate 
distribution function of X and Y, and x0 and y0 are thresholds above which function G is valid. In the 
application of Zheng et al. (2013a,b), X and Y represent transformed values of rainfall and ocean 
water level, respectively. This means the probabilities as derived from Equation (17) need to be 
transformed back to actual values of rainfall and ocean water level in order to assess flood levels in 
river stretches that are influenced by both. The interested reader is referred to Zheng et al. (2013a) for 
the description of this procedure. 

In the application of Zheng et al. (2013a,b), the combined probabilities are assessed by numerical 
integration. Our objective is to apply their model in a Monte Carlo framework, which means we require 
[a] the marginal probability distribution function for variable X and [b] the distribution function of 
variable Y, conditional on X. The distribution function of X can be derived directly from function G: 

( ) ( ) ( ) ( )1 1
0

lim , exp exp ;X XYF x G x y x x x xy
αα− −   = = − = − ≥  →∞  

  (18) 

This distribution is known as the standard Fréchet distribution. Variable Y has the same distribution 
function. The density function is as follows (see Figure 6-10): 

( )
( )1

02

exp
;X

x
f x x x

x

− − = ≥   (19) 

 
Figure 6-10 Standard Fréchet distribution 
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The inverse of this distribution function (required for the sampling procedure) is as follows: 

( ) ( )
1 1

ln
F p

p
− −

=   (20) 

where p is the probability of non-exceedance. The conditional distribution function of Y, given X=x, is 
as follows: 

( )
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 − 

 (21) 

There is no closed form for the inverse of this conditional distribution function, so it has to be 
computed numerically in the sampling procedure.  

If a=1, Y and X are independent, whereas if a=0, Y and X are fully dependent. This shows the value of 
a determines the statistical dependence between X and Y: low values of a (close to 0) indicate strong 
dependence, high values of a (close to 1) indicate weak dependence. Figure 6-11 shows sampled 
pairs of x,y-values for four different values of a. 

 

 
Figure 6-11 N=10,000 samples from the bivariate logistic model for four different values of the dependence parameter 
a. The axes show marginal exceedance probabilities of the sampled x and y-values 

 
According to Zheng et al. (2013a), α = 0.95 for rainfall events of less than 12 hours along the 
Queensland east coast, α = 0.9 for rainfall events between 12 and 48 hours and α = 0.85 for rainfall 
events of over 48 hours. These values are adopted in our approach. It may appear from Figure 6-11 
that these values result in negligible correlation. However, the statistical dependence increases for 
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extremes, ie low probabilities of exceedance. This can be observed, for example in the upper right plot 
of Figure 6-11 (subplot for α =0.5). The rainfall events to be considered in the MCS procedure all have 
low exceedance probabilities associated with them. Consider, for example, a rainfall event with 
duration of three days and an AEP of 0.5, which is a relatively moderate event in the MCS procedure. 
This is an event for which the three-day total rainfall depth is exceeded in a year with a probability of 
0.5. The probability that this rainfall depth is exceeded in a specific three-day period is approximately 
equal to AEP/122 (ignoring, for the moment, seasonal influences), where 122 is the number of three-
day periods in a year. For an AEP of 0.5, this means an approximate probability of exceedance of 
0.004 per three-day period. 

This shows the statistical dependence for the events to be considered in the MCS procedure is more 
relevant than initially indicated by Figure 6-11. This is further demonstrated in Table 6-9 and Table 
6-10. Table 6-9 shows the exceedance probabilities of ocean water levels with AEP’s equal to 0.1, 
0.01, 0.001 and 0.0001 during a period of three days. Table 6-10 shows the exceedance probabilities 
of the same events, but in this case conditional on the occurrence of an extreme rainfall event, 
assuming α =0.85. For example, the value 0.1 in the last row and column of Table 6-10 can be 
interpreted as follows: If α =0.85, and a rainfall event with AEP equal to 0.0001 occurs, the probability 
that an ocean water level with AEP<=0.0001 occurs (during the three-day period) is equal to 0.10, ie 
10%. In case the ocean water level and rainfall would have been independent (α =1), this probability 
would have been equal to 8.2*10-7 (see Table 6-9). This shows that for extreme events, the 
conditional probabilities increase with several orders of magnitude. 

Table 6-9 Probability of exceedance of ocean water levels with shown AEP, during a period of three days 

AEP Ocean water level 

0.1 0.01 0.001 0.0001 

8.6E-04 8.2E-05 8.2E-06 8.2E-07 
 
Table 6-10 Conditional exceedance probability, F(Y>y|X=x), in case the dependence parameter a is equal to 0.85. The 
value of x is the rainfall depth with an AEP as shown in the second header row, the value of y is the ocean water level 
with an AEP as shown in the first column 

 AEP rain 

AEP Ocean 0.1 0.01 0.001 0.0001 

0.1 0.10 0.35 0.56 0.71 

0.01 0.01 0.10 0.34 0.56 

0.001 0.00 0.01 0.10 0.34 

0.0001 0.00 0.00 0.01 0.10 
 
In the computations of Table 6-10, seasonal influences have been ignored. Zheng et al, (2013b) state 
that: “Southern Queensland is more likely to have jointly occurring extreme events in the cold season 
(April–September). The strong dependence in the cold season in this region may be partially driven by 
east coast low pressure systems, which often occur in the cold season of southern Queensland.” So, 
in the warm season (October to March), which is the season for rainfall extremes in the Brisbane River 
catchment, the earlier mentioned α-values may slightly overestimate the joined occurrence of 
extremes of rainfall and ocean water level.  
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6.3.3 Time series 
The procedure as described in the previous section provides peak ocean water levels that are 
correlated to the rainfall depth and duration. For the URBS model simulations not only the peak ocean 
water level is required but also a time series of ocean water levels for each simulated event. Such a 
time series is composed with the following procedure: 

1. Sample a peak ocean water level (hp) and event duration as described in Sections 6.3.1 and 6.3.2 
2. Sample the peak of the surge, Sp, from the uniform distribution with intervals [hp – a, hp – b], where 

a and b are constants equal to 1.3 m+AHD and 0.8 m+AHD 
3. Assume a trapezoidal storm surge hydrograph with peak surge level equal to Sp (see below on the 

details on the assumed shape of the storm surge hydrograph) 
4. Combine the surge series with an astronomical tide series, taken from a monthly series of 

“average” tidal conditions. Choose the relative starting points of the surge and astronomical tide 
series in such a way that tide + surge results in a peak water level that is equal to hp 

 
The assumed shape of the storm surge hydrograph was adopted from Figure 6-12, which shows 
recorded time series (normalised) for the Sunshine coast as derived by (Aurecon, 2013b). A 
schematised version of the 50% line (black line in Figure 6-12) was derived. The resulting dimesionles 
hydrograph is as follows:  

 In 48 hours the surge increases linearly from 0 to 0.5 

 In 24 hours the surge increases linearly from 0.5 to 1 

 In 30 hours the surge decreases linearly from 1 to 0.5 

 In 66 hours the surge decreases linearly from 0.5 to 0 
 
This means the total duration of the surge hydrograph is equal to 168 hours, or 7 days. 

 

 
Figure 6-12 Recorded time series histories (normalised) for storm surges on the Sunshine Coast. Figure copied from 
(Aurecon, 2013b) 

 

 

 
Project 238021  File 238021-0000-REP-WW-0002_Monte Carlo Simulation Report.docx  

 15 May 2015  Revision 4  Page 77 
 



 

 
Figure 6-13 Example of a generated series of surge, astronomical tide and resulting ocean water level 

 
Figure 6-13 shows an example of a generated time series for ocean water level (red line) in 
combination with the generated surge and astronomical tide levels. Figure 6-14 shows examples of 
multiple generated time series of ocean water levels. In each subplot, the resulting peak ocean water 
level is the same. Differences between subplots are caused by differences in the peak of the surge 
and differences in “timing”. 

 
Figure 6-14 Examples of a generated series of surge, astronomical tide and resulting ocean water level. In each 
subplot, the resulting peak ocean water level is the same. Differences between subplots are caused by differences in 
the peak of the surge and differences in “timing” 
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Figure 6-15 shows the resulting time series of ocean water levels (red graphs of Figure 6-14) in a 
single plot. The time series were shifted horizontally to make sure the peaks occurred at the same 
time. The figure shows considerable variability, demonstrating that the aspect of timing between the 
peak of the surge and the peak of the astronomical tide is relevant. In our view this is realistic and 
shows the benefit of taking this “random” feature into account in the MCS framework. 

 

 
Figure 6-15 Eight time series of ocean water levels of Figure 6-14. The time series were shifted horizontally to make 
sure the peaks occurred at the same time 

6.3.4 Timing 
The last issue that needs to be addressed is the timing of the peak storm surge and peak river 
discharge. In the URBS-model simulations, the input consists of time series of rainfall and ocean water 
level. The sampling procedure described in the previous sections provides ocean levels and rainfall 
intensities, but not their relative timing. If the peak of the surge occurs two days before the start of the 
rainfall event, the surge will have no effect on flood levels, whereas if it occurs near the end of the 
rainfall event the effect may be substantial. Zheng et al (2013a) state that the dependency parameter 
(α), of the logistic regression model of equation (17) is based on zero-lag between rainfall and surge, 
so it makes sense to adapt this zero-lag in the simulation model as well. However, it is not clear from 
their paper what this means if, for instance, three-day rainfall events are considered. According to 
Westra (personal communication), the definition of ‘zero-lag’ in Zheng et al (2013) is that the storm 
surge will occur sometime within the period of the critical rainfall. So, for three-day rainfall events, 
zero-lag means that the storm surge is assumed to occur sometime in that three-day period. It is 
therefore proposed to adopt this assumption in the Monte Carlo simulations, and sample a time lag 
between storm surge peak and rainfall peak uniformly over an n-day period centred around zero, 
where n depends on the catchment of interest. 
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Figure 6-16 shows a histogram of difference in timing between peak flows at Brisbane City and peak 
ocean water levels at the Brisbane River outlet, for simulated 72 hour bursts, for ‘no dams’ conditions. 
Positive values refer to peak flows occurring later than peak ocean water levels. It shows that the 
simulated peak flow at Brisbane City generally occurs later than the simulated peak ocean water level, 
which is in accordance with what is expected to occur in reality.  

 

 
Figure 6-16 Histogram of difference in timing between peak flows at Brisbane City and peak ocean water levels at the 
Brisbane River outlet, for simulated 72 hour bursts. Positive values refer to peak flows occurring later than peak ocean 
water levels 

6.4 Reservoir volumes 

6.4.1 Analysis of reservoir time series 
In order to gain insight in the influence of reservoir operation rules on flow series, a 123-year reservoir 
model simulation was carried out by the Queensland Department of Science, Information Technology, 
Innovation and the Arts (DSITIA). The input of the simulation consisted of observed rainfall intensities 
and evaporation rates over the last 123 years. The output consisted of a 123-year series of reservoir 
volumes for six dams in the area: Cressbrook, Manchester, Moogerah, Perseverance, Somerset and 
Wivenhoe (see Table 6-11 and Figure 6-17). The resulting series were provided to the BRCFS study 
by DSITIA and were subsequently used to analyse relevant statistics of reservoir volumes in the area. 

Table 6-11 Full supply levels of the six reservoirs as assumed in the simulations 

Reservoir Full Supply Level (m AHD) Full Supply Volume (ML) 

Perseverance 446.075 30,141 

Cressbrook 280 81,842 

Somerset 99 379,850 

 

 
Project 238021  File 238021-0000-REP-WW-0002_Monte Carlo Simulation Report.docx  

 15 May 2015  Revision 4  Page 80 
 



 

Reservoir Full Supply Level (m AHD) Full Supply Volume (ML) 

Wivenhoe 67 1,165,200 

Manchester 50.9 26,000 

Moogerah 154.91 83,765 
 

 

 
Figure 6-17 Dams and reservoirs in the Brisbane river catchment 

 
Figure 6-18 shows annual averaged volumes for Wivenhoe dam. It shows these volumes are usually 
between 800,000 ML and 1,200,000 ML. In the early 20th century and early 21st century there were two 
drought periods during which the simulated reservoir volumes dropped far below 800,000 ML. Similar 
graphs have been derived for the other five reservoirs in the catchment. As an example Figure 6-19 
shows the annual mean volumes of Moogerah dam. In this Figure, the relatively dry periods of the 
early 20th century and early 21st century are also visible. The annual mean volumes of Moogerah dam 
clearly have more variation in comparison with Wivenhoe dam, mostly due to its smaller size. 
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Figure 6-18 Annual mean volume of Wivenhoe Dam 

 

 
Figure 6-19 Annual mean volume of Moogerah Dam 
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Figure 6-20 shows monthly mean rainfall depths over the catchment of Wivenhoe dam (ie the Stanley 
River sub-catchment and Upper Brisbane River sub-catchment). It shows a clear distinction between a 
wet season (November to March) and a dry season (April to October). The seasonal pattern is also 
reflected in Figure 6-21, which shows the histograms of occurrences of maximum k-day rainfall events 
(k=1, 2, 3, 4). The majority of these events are observed in the period January to March.  

The seasonal pattern in rainfall obviously causes a seasonal pattern in reservoir volumes as well. 
However, seasonal fluctuations of reservoir volumes in Wivenhoe dam are not significant, as shown in 
the box plots of Figure 6-22. Monthly median volumes vary from 990,000 ML (November) to 
1,039,000 ML (July). For smaller reservoirs, the seasonal differences are more pronounced, as can be 
seen for example in Figure 6-23 (Somerset Dam). 

 

 
Figure 6-20 Monthly mean rainfall over Wivenhoe Dam catchment 
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Figure 6-21 Histogram of occurrence of maximum 1, 2, 3 and 4 day rainfall 

 

 
Figure 6-22 Box plot for monthly mean reservoir volumes of Wivenhoe Dam 
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Figure 6-23 Box plot for monthly mean reservoir volumes of Somerset Dam 

6.4.2 Analyses of correlations 
The following issues were addressed: 

1. Are reservoir volumes at the start of a high rainfall burst generally different from ‘average 
conditions’ (ie should we derive marginal distribution functions from the complete series of reservoir 
volumes or from the partial series of reservoir volumes at the start of big rainfall bursts)?  

2. Is there significant correlation between the cumulative rainfall depth of a burst and the reservoir 
volume at the start of a burst? 

3. Is there mutual correlation between the reservoir volumes at the start of a burst? 
 
Question 1: Are reservoir volumes at the start of an extreme rainfall burst generally different from 
‘average conditions’? 

To address this question, reservoir volumes of the 123 highest rainfall bursts in the simulation period 
were derived. Subsequently, empirical probabilities were derived for these 123 volumes in two ways. 
The first estimate is based on the rank in the complete series, consisting of 44,740 daily values. The 
second estimate is based on the rank in the series of 123 reservoir volumes. In both cases, 
exceedance probabilities were estimated to be equal to r/(N+1), where r is the rank number and N is 
the length of the series (44,740 in the first estimate and 123 in the second estimate). 

Both probability estimates for Wivenhoe dam are plotted against each other in Figure 6-24. This is 
done for the reservoir volumes associated with the highest 123 rainfall bursts for 1, 2, 3 and 4 day 
periods. The values shown are estimated probabilities of non-exceedance. It shows that the first 
probability estimate, based on the complete series, is generally higher than the second probability 
estimate, based on the series of 123 peak bursts. The Figures for the other five reservoirs (not shown 
here) reveal a similar type of behaviour. This clearly indicates that the reservoir volume at the 
beginning of an extreme rainfall burst is generally higher than the reservoir volume on an arbitrary 
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moment in time. This means the probability distribution of reservoir volumes, to be used in the MCS 
framework, should be based on observed values at the beginning of high rainfall bursts and not on the 
complete series of reservoir volumes. 

 

 
Figure 6-24 Q-Q plots showing estimated probabilities of non-exceedance of derived reservoir volumes for 123 bursts. 
P-values at the vertical axes were derived directly from the series of 123 bursts, p-values at the horizontal axes were 
derived from the statistics of the entire series of 123 years. Plots are shown for the highest 1,2,3 and 4-day rainfall 
bursts 

 
Question 2: Is there significant correlation between the cumulative rainfall depth of a rainfall burst and 
the reservoir volume at the start of the burst? 

To address this issue, observed rainfall totals were plotted against reservoir volumes. This was done 
for 1, 2, 3 and 4-day rainfall extremes. Figure 6-25 shows the results for Wivenhoe dam. The plots 
seem to indicate that there is a correlation: the highest rainfall totals do not occur in combination with 
the lowest reservoir volumes. This pattern is also observed for the other dams. However, the relation 
is weaker than it may appear from Figure 6-25. This is demonstrated in Figure 6-26, where the same 
data is shown in terms of empirical probabilities of non-exceedance. This means for example that the 
highest observed reservoir volume is estimated to have an empirical probability of non-exceedance of 
1-1/(n+1) where n is the size of the data (123 in this case)5. The second highest observed volume is 
estimated to have an empirical probability of non-exceedance of 1-2/(n+1), etc. As can be seen in 
Figure 6-26, the correlation, which is essentially a rank correlation, is much weaker than appeared 
from Figure 6-25.  

 

 

5 Note that this probability is conditional, ie it is the probability, given the fact that the rainfall is among the 123 highest 
cumulative rainfall volumes in the series of 123 years 
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To explain the difference, one of the observed combinations of rainfall depth and reservoir volume has 
been circled in red in both figures. The 4-day cumulative rainfall of this example burst is equal to 
411 mm, which is ranked 4th overall 123 rainfall observation and hence has an estimated probability of 
non-exceedance of 1-4/(n+1) = 0.97. The corresponding reservoir volume is equal to 807,000 Ml, 
which is ranked 98th in the series of 123 reservoir volumes, and therefore has an estimated probability 
of non-exceedance equal to 1-98/(n+1) = 0.21. So, in terms of absolute values, the relatively high 
rainfall depth of 411 coincides with a reservoir volume that appears to be average in from Figure 6-25. 
However, in terms of ranking, this reservoir volume is significantly lower than the median value. This is 
why the correlation in absolute values appears to be stronger than for estimated empirical probabilities 
and/or ranking numbers. 

In general, rank correlation is more informative than Pearson’s correlation coefficient (which is derived 
from absolute values) as explained for example by Genest and Favre (2007). This is why the use of 
the rank correlation is preferred in the current studies. Table 6-12 shows that both types of correlation 
coefficients are low for rainfall bursts and reservoir volumes. 

 

 
Figure 6-25 Scatter plots of rainfall depth and reservoir volume for Wivenhoe dam 
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Figure 6-26 Empirical probabilities of rainfall depth and reservoir volume for Wivenhoe dam 

 
Table 6-12 Correlations between rainfall and reservoir volumes for selected bursts (1, 2, 3 and 4-day rainfall extremes) 

Dam Rank-based correlation Pearson’s correlation 

1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days 

Cressbrook 0.14 0.05 0.02 0.14 0.17 0.07 0.06 0.16 

Manchester 0.04 0.09 0.13 0.13 0.06 0.09 0.13 0.16 

Moogerah 0.14 -0.11 -0.15 -0.19 0.15 0.02 -0.03 -0.17 

Perseverance 0.29 0.08 0.03 0.03 0.23 0.08 0.05 0.04 

Somerset 0.12 0.12 0.13 0.17 0.17 0.15 0.16 0.19 

Wivenhoe 0.00 0.05 0.16 0.12 0.01 0.13 0.18 0.18 
 
Question 3: Is there mutual correlation between the reservoir volumes at the start of a burst? 

To address this issue, the 123 bursts with highest rainfall totals in the catchment of Wivenhoe dam 
were analysed. Reservoir volumes at the beginning of these bursts were gathered for all six 
reservoirs. Figure 6-27 shows scatter plots of Wivenhoe reservoir volumes versus volumes of the 
other five dams. These figures show there is clearly correlation present and this needs to be taken into 
account in the MCS framework. Table 6-13 shows the rank correlations between reservoir volumes, 
based on observed volumes at the beginning of the 123 highest 4-day rainfall bursts. It shows that 
mutual correlation between reservoir volumes are far more significant than correlations between 
rainfall depth and reservoir volumes (compare Table 6-13 with Table 6-12). 

 

 

 



 

Table 6-13 Rank correlations between volumes of the six reservoirs: p = sin (pτ/2), where τ is Kendall’s rank correlation 

Dam Cressbrook Manchester Moogerah Perseverance Somerset Wivenhoe 

Cressbrook 1.00 0.67 0.58 0.99 0.60 0.85 

Manchester 0.67 1.00 0.57 0.65 0.77 0.78 

Moogerah 0.58 0.57 1.00 0.56 0.47 0.56 

Perseverance 0.99 0.65 0.56 1.00 0.60 0.85 

Somerset 0.60 0.77 0.47 0.60 1.00 0.86 

Wivenhoe 0.85 0.78 0.56 0.85 0.86 1.00 
 
Figure 6-27 reveals some interesting patterns: 

 High volumes at Wivenhoe dam do not occur simultaneously with low volumes at Somerset dam. 
However, high volumes at Somerset dam can occur simultaneously with low volumes at Wivenhoe 
dam 

 Similar observations can be made for Wivenhoe dam and Manchester dam 

 For Perseverance dam and Cressbrook dam, the relation with Wivenhoe volumes are opposite: 
High volumes at Wivenhoe dam can occur simultaneously with low volumes at 
Perseverance/Cressbrook dams. However, high volumes at Perseverance/Cressbrook dams do not 
occur simultaneously with low volumes at Wivenhoe dam 

 
 

 
Figure 6-27 Scatter plots of empirical probabilities of reservoir volumes at the beginning of the 123 selected highest 4-
day rainfall bursts: Wivenhoe dam (horizontal axis) plotted against the other five other dams 
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Figure 6-28 shows that the same patterns are observed in the full data set of daily reservoir volumes. 
The following paragraphs provide a hypothesis for this behaviour. 

Somerset Dam has a greater chance of receiving inflows due to its proximity to the coast and so is 
more likely to fill than Wivenhoe Dam. Somerset Dam is also about one third the capacity of Wivenhoe 
Dam. Prior to the establishment of the Seqwater grid, as far as the operation of Somerset Dam and 
Wivenhoe Dam was concerned, the aim for water supply was to empty Somerset Dam into Wivenhoe 
Dam as quickly as possible to draw the combined storage down to around below 75% which the 
optimum storage level from a loss perspective. This provides greater opportunity to catch follow up 
rainfall in Somerset Dam. 

This is still done, but there is now an added complication of the existing arrangement due to the 
inclusion of manufactured water (desalination and recycled potable water). At various thresholds of the 
combined storages (60% for the desalination and 40% for the recycled water), the natural supply can 
now be augmented by the use of manufactured water. This water is only pumped into Wivenhoe Dam. 
The Seqwater grid operates to satisfy two main objective functions:  

 Above the threshold levels, the dams are operated to satisfy demands most efficiently 

 Below the threshold it is operated to minimise the cost of operation whilst still meeting reduced 
demands (water restrictions are applied) 

 
Perseverance and Cressbrook dams normally act independently from the Somerset/Wivenhoe system 
as they supply Toowoomba and not the wider Brisbane region. There is now an emergency pipeline 
that connects Wivenhoe Dam to Cressbrook/Perseverance dams for use during drought events on the 
Darling Downs (Toowoomba). This means this supply can also be augmented by the manufactured 
water. The observed correlations appear reasonable as under drought conditions the Toowoomba 
supplies would be depleted and would be augmented from supplies from Wivenhoe 
Dam/manufactured water supplies, meaning Perseverance/Cressbrook Dams are likely to be low, 
whilst Wivenhoe Dam may medium to high. If Wivenhoe Dam is drawn down then it is likely 
Perseverance/Cressbrook will also be low. 

Conclusions 

To conclude, the sampling scheme for reservoir volume should take the following aspects into 
account: 

1. Marginal probability distribution functions of reservoir volumes should be based on observed 
volumes at the start of big rainfall bursts, ie not on the complete series of reservoir volumes of 123 
years 

2. Given the occurrence of a high rainfall burst, there is a weak correlation between reservoir volumes 
on one hand and total rainfall depth on the other hand 

3. There is a significant correlation between volumes of different reservoirs at the beginning of high 
rainfall bursts 

 
The next section will describe the proposed simulation procedure for reservoirs in the Monte Carlo 
framework. 
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Figure 6-28 Scatter plots of empirical probabilities of reservoir volumes of all daily observations in the simulated series 
of 123 years: Wivenhoe dam (horizontal axis) plotted against the other five other dams. The red circles correspond to 
the highest 123 4-day rainfall bursts 

6.4.3 Simulation procedure 

Marginal distribution functions 
The first requirement of the sampling procedure is a marginal probability distribution function of 
reservoir volumes for each of the six reservoirs. Figure 6-29 and Figure 6-30 show histograms of 
observed reservoir volumes at the beginning of the highest 1-day, 2-day, 3-day and 4-day rainfall 
bursts for Wivenhoe and Moogerah dam. The red dashed lines in the figures represent full supply 
levels. For an individual reservoir, the histograms of the n-day bursts are similar for = 1, 2, 3, 4 days. 
This is also confirmed by the corresponding empirical distribution functions as shown in Figure 6-31. 
Note that between the histograms of the six reservoirs there are significant mutual differences.  

The histograms are far from “smooth”, which means the well-known distribution functions cannot be 
expected to properly replicate the observed data. We therefore propose to use the empirical 
distribution that follows directly from the observed volumes. This means the probability of non-
exceedance of a reservoir volume, v, is estimated as follows: 
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Where FV is the empirical distribution function, V is the random variable representing reservoir volume, 
v is a potential realisation of V, vi, i=1..n are the n observed reservoir volumes on which the 
histograms are based and I[…] is the indicator function (I=1 if vi<v, I=0 otherwise). 

Figure 6-31 shows the empirical distribution functions of the reservoir volumes at the start of k-day 
rainfall bursts, for k=1, 2, 3 and 4. As mentioned before, the empirical distribution function is relatively 
insensitive to the value of k. A single empirical distribution function (derived for k=4) is therefore 
adopted in the MCS framework and applied to the whole range of burst durations. 

 

 
Figure 6-29 Histogram of Wivenhoe reservoir volumes at the beginning of the highest 1-day, 2-day, 3-day and 4-day 
rainfall bursts. The red dashed line is the full supply level 
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Figure 6-30 Histogram of Moogerah dam reservoir volumes at the beginning of the highest 1-day, 2-day, 3-day and 4-
day rainfall bursts. The red dashed line is the full supply level 

 

 
Figure 6-31 Derived empirical distribution function of reservoir volumes at the start of 1-day, 2-day, 3-day and 4-day 
rainfall bursts 
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Correlations 
The correlation between rainfall and reservoir volumes is covered to a large extent in the sampling 
procedure by the fact that marginal distributions are based on observed reservoir volumes at the 
beginning of high rainfall bursts. The ‘remaining’ correlation is weak, ie the correlation between the 
total rainfall depth of a high rainfall burst and the reservoir volume at the beginning of such a burst. 

The remaining challenge of the multivariate sampling scheme is therefore to simulate the mutual 
dependence between reservoir volumes as described in Section 6.4.2. The correlation matrix as 
shown in Table 6-13 can be used as starting point. The earlier described correlation models (Gaussian 
and student-t copula) are not applicable in this case. These copulas are symmetric around the line 
y=x, provided that correlations are positive and this property holds for most copulas. As observed in 
Section 6.4.2, the correlation structure between Wivenhoe dam on one hand and Somerset, 
Manchester, Cressbrook and Perseverance dams are clearly asymmetric around the line y=x. A 
copula that is able to represent this asymmetric behaviour is the skewed student-t copula (Azzalini and 
Capitanio, 2003; Sahu et al. 2003; Smith et al., 2012). This copula function has the following 
parameters: 

 An n-by-n correlation matrix p (similar to the Gaussian and student-t copula), where n is the number 
of reservoirs 

 A scalar parameter υ which controls the tail dependence (similar to the student-t copula) 

 A 1-by-n vector γ which controls the asymmetric behaviour 
 
Once these parameters are given, the procedure to implement the skewed student-t copula in the 
Monte Carlo framework is as follows: 

1. Derive a lower triangular matrix L for which: LL’= ρ, through Cholesky decomposition of correlation 
matrix 

2. Sample values u1,…,un from the standard normal distribution function; store the results in an 1xn 
vector u  

3. Compute: u*= uL’  
4. Sample a value, s, from the χυ2 (chi-square) distribution with υ degrees of freedom 
5. Compute w = υ/s; w is a sample of the inverse gamma-distribution with parameters (υ/2, υ/2). 
6. Compute y = γw + (√w)u*;y is a vector of correlated samples from the skewed student-t distribution 

with υ degrees of freedom. 
7. Compute p = tsυ(y), where tsυ is the skewed student-t distribution with υ degrees of freedom 
 
The correlation matrix, ρ, and degrees of freedom, υ, have been derived from the data, using the 
available fit procedures for the student-t copula in Matlab. Correlation matrix ρ is shown in Table 6-13, 
υ is equal to 6. The values of factor γ where taken according to the values shown in Table 6-14. The 
motivation for the choices of these γ-values is as follows: 

 For Wivenhoe dam, a γ-value of zero was chosen because this dam is considered the “reference” 
for the other five reservoirs 

 For Moogerah dam, a γ-value of zero was chosen, because the paired observations of Wivenhoe 
dam and Moogerah dam did not show an asymmetric pattern 

 For Cressbrook and Perseverance dams a negative γ-value was chosen, because this leads to the 
observed asymmetric pattern in which high volumes at Wivenhoe dam can occur simultaneously 
with low volumes at Perseverance/Cressbrook dams, while high volumes at 
Perseverance/Cressbrook dams cannot occur simultaneously with low volumes at Wivenhoe dam 
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 For Somerset and Manchester dams a positive γ-value was chosen, because this leads to the 
observed asymmetric pattern in which high volumes at Wivenhoe dam will not occur simultaneously 
with low volumes at Somerset/Manchester dams, while high volumes at Somerset/Manchester 
dams can occur simultaneously with low volumes at Wivenhoe dam 

 For Cressbrook, Perseverance, Somerset and Manchester dams, |γ| was taken equal to 0.5, as this 
provided a good fit of the data 

 
Table 6-14 Selected γ-values for the six reservoirs 

dam: Cressbrook Manchester Moogerah Perseverance Somerset Wivenhoe 

γ: -0.5 0.5 0 -0.5 0.5 0 
 
Figure 6-32 shows simulated reservoir volumes with the skewed-t copula in combination with observed 
volumes. It shows paired observations of Wivenhoe volumes (horizontal axes) and volumes of the 
other five dams (vertical axes). It can be seen from this Figure that the observed asymmetric patterns 
are very well reproduced by the simulation model.  

Note that the γ-values in the simulation model were chosen in such a way that the model was able to 
reproduce the correlation structure between Wivenhoe dam on the one hand and the other 
dams/reservoirs on the other hand. In other words, the mutual correlations between the other five 
reservoir were not considered in the fit procedure. The motivation for this “strategy” is that Wivenhoe 
dam is the most relevant reservoir for flood risks in the Brisbane River catchment, which means a 
correct representation of correlations with Wivenhoe dam have the highest priority. To verify potential 
negative side-effect of the chosen parameters, the observed and simulated mutual correlations 
between volumes of Moogerah, Cressbrook, Perseverance, Somerset and Manchester dams are 
shown in Figure 6-33. It can be seen that the simulations and observations are in accordance with 
each other. 

 
Figure 6-32 Observed (red) and simulated (blue) pairs of reservoir volumes at the beginning of high rainfall bursts; 
Wivenhoe dam versus the other five dams 
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Figure 6-33 Observed (red) and simulated (blue) pairs of reservoir volumes at the beginning of high rainfall bursts; 
Combinations of Cressbrook, Perserverance, Moogerah, Manchester and Somerset dams 

6.5 Base flow  
In accordance with the URBS model review presented in (Aurecon, 2014b), a Baseflow Volume Factor 
is applied according to the magnitude of the design rainfall event. The adopted Baseflow Volume 
Factors in Figure 6-15 have been sourced from AR&R Revision Project 7. 

Table 6-15 Adopted baseflow volume factors 

ARI (years) ARI factor for Baseflow Volume Factor 

2 1.6 

5 1.2 

10 1.0 

20 0.8 

50 0.7 

100 0.6 

>100 extrapolated 
 
The base flow volume factor is applied to design events to limit the base flow contribution, especially 
for the rare to extreme flood magnitude range. 
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During the calibration phase baseflow parameters were calibrated for each location under 
investigation. Base flow was considered in the Upper Brisbane River, Stanley River, Bremer River, 
Warrill Creek and Purga Creek sub-catchments as per the Seqwater (2013) approach. Seqwater 
noted that there was insufficient reliable information to derive base flow parameters in Lockyer Creek 
or the Lower Brisbane River. These parameters are based on the URBS baseflow model: 

( ) ( 1) BBF i BR BF i BC QR M= − +� �   (23) 

The BR and BC are daily time step parameters and URBS makes internal adjustments to account for 
the model time step. The BM exponent determines whether linear or non-linear baseflow routing is to 
be adopted. For the Brisbane River catchment, BM was assumed to be equal to 1, ie a linear model. 

It can be shown that BFVF (the ratio of baseflow to quick runoff) = BC/(1 – BR), when BM = 1. 

The URBS’ RAINURBS module was modified to include the BFVF parameter for the 10 year event as 
provided in Table 1 of the ARR project 7 report. For the Brisbane catchment this parameter was set to 
0.15. Adjustment was made to this value based on the design ARI under investigation using the 
factors in Table 5 as provided in the ARR project 7 report. A power curve was fitted to these 
adjustment factors to extrapolate these factors for ARI’s greater than 100 years. 
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7.1 Introduction 
Section 3 to 6 were dedicated to the statistical models and data that are used in the Monte Carlo 
Simulation framework to generate synthetic flood events, characterised by rainfall, antecedent 
moisture conditions, initial reservoir volumes and ocean water levels. The next step is in the MCS 
framework is to simulate the synthetic events to obtain peak discharges and flow volumes at each 
location of interest. This step is conducted with a combination of a hydrological model (URBS) and a 
reservoir simulation model (RTC tools). The workflow of the URBS and RTC model was presented in 
Section 2 (see Figure 2-3). The following sections provide more details on these models. 

7.2 URBS hydrological model 
The real time flood operations of Wivenhoe and Somerset Dams require decision support from a suite 
of calibrated catchment flood hydrology models to estimate flood hydrographs from catchment rainfall 
inputs. New data obtained during recent flood events (January 2011 and January 2013) has identified 
a need to develop and calibrate updated flood hydrology models for the Brisbane River Basin. 
Seqwater (2013a) has conducted a calibration of the existing URBS hydrology model for the Brisbane 
River catchment. Seqwater recognised that the calibration should not be considered final. Therefore, 
the URBS model of the Brisbane River catchment was recalibrated as part of the Brisbane River 
catchment flood study (Aurecon, 2014b). The latter version of the report was adopted in the Monte 
Carlo Simulation framework. 

The Brisbane River hydrological model is based on the URBS hydrological model (Carroll, 2012a). 
URBS is a rainfall-runoff-routing networked model of sub-catchments based on centroidal inflows. 
Each storage component is conceptually represented as a non-linear storage. The URBS model setup 
can readily represent a cascade catchment structure. Key routing variables used by URBS are; stream 
length, catchment area, fraction urbanised (various degrees) and fraction forested area and, 
optionally, channel roughness and storage and slope. Backwater effects can be modelled in URBS 
with multivariate rating relationships.  

The Brisbane River catchment was divided into seven distinct sub-catchment models based on review 
of topography and drainage patterns, major dam locations, key locations of interest for real time flood 
operations, and consideration of the best use of available data including water level gauges. The 
seven sub-catchments are further subdivided into sub-areas (534 in total, see Table 7-1). The primary 
reason for introducing the sub-areas is to be able to properly model spatial variability of rainfall in the 
catchment. 

 

 

7 Hydrological model and 
dam operations model 
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Table 7-1 The seven sub-catchments used to model of the Brisbane river catchment 

no Description Size (km2) Number of subareas 

1 Stanley River to Somerset Dam  1,324 76 

2 Upper Brisbane River to Wivenhoe Dam  5,645 99 

3 Lockyer Creek to OReillys Weir 2,964 138 

4 Bremer River to Walloon  634 42 

5 Warrill Creek to Amberley 902 56 

6 Purga Creek to Loamside 209 19 

7 Lower Brisbane River to the river mouth 1,855 104 
 
In the MCS framework, event rainfall is characterised by hourly rainfall time series for each of the 534 
sub-areas that are used as input to the URBS hydrological model. The URBS model provides several 
methods to compute runoff from total rainfall. For the Brisbane River catchment model, the initial loss-
continuing loss model is applied. This means the net rainfall, ie the portion of the rainfall that becomes 
available for runoff is derived by first subtracting the initial loss from the event rainfall and 
subsequently subtracting continuing losses from the “remaining” rainfall.  

The Brisbane River URBS model adopted the ‘Split’ model to simulate runoff routing. Runoff routing is 
‘split’ between sub-catchment routing and stream routing. For sub-catchment routing the following 
non-linear storage discharge relationship is assumed: 

( )
( )

2

2

1
1

m
catch

A F
S Q

U
β + =  

+  
   (24) 

where 

Scatch = catchment storage [m3h/s] 

β = catchment lag parameter 

A = area of sub-area [km2] 

U = fraction urbanisation of sub-area 

F = fraction forested area of sub-area 

m = catchment non-linearity parameter (typically between 0.6 and 0.8) 

 
Channel routing is based on the non-linear Muskingum model as is given as: 

( )( )   1
nm

chnl u d
c

n LS f xQ x Q
S

α= + −   (25) 

where 

Scatch = catchment storage [m3h/s] 

α = channel lag parameter 

F = reach length factor 

L = length of reach [km] 

Sc = channel slope [m/m] 

Qu = inflow at upstream end of reach (includes catchment inflow) 
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Qd = outflow at downstream end of the channel reach [m3/s] 

x  = Muskingum translation parameter 

n  = Muskingum non-linearity parameter (exponent) 

nm = Manning's n or channel roughness 

 
Parameters IL (initial loss), CL (continuing loss), α (channel lag parameter) and β (catchment lag 
parameter) were derived per event, based on model calibrations by Seqwater (2013a). Channel slope 
(Sc) and Manning nm were not included as variables. Backwater effects of ocean water levels are 
approximated within URBS using multivariate or dependent rating relationships, but these only affect 
water levels, not flows. 

Dams and reservoirs can be modelled as well in URBS as level pool storages with fixed crest spillway 
relationships. This module is applied to all dams and reservoirs in the Brisbane River Catchment, with 
the exception of Wivenhoe Dam and Somerset Dam. 

7.3 RTC tools dam operations model 

7.3.1 Introduction 
Wivenhoe Dam and Somerset dam are simulated with the real-time control software RTC tools. RTC-
Tools is an open source, modular toolbox dedicated to real-time control (RTC) of hydraulic structures 
like weirs, pumps, hydro turbines, water intakes, etc. It can be used in standalone mode or in 
combination with hydraulic models for general modelling studies as decision support component in 
operational forecasting and decision-support systems, for example for drought management and water 
allocation, flood mitigation or the dispatch of hydropower assets. RTC tools is used as a real-time 
forecasting model for the operational management of the Wivenhoe and Somerset reservoirs by 
Seqwater. 

Somerset Dam and Wivenhoe Dam are operated in accordance with procedures outlined in the 
Manual of Operation Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam Revision 
11 (Seqwater, 2013b). The capacity of the urban water supply compartment that relates to Wivenhoe 
Dam’s Full Supply Level (FSL) is 1,165,000 ML. The Dam can also store up to a maximum of 
1,967,000 ML as temporary flood storage up to EL 80.0 m. Flood releases are made through the main 
gated spillway, (which contains five radial gates), and also an auxiliary spillway that consists of a three 
bay fuse plug embankment. The radial gates should be fully open prior to the initiation of the first fuse 
plug embankment. 

For Somerset Dam, the capacity of the urban water supply compartment related to its FSL is 
380,000 ML, with 721,000 ML volume available for use for temporary flood storage up to EL 109.7 m. 
Somerset Dam is equipped with four regulator cone dispersion valves, eight sluice gates and eight 
sector gates. During flood operations the eight sector gates are fully opened to allow free overflow 
over the spillway prior to the onset of the flood. The regulator valves are generally not used for flood 
releases as elevated tailwater levels tend to impair the performance of the valves. Therefore the eight 
sluice gates and the spillway flows are the main flood release mechanisms for Somerset Dam during a 
flood event. 

The Dam Operations Module as implemented in RTC tools is based upon the Loss of 
Communications (LOC) emergency flood operation procedure described in the Flood Manual 
(Seqwater, 2013b). The reason to implement the LOC scenario instead of the regular dam operation 
strategy is the fact that the latter is relatively complex to implement especially in a Monte Carlo 
Simulation framework. Bearing in mind that the project has a tight time schedule and that the purpose 
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of this study is for floodplain management (ie not operational management), the implementation of the 
LOC was preferred. 

The Loss of Communications (LOC) emergency flood operation procedure was successfully 
implemented in the RTC tools model. The model performance of the RTC tools dam operations model 
was compared to Seqwater’s GoldSim model. Model results were compared for 24 synthetic events, 
ranging from moderate to extreme flood events. The comparison showed that predicted Wivenhoe 
Dam outflow hydrographs of RTC tools closely matched the predicted hydrographs of the GoldSim 
model. As a follow-up activity, the drain-down process incorporated into the LOC was modified to 
reflect the normal operation procedure and mimic the seven day drainage requirement. 

The LOC scenario on average results in slightly ‘conservative’ estimates of peak discharges and flow 
volumes in the Lower Brisbane River. For floods within the range of 2,000 m3/s to 16,000 m3/s, the 
peak flow in the mid-Brisbane River and Lower Brisbane River according to the LOC scenario are on 
average in the order of 5 to 10% higher than the peak discharges that result from the Dam operations 
using the Flood Manual procedures (2013 flood Manual). This means the derived frequency curves for 
the ‘With Dam’ scenario are conservative as well. For this reason, it has been considered to apply a 
bias adjustment on the derived frequency curves for the ‘with dams’ scenario. This bias adjustment 
would be based on the comparison of GoldSim model simulations for both the LOC strategy and full 
operation strategy. However, it was concluded that the GoldSim model, suitable for many other tasks, 
contains assumptions that make it unsuitable for reliably estimating bias adjustment. As a 
consequence, it was decided not to apply a bias adjustment.  

7.3.2 Wivenhoe dam 
The target release of Wivenhoe Dam is based on Wivenhoe Dam headwater levels only. Headwater 
levels are determined by inflow and release rates. Inflow into and outflow from the Wivenhoe Dam 
reservoir will result in level changes of Wivenhoe Dam. The Level-Volume relation for Wivenhoe Dam 
is taken from the Wivenhoe Technical Data, as described in Appendix E of the Manual of Operational 
Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam (Seqwater, 2013b) Wivenhoe 
Dam has two relevant inflows: 

1. The unregulated inflow from the Upper Brisbane River, as simulated with the URBS hydrological 
model 

2. The releases from Somerset Dam, as determined from the RTC model of Somerset Dam  
 
As release rates influence the lake level and the lake level influences target outflow rates, the control 
actions are determined at each time step, based on the situation in the previous time step and taking 
into account any constraints that may apply. The current implementation of rating curves (level versus 
total outflow) for the main gated spillway Wivenhoe Dam flow, as well as for the situation of fuse plug 
breaches is based on the available tables in the Flood Manual (Table 7.3.1 and Appendix F of 
Seqwater, 2013b). For practical purposes, the individual (radial) gates of Wivenhoe Dam are not 
modelled in the RTC model. However, constraints related to the successive gate operations (opening 
and closing) are taken into account in the form of lookup tables. 

The discharge increment value (per control time step) is used as a rate of change constraint for the 
combination of Wivenhoe Dam radial gates. For lake levels below EL74.0 m AHD, a limit of 6 
increments per hour, or 3 m/hour, (1 increment = 0.5 m) is taken as the constraint in case the water 
level is rising and a limit of 3 increments per hour, or 1.5 m/hour, is taken as the constraint in case the 
water level is falling. For lake levels above EL74.0 m AHD, a limit of 20 increments per hour 
(10 m/hour) was implemented. 
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Crest overtopping can also occur, which is modelled as a sharp crested weir for the main Dam 
(dimensions: 2000 m effective weir length, crest level EL80.1 m AHD, weir coefficient 1.7) and a broad 
crested weir for the saddle Dams (dimensions: 580 m combined effective weir length, crest level 
80.0 m AHD, weir coefficient 1.4). It is assumed that Wivenhoe Dam will not fail if it is overtopped and 
therefore dam failure will not be modelled. In reality, as stated earlier, overtopping is considered a 
major threat to the security of Wivenhoe Dam. Wivenhoe Dam is overtopped by an event with a 1 in 
100,000 AEP, when the Lake Level reaches EL 80.0 m. However, the process of dam breaching and 
subsequent flooding downstream is out of the scope of the BRCFS project and therefore the Dam is 
assumed not breach under any circumstance. 

 

 
Figure 7-1 Schematic view of Wivenhoe Dam 

7.3.3 Somerset Dam 
The decision to determine which control action to take at Somerset Dam is dependent on the 
headwater levels of both Wivenhoe Dam and Somerset Dam. Headwater levels are determined by 
inflow and release rates. The Level-Volume relation for Somerset Dam is taken from the Somerset 
Technical Data, as described in Appendix B of the Manual of Operational Procedures for Flood 
Mitigation at Wivenhoe Dam and Somerset Dam (Seqwater, 2013b). Somerset Dam has one relevant 
inflow: the Stanley River as simulated with the URBS hydrologic model. The target outflow from 
Somerset Dam is directly routed to Wivenhoe Dam reservoir without any delay. That is the travel time 
between the two reservoirs is assumed to be instantaneous.  

A lookup table is implemented in RTC tools to describe the relation between outflow releases on one 
hand and the Somerset HW level and the state of the sluice gates on the other hand. The equations 
for flow through a fully opened sluice gate is shown below: 

QSluice = 40.022*(h - 73.15)0.4963 
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Besides releases through the sluice gates, Somerset Dam can also make releases through the radial 
gates over an ogee crest spillway. The ogee spillway crest level is EL100.45 m AHD. The following 
equation was used as the basis to construct the lookup table for each individual spillway crest gate: 

[ ]1.6653  12.137* 100.45crestQ h= −  

At EL107.45 m AHD, flood waters commence to flow over the Dam crest and flow occurs through the 
‘breeze way’. To account for this discharge, the Dam crest is assumed to operate as a broad crested 
weir with a spillway width of 135.33 m, a spillway level of EL107.45 m AHD and a weir coefficient of 
1.7. 

QOverflow = 1.7*135.33*(h - 107.455)1.5 

As with Wivenhoe Dam, Somerset Dam is assumed not to fail if it is overtopped and so therefore 
failure is not modelled. 

 

 
Figure 7-2 Schematic view of Somerset Dam 

 
Only sluice gates are used to adjust the release from Somerset Dam. For this purpose, the ‘interaction 
diagram’ of Figure 7-3 is used. The interaction diagram uses the Somerset Dam Headwater level and 
Wivenhoe Dam Headwater level as the basis for decision making in regard to storing or releasing 
flood water from Somerset Dam using the Somerset Dam sluice gates. The diagram is divided into 
four zones, describing for classes of combinations of Wivenhoe and Somerset headwater levels. In 
RTC tools, a fifth zone is added after consultation with Seqwater (Michel Raymond, pers. 
Communication). This additional zone is a buffer zone around the operating target line. When the 
combination of Wivenhoe Dam and Somerset Dam water levels are in Zone 5 (the buffer zone), no 
Somerset control action is taken on the sluice gates. This zone is introduced (also in the GoldSim 
model of Seqwater) to prevent unnecessary oscillating behaviour of headwater levels and gate 
openings.  
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Figure 7-3 Somerset Dam loss of communications procedure 

 
The five zones and control actions are implemented as follows: 

Zone 1: Level Somerset Dam < 100.45 and Level Wivenhoe Dam < 70.0 
As long as the Wivenhoe Dam level is below 70.0 mAHD and the level at Somerset Dam< 100.45 m 
AHD, RTC Tools will apply no control action to open/close a sluice gate of Somerset Dam, taking into 
account the constraint of maximum number of sluice gates allowed being open (Table 7-2). When too 
many sluice gates are open, a sluice gate will be closed. The next control action is in 1 hour. 

Zone 2: 100.45 <= Level Somerset Dam < 104 and Level Wivenhoe Dam < Operating Target Line 
RTC Tools will apply a control action to open a sluice gate of Somerset Dam, taking into account the 
constraint of maximum number of sluice gates allowed to be open. The next control action is in 2 
hours. 

Zone 3: Level Somerset Dam >= 104 and Level Wivenhoe Dam < Operating Target Line 
RTC Tools will apply a control action to open a sluice gate of Somerset Dam, taking into account the 
constraint of maximum number of sluice gates allowed to be open. The next control action is in 1 hour. 

Zone 4: Any Level Somerset Dam /Level Wivenhoe Dam combination where Level Wivenhoe Dam >= 
Operating Target Line 
RTC Tools will apply a control action to close a sluice gate of Somerset Dam. The next control action 
is in 1 hour. 

Zone 5: Any Level Somerset Dam/Level Wivenhoe Dam combination where (Level Wivenhoe Dam <= 
Operating Target Line + 3 cm) AND (Level Wivenhoe Dam >= Operating Target Line – 3 cm) 
RTC Tools will apply no control action to close a sluice gate of Somerset Dam. The next check to see 
whether a control action is needed is in 15 minutes. 
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Table 7-2 Maximum number of sluice gates that are allowed being open 

 

 
On the basis of all equations and constraints, a rating table was constructed for the releases through 
the sluice gates, flow over the spillway (with the radial gates fully opened), and flow over the Dam 
crest. The regulator valves are not modelled and are assumed to be closed during a flood event. 
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8.1 Introduction 
Sections 3 to 6 were dedicated to the statistical models and data that are used in the Monte Carlo 
Simulation framework to generate synthetic flood events, characterised by rainfall, antecedent 
moisture conditions, initial reservoir volumes and ocean water levels. Section 7 described the 
integrated URBS hydrological model and RTC dam operations simulation model, that is used to 
compute peak discharges and flow volumes at key locations in the catchment. The final step in the 
Monte Carlo Simulation procedure consists of the derivation of flood flows and associated Annual 
Exceedance Probabilities (AEPs), based on the simulations of the generated synthetic events. The 
computation procedure for the frequency curves is described in the following sections. 

8.2 Monte Carlo estimates of flood frequencies 
This section describes the computation of the (annual) probability that at a location L the discharge 
level q is exceeded. Similar equations are used for the computations of flow volumes. Define vector X 
as the set of all random variables involved in the Monte Carlo Simulation and define x as a sample 
(“realisation”) of X. Each x results in a peak discharge at location L, as computed with the URBS/RTC 
model. The resulting peak discharge Q can thus be written as a function of x: Q=Q(x). To compute the 
exceedance probability of a discharge level q, we need to quantify the combined probability of all 
realisations, x, for which Q(x)>q. This means the following integral needs to be computed: 

[ ] ( )
( )

( ) ( )I Q q
Q x q

P Q q f d f d>  
>

> = =∫ ∫X X x
x

x x x x  (26) 

Where fX is the joint probability density function (pdf) of x and I is the indicator function (I=1 if Q>q, I=0 
otherwise). Equation (26) is generally too complex to compute analytically. For this reason, joined 
probability methods like Monte Carlo Simulations are carried out to approximate this integral. The 
essence of the (crude) Monte Carlo Simulation method is to repeatedly sample x from density function 
fX and to subsequently verify for each sample (through model simulations) if level q is exceeded. The 
fraction of samples for which q is exceeded is an estimate of the exceedance probability of q and, 
hence, an estimate for the integral of equation (26). This estimate can be formulated as follows: 

( ) [ ]
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i

N

q q
i

P Q q
N >

=

> = ∑   (27) 

Where N is the number of samples of x (ie the number of simulated events) and qi is the derived peak 
discharge at location L in the ith simulated event. 

8 Computation of 
frequency curves 
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8.3 Stratified sampling and importance sampling 

8.3.1 Introduction 
With the crude Monte Carlo Simulation method as described in the previous section, a practical 
problem arises if estimates are required for discharge levels with small exceedance probabilities. In 
those cases, crude Monte Carlo sampling requires a large number of simulations to provide an 
accurate estimate. This is especially unpractical if model simulations are time-consuming. In that case, 
the number of model simulations may need to be limited. This will be at the expense of the accuracy of 
the probability estimate. Fortunately, the efficiency of Monte Carlo simulation can be enhanced 
through application of advanced sampling techniques like Latin hypercube sampling, directional 
sampling, stratified sampling or importance sampling. The TPT method (see chapter 3) uses stratified 
sampling, whereas the proposed CRC-CH and CSS methods (also, see chapter 3) of the current study 
use importance sampling. Both sampling methods are explained in the subsequent sections. 

8.3.2 Importance sampling in the CRC-CH and CSS methods 
Application of importance sampling means an alternative sampling function, hx, is used instead of the 
actual density function, fx, to generate samples of x. For this purpose, equation (26) is rewritten as 
follows: 

( ) ( ) ( ) ( )
( ) ( )I IQ q Q q

f
f d h d

h> >      
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x
  (28) 

Since samples are now taken from function hx, equation (28) can be approximated by: 
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  (29) 

In which xi is the ith sample of x. Note that this is similar to the manner in which the integral of equation 
(26) is approximated by equation (27). Importance sampling function hx needs to be chosen in such a 
way that the probability of sampling an event in which q is exceeded, is significantly higher than if 
function fx is used as the sampling function. In this study, this is done by increasing the probabilities of 
sampling low AEP’s of the rainfall depth and long duration events in step 1 of the procedure outlined in 
Figure 2-4. In the appendix of this report it is demonstrated that this results in a significant increase in 
computational efficiency and, simultaneously, a significant increase in the accuracy of probability 
estimates. 

Equation (29) provides exceedance probabilities of discharge levels per event. In order to derive 
annual exceedance probabilities, the exceedance probability of equation (29) needs to be multiplied 
by the number of sampled events per year, λ: 
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  (30) 

8.3.3 Stratified sampling in the TPT method 
The TPT method (see eg ARR, 2013a) derives frequency curves of discharge levels separately for a 
set of potentially critical rainfall durations. The current section describes the computation of the 
frequency curve for a single duration.  
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The stratified sampling approach is applied to rainfall intensities. This means the range of potential 
realisations of the rainfall depth is divided into Nb bins (intervals). For each bin, the rainfall depth is set 
equal to a representative value within the bin, and subsequently the probability of exceedance of q, 
given this rainfall depth, is computed. The Total Probability Theorem (TPT) is used to combine the 
derived probabilities of all bins into a single exceedance probability.  

[ ] [ ] [ ]|
bN

i i
i

P Q q P Q q R R P R R> = > ∈ ∈∑  (31) 

Where R is the rainfall depth, Nb is the number of intervals (bins) in which the rainfall depth is divided, 
and Ri is the range of rainfall depths of the ith bin. The conditional probability of occurrence of interval 
Ri can be obtained directly from IFD curves. The conditional exceedance probability of q, given RI is 
estimated through Monte Carlo simulation of the “remaining” random variables, such as initial losses 
and reservoir volumes, and subsequent URBS model simulations. This is done separately for each 
bin: 

[ ] 1ˆ | I
i

ij

N

i q q
ji

P Q q R R
N  > 

> ∈ = ∑  (32) 

In which Ni is the number of generated samples to estimate the exceedance probability for the ith bin 
and qij is the peak discharge of the jth simulated event for the ith bin. Substitution of eq. (32) in eq. (31) 
gives: 
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8.3.4 Correction factors for post-processing 
The stratified sampling approach of the TPT method and the proposed importance sampling approach 
for the CRC-CH and CSS methods can both be written in the following form: 
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In this equation, N is the total number of samples (simulated events) and ci is a “correction factor”, 
accounting for the fact that both methods deviate from the crude Monte Carlo Simulation approach. 
The value of ck is as follows: 
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Where λ is the number of sampled events per year (λ=1 in the TPT method by definition). Index i in 
the formula for the TPT method is an index for the bin to which simulation k belongs. This means Ir;i is 
the interval of rainfall intensities of the ith bin and Ni refers to the total number of samples in bin i.  
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In the Monte Carlo framework, both methods are implemented. In the sampling procedure of step 1 of 
Figure 2-4, the value of ck is computed for each sample, according to equation (35). In the post-
processing (step 8 of Figure 2-4), the computed ck – values are used according to equation (34) to 
compute exceedance probabilities of peak discharges and similar for peak water levels and flow 
volumes. 

8.4 Additional post-processing for the TPT method 
For the TPT-method, the probability that is computed with eq. (35) is a probability given a burst 
duration. The procedure is repeated several times for a number of potentially critical burst durations. 
The result of this procedure is a set of probabilities of exceedance of discharge q for each 
duration. The overall probability is then taken to be: 

( ) ( )maxˆ ˆ |P Q q P Q q DD> = >  (36) 
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9.1 Introduction 
The Monte Carlo simulations framework was implemented within the Delft-FEWS framework. Delft-
FEWS is a component-based modeling framework that incorporates a wide range of general data 
handling utilities and open interfaces to many hydrological and hydraulic models that are commonly 
used around the world, including the URBS hydrological model and RTC tools for reservoir modeling. 
Delft-FEWS can be used for data storage and retrieval tasks, simple forecasting systems and in highly 
complex operational forecasting systems. The advantage of using FEWS for all communication 
between components is that intermediate results (time series data) can be inspected for checking and 
debugging. Moreover, the modular setup of FEWS enables to replace components without much 
effort.  

External models (hydrological, hydraulic or otherwise) are connected to Delft-FEWS via a General 
Adapter (GA). The GA handles the exchange of information between the central FEWS data storage 
and the external model. The exchange of information is done by input and output files, however 
reading and writing of various formats is done highly efficiently by FEWS. 

The MCS framework consists of three stages: 

 Pre-processing: generation of (storm) events (steps 1 to 4 of Figure 2-4) 

 Processing: hydrological modelling (steps 5 to 7 of Figure 2-4) 

 Post-processing: derivation and plotting of frequency curves (step 8 of Figure 2-4) 
 
After each stage, the intermediate results can be inspected through standard Delft-FEWS visualisation 
and analysis tools. All three stages are controlled by Delft-FEWS: the input for the modules is 
prepared by FEWS, the processes are started by Delft-FEWS and the output is imported back into the 
FEWS data store. The steps are discussed in more detail in the following sections.  

9.2 Pre-processing: generation of (storm) events 
Rainfall events for flood risk assessment can be generated by several methods. Evaluation of these 
methods is part of the BRCFS project. Therefore, the sampling is done by a program that is written in 
a flexible and developer-friendly environment. The Python scripting language (www.python.org) was 
chosen, because it is reasonably fast, easy to read and free of cost or license.  

For the BRCFS, the Monte Carlo sampling is done by a Python script called Treasury. Treasury is 
called by Delft-FEWS through a General Adapter (GA). The script takes as input the required number 
of samples, the IFD tables for the area of interest and several other parameters and probability 
distributions. Some parameters are correlated, which will be taken into account in the sampling. The 

9 Implementation of the 
MCS framework in Delft-
FEWS 
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script produces a set of rainfall time series (pluviographs), which are stored as an ensemble in a 
NetCDF file. If importance sampling or stratified sampling is applied to increase sampling efficiency, 
each sample is accompanied by a correction factor, which is used in the post-processing phase where 
the formulas of Section 8 are applied to compute frequency curves. The sampled initial and continuing 
losses are subtracted from the pluviographs, in order to reduce the amount of information that is 
transferred via FEWS to URBS.  

The NetCDF file that contains the rainfall time series and sampling correction factors is imported into 
Delft-FEWS and stored in the local data store. The data can be inspected using standard Delft-FEWS 
visualisation tools (graphs and tables). Figure 9-1 is a schematic drawing of the components of this 
first step of the method. 

 

 
Figure 9-1 Schematic representation of the first step of the method 

9.3 Processing: hydrological modelling and reservoir 
modelling 
The next step is the rainfall runoff, routing and reservoir modelling by URBS and RTC models. Four of 
the six reservoirs as described in Section 6.4 are incorporated in the part of the URBS hydrological 
model. Wivenhoe and Somerset are both modelled separately in RTC Tools. For the full Brisbane 
River catchment including Wivenhoe and Somerset dams, a total of seven URBS sub-catchment 
models and two RTC reservoir models (note: only relevant for the “with dams” simulations) are 
connected. The output of the upstream models serves as input for the downstream reservoir or sub-
catchment model. The models should therefore be run in a specific order. This is taken care of by the 
FEWS workflows. Before a sub-catchment run is started, the input rainfall time series and discharges 
from upstream sub-catchments are exported from the Delft-FEWS database and put in a temporary 
working directory. The output discharge time series from a sub-catchment run is imported back into 
the FEWS database, from where it can be used as input for the next run if needed. The intermediate 
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results from each sub-catchment can be inspected using standard FEWS visualisation tools (database 
viewer and workflow navigator). If necessary, a FEWS display filter can be developed, which is more 
convenient for frequent inspections. Figure 9-2 is a schematic drawing of the components of this 
second step of the method. For clarity, only one URBS and one RTC model are shown. In reality, the 
full Brisbane River catchment consists of a chain of seven URBS and two RTC models.  

 

 
Figure 9-2 Schematic representation of the second step of the method 
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Figure 9-3 Screenshot of hydrographs generated by the FEWS-MCS framework 

9.4 Post processing: derivation and plotting of frequency 
curves 
The final step of the probabilistic method is the construction of the frequency curves, where the peak 
discharges and water levels of the sample runs are plotted against their estimated AEP or ARI. To do 
so, the maximum Q, V or h per sample are computed and stored in a list. Taking the maximum from a 
time series is done by a standard FEWS Transformation. Subsequently, the AEP is estimated from the 
rank of the maximum, the total number of samples and the correction factor for using advanced 
sampling schemes. This is done by an external Python script. The script also generates a graph in 
which peak discharges (or flow volumes) are plotted against the AEP on a half-log scale. An example 
is shown in Figure 9-4. 

 

 
Figure 9-4 Example of a frequency curve 
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The graph can be shown on the screen by a pop-up PNG display and the underlying data are stored in 
a CSV file. This file can be imported back into the FEWS data store, so that the original MC samples 
and the end result are archived together. The PNG plot cannot be stored in the FEWS database, but 
the graph can easily be re-generated at any time from the generated data in the data store. 

 

 
Figure 9-5 Schematic representation of the third step of the method 

 
Subsequently, design flows and design water levels will be derived from the frequency curves. This is 
dealt with in the same post-processing Python script. 

For each location of interest the process for estimating the frequency curve for the peak flow and flood 
volumes is as follows: 

 Conduct simulations for 8 standard durations (12 hours to 120 hours) 

 For each rainfall duration, 60 AEPs are considered (ranging from 1 in 2 AEP to the AEP of the 
PMP) and 21 simulations are preformed per AEP 

 In other words, this equates to 1260 MCS events per duration, or 10,080 events in total per location 

 For each rainfall duration, two output files are created: 
− A CSV-File containing all realisations of the random variables (rainfall depth, reservoir volume, 

initial loss, peak ocean water level) and the main URBS model output (peak flow, flood volume 
for different durations) 

− The second file is a netcdf file that contains the hydrographs which are 240 hours in length Both 
the CSV-file and the NETCDF-file have 1260 rows of data, with one row per event. Since a 
python script is used and python starts indexing at zero, the ID of the events are the numbers 
ranging from 0, to 1259 
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9.5 Computational performance 
A Monte Carlo simulation run for the entire Brisbane river catchment with 10,000 samples takes 
approximately 5-6 hours on 64 bit machine, Windows 7, Solid State Drive (SSD) with16Gb and 4 cores 
(duplicated, so actually 8 cores). For 23 output locations this means approximately five days of 
simulation time is required. Note that upstream locations have smaller catchment areas and will 
require less computation time. 

9.6 Overall assessment 
The modular design, based on the Delft-FEWS framework, described in this section allows for 
flexibility and options for checking of intermediate results and debugging, which is a great advantage 
for the BRCFS project and subsequent project for which a similar MCS framework is required. 
Variations in the methodology can be evaluated by replacing a single module, without having to 
change the overall setup. Although computationally less efficient, these advantages give the modular 
Delft-FEWS approach the edge over a fully dedicated implementation. 
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10.1 Proposed framework 
This report describes the proposed Monte Carlo Simulation (MCS) framework for the comprehensive 
hydrologic assessment of the Brisbane River Catchment Study. The framework quantifies statistics, 
correlations and physical interactions of the most relevant flood forcing factors in the Brisbane river 
catchment: rainfall depth, event duration, spatial-temporal distribution of rainfall, antecedent soil 
moisture conditions (initial losses), reservoir volumes and ocean water levels. The MCS framework 
generates a long series of realistic synthetic events for rainfall, ocean water level, initial reservoir 
levels and antecedent moisture condition. The events are then simulated with the URBS hydrological 
model in combination with the RTC model for dam operations. Computed peak discharges and flow 
volumes at the (23) locations of interest are derived from the URBS model output. Frequency curves 
are subsequently derived with a statistical post-processing procedure. The Monte Carlo simulation 
framework has been implemented in the Delft-FEWS system 

The following conclusions are drawn: 

 The proposed computation scheme of Figure 2-4 provides what is required for the BRCFS-
hydrology phase: a joint probability approach for the derivation of design flows and volumes, taking 
into account spatial and temporal variation of rainfall over the Brisbane River catchment 

 The method has the advantage over more “traditional” approaches in flood risk analysis in that it 
explicitly considers all relevant physical processes that contribute to flood events. A practical 
disadvantage is that it is generally more complex to implement 

 The following statistical dependencies (correlations) between random variables were identified as 
relevant and have been incorporated in the Monte Carlo simulations:  
− Spatial and temporal correlation of rainfall. This dependence is taken into account in the BoM 

synthetic rainfall patterns, which are incorporated in the Monte Carlo Framework 
− Mutual correlations between antecedent moisture conditions (initial losses) of the various sub-

catchments. These correlations are taken into account in the Monte Carlo simulations using a 
Gaussian copula model 

− Correlation between rainfall and ocean water levels. This is modelled with a threshold-excess 
logistic model 

− Correlation between rainfall and reservoir volumes. Reservoir volumes at the beginning of high 
rainfall events are on average significantly higher than reservoir volumes at any given day. For 
this reason, marginal distribution functions of reservoir volumes are based on observed reservoir 
volumes at the beginning of high rainfall events. The ‘remaining’ correlation is weak, ie the 
correlation between the total rainfall depth of a high rainfall event and the reservoir volume at the 
beginning of such an event. The latter is therefore not included in the MCS framework 

10 Conclusions 
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− Mutual correlations of reservoir volumes at the beginning of a high rainfall event. These are 
simulated with the skewed student-t copula model 

 For the rainfall sampling scheme, three methods were tested: TPT, CRC-CH and CSS. Eventually, 
the TPT method was chosen as the preferred method for the current study, because this method 
provided the best match between the rainfall IFD curves on one hand and the available synthetic 
spatio-temporal rainfall patterns on the other hand. The other two methods (CSS and CRC-CH) are 
nevertheless considered very promising for future applications of Monte Carlo applications, 
especially if more synthetic spatio-temporal rainfall patterns become available 

 Computation times for a single output location near the catchment outlet are in the order of five 
hours on a 64 bit machine, Windows 7, Solid State Drive (SSD) with 16Gb and 4 cores (duplicated, 
so actually 8 cores). For upstream locations with smaller catchment areas the runtime is in the order 
of two to three hours 
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12.1 Hydrologic terms 
AEP: Annual Exceedance Probability – is a measure of the likelihood (expressed as a probability) of a 
flood event reaching or exceeding a particular magnitude in any one year. A 1% (AEP) flood has a 1% 
(or 1 in 100) chance of occurring or being exceeded at a location in any year 

AHD: Australian Height Datum (m), the standard reference level in Australia 

AR&R: Australian Rainfall and Runoff (AR&R) is a national guideline document for the estimation of 
design flood characteristics in Australia. It is published by Engineers Australia. The current 2003 
edition is now being revised. The revision process includes 21 research projects, which have been 
designed to fill knowledge gaps that have arisen since the 1987 edition 

CHA: Comprehensive Hydrologic Assessment 

CL: Continuing Loss (mm/hour). The amount of rainfall during the later stages of the event that 
infiltrates into the soil and is not converted to surface runoff in the hydrologic model  

CRC-CH: Cooperative Research Centre – Catchment Hydrology. In this report, CRCH-CH usually 
refers to a Monte Carlo sampling method that was developed by the CRC-CH 

CSS: Complete Storm Simulation. This is one of the proposed Monte Carlo sampling methods  

Cumulative probability: The probability of an event occurring over a period of time, any time in that 
period. This probability increases over time 

DEA: Design Event Approach. A semi-probabilistic approach to establish flood levels, which only 
accounts for the variability of the rainfall intensity  

Design flood event: Hypothetical flood events based on a design rainfall event of a given probability 
of occurrence (ie AEP). The probability of occurrence for a design flood event is assumed to be the 
same as the probability of rainfall event upon which it is based (EA, 2003) 

DMT: Disaster Management Tool. Work completed by BCC in 2014 for Queensland Government as 
part of the development of an interim disaster management tool until the completion of the BRCFS 

DTM: Digital Terrain Model  

EL (m AHD): Elevation (in metres) above the Australian Height Datum 

FFA: Flood Frequency Analysis – a direct statistical assessment of flood characteristics 

Flood mitigation manual (Flood Manual): A flood mitigation manual approved under section 
371E(1)(a) or 372(3) of the Water Supply (Safety and Reliability) Act 2008 (QLD) 

FOSM: Flood Operations Simulation Model (refer Seqwater 2014) 

12 Glossary 
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Floodplain: Area of land adjacent to a creek, river, estuary, lake, dam or artificial channel, which is 
subject to inundation by the PMF (CSIRO, 2000) 

FSL: Full Supply Level – maximum normal water supply storage level of a reservoir behind a dam 

FSV: Full Supply Volume – volume of the reservoir at FSL 

GEV: Generalised Extreme Value statistical distribution 

GIS: Geographic Information System 

GL: Gigalitres This is a unit of volume used in reservoir studies. A Gigalitre = 1,000,000,000 litres or 
equivalently 1,000,000 m3 

GSDM: Generalised Short Duration Method of extreme precipitation estimation for storms of less than 
6 hour duration and catchments of less than 1,000 km2. Refer BoM, 2003 

GTSMR: Revised Generalised Tropical Storm Method of extreme precipitation estimation for storms of 
tropical origin. Applicable to storm durations of up to 168 hours and catchments up to 150,000km2. 
Refer BoM, 2003 

IFD-curves: Intensity-Frequency-Duration curves, describing the point- or area-rainfall statistics. In the 
current report rainfall depth is generally used as an alternative to rainfall intensity. Rainfall depth is the 
product of duration and intensity. It was decided to maintain the term “IFD” as this is the terminology 
that the reader is most likely to be familiar with 

IL: Initial Loss (mm). The amount of rainfall that is intercepted by vegetation or absorbed by the 
ground and is therefore not converted to runoff during the initial stages of the rainfall event 

LOC: Loss of Communications dam operating procedure, refer Flood Manual (Seqwater 2013) 

LPIII: Log-Pearson Type III statistical distribution 

IQQM: Integrated Quantity and Quality Model for water resources planning 

JPA: Joint Probability Approach. A general term for probabilistic methods to establish design flood 
levels  

MCS: Monte Carlo Simulation 

MHWS: Mean High Water Spring Tide level 

ML: Megalitre. This is a unit of volume used in reservoir studies. A megalitre is equal to 1,000,000 
litres or, equivalently, 1,000 m3 

m3/s: Cubic metre per second – unit of measurement for instantaneous flow or discharge 

PMF: Probable Maximum Flood – the largest flood that could conceivably occur at a particular 
location, resulting from the PMP (CSIRO, 2000) and Australia Rainfall and Runoff, 2003 (EA, 2003) 

PMP: Probable Maximum Precipitation – the greatest depth of precipitation for a given duration 
meteorologically possible over a given size storm area at a particular location at a particular time of 
year, with no allowance made for long-term climatic trends (CSIRO, 2000; EA 2003) 

PMP DF: Probable Maximum Precipitation Design Flood – the flood event that results from the PMP 
event 

Quantiles: Values taken at regular intervals from the inverse of the cumulative distribution function 
(CDF) of a random variable. 

Stochastic flood event: Statistically generated synthetic flood event. Stochastic flood events include 
variability in flood input parameters (eg temporal and spatial rainfall patterns) compared to design 
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flood events. Stochastic flood events by their method of generation exhibit a greater degree of 
variability and randomness compared to design flood events (See also Design flood event) 

Synthetic flood event: See Stochastic flood event 

TPT: Total Probability Theorem. This is one of the fundamental theorems in statistics. In this report, 
TPT refers to a Monte Carlo sampling method that is based on stratified sampling and, hence, makes 
use of the total probability theorem 

URBS: Unified River Basin Simulator. A rainfall runoff routing hydrologic model (Carroll, 2012) 

12.2 Study related terms 
BCC: Brisbane City Council 

BoM: Australian Bureau of Meteorology 

BRCFS: Brisbane River Catchment Flood Study 

BRCFM: Brisbane River Catchment Floodplain Management Study 

BRCFMP: Brisbane River Catchment Floodplain Management Plan 

Delft-FEWS: Flood Early Warning Systems, a software package developed by Deltares, initially for the 
purpose of real-time flood forecasting. Delft-FEWS is used all over the world, including by the 
Environment Agency (UK) and the National Weather Service (US). Currently, it is also being 
implemented by Deltares and BoM for flood forecasting in Australia. The Monte Carlo framework for 
the BRCFS-Hydrology Phase will be implemented in Delft-FEWS  

DEWS: Department of Energy and Water Supply 

DIG: Dams Implementation Group  

DNRM: Department of Natural Resources and Mines 

DSITIA: Department of Science Information Technology, Innovation and the Arts 

DSDIP: Department of State Development and Infrastructure Planning 

EA: Engineers Australia formally known as The Institute of Engineers, Australia 

GA: General Adapter, an interface between the Delft-FEWS environment and an external module  

IC: Implementation Committee of the BRCFS 

ICC: Ipswich City Council 

IPE: Independent panel of experts to the BRCFS 

LVRC: Lockyer Valley Regional Council 

ND: No-dams condition. This scenario represents the catchment condition without the influence of the 
dams and reservoirs. The reservoir reaches have effectively been returned to their natural condition 

NPDOS: North Pine Dam Optimisation Study conducted in response to the QFCOI Final Report 

PIG: Planning Implementation Group  

QFCOI: Queensland Floods Commission of Inquiry 

RTC: Real-Time Control. A software package for simulations of reservoir operation. RTC tools is used 
for the simulation of Wivenhoe and Somerset reservoirs 

SC: Steering Committee of the BRCFS 

 

 

Project 238021  File 238021-0000-REP-WW-0002_Monte Carlo Simulation Report.docx 
  15 May 2015  Revision 4  Page 123 

 



 

SRC: Somerset Regional Council 

TWG: Technical Working Group 

WD: With-dams condition. This scenario represents the catchment condition with the influence of the 
dams and reservoirs represented in their current (2013) configuration 

WSDOS: Wivenhoe and Somerset Dam Optimisation Study conducted in response to the QFCOI 
Final report 
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Appendix A 
‘No-dams’ design peak 
discharges 

 

 

 

 

 

  
 



 

 

  
 

A.1 Table 

This appendix contains a table with peak discharges for a range of AEP values for all locations. Note: the 1 in 100,000 AEP peak discharge is only provided 
for locations for which the AEP of the PMP is below 1 in 100,000. 

Table A1 Peak discharges (m3/s) versus AEP; MCS results 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Linville 160 670 1300 1900 2900 3700 4200 4800 5400 6000 7900 13,700 21,400 

Gregors Creek 270 1200 2300 3500 5300 6500 7400 8800 9700 10,800 14,500 26,300 36,300 

Fulham Vale 280 1200 2300 3400 5100 6400 7400 8800 9700 11,100 14,700 26,600 34,500 

Peachester 97 200 280 370 480 610 690 800 900 1000 1300 1800 2400 

Woodford 230 470 700 920 1200 1500 1700 2000 2200 2500 3200 4300 6000 

Somerset Dam 730 1,500 2200 2800 3900 4600 5200 6100 6700 7400 9500 13,400 18,300 

Tinton 37 210 390 590 840 1100 1200 1400 1600 1800 2400 3400 6000 

Middle Creek 1100 2700 4200 6200 9000 11,500 12,900 15,000 16,900 18,900 24,400 47,400 57,100 

Wivenhoe 980 2700 4300 6300 8900 11,200 12,800 15,100 16,800 19,000 25,000 49,200 54,800 

Helidon 28 160 320 500 740 960 1100 1300 1500 1700 2200 3400 6700 

Gatton 110 550 1000 1600 2300 3100 3700 4400 5000 5600 7900 13,600 24,000 

Glenore Grove 160 750 1400 2000 3200 4000 4900 5800 6500 7400 10,400 18,300 27,700 

Savages Crossing 1200 3100 5300 7900 11,200 14,300 16,600 19,100 21,500 23,900 32,600  63,800 

Mount Crosby 1200 3000 5200 7900 10,800 13,800 16,100 18,800 21,300 23,400 32,400  62,600 

Walloon 170 420 670 890 1300 1600 1900 2200 2500 2800 3700 5200 8400 

Kalbar Weir 160 370 540 770 1100 1300 1500 1800 1900 2200 2800 4100 6800 

Amberley 230 450 630 970 1400 1800 2100 2500 2700 3100 4200 6100 9700 

Loamside 60 140 220 310 430 520 610 720 810 920 1100 1600 2800 



 

 

  
 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Ipswich 510 1000 1500 2100 2900 3700 4300 5000 5600 6400 8400 12,600 18,100 

Moggill 1700 3800 5900 8500 11,700 14,600 17,000 19,900 23,000 25,900 35,800  64,400 

Centenary Bridge 1700 3700 5800 8200 11,100 13,900 16,000 18,800 22,000 24,700 34,100  63,900 

Brisbane 1700 3800 5700 8200 11,100 13,600 15,500 18,600 21,300 24,200 32,600  61,100 
 
 
 

 

 

 



 

A.2 Figures of frequency curves 

This section contains figures with frequency curves for the 22 locations of interest. Each Figure 
contains the following graphs: 

 Empirical frequency estimates from rated flows (if available) 

 MCS results 
 
For each location, 2 figures are provided:  

1. Results for the AEP range 1 in 2 – AEP of PMP 
2. Results for the AEP range 1 in 2 – 1 in 100 
 
This means the first plot displays results for all AEP-values of interest, whereas the second plot zooms 
in on the results for the higher range of AEP-values. 

  

 

  
 



 

 

 
 

 
 

 

  
 



 

 
 

 
 

 

  
 



 

 
 

 
 

 

  
 



 

 
 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

 

  
 



 

A.3 Plots of catchment area versus peak discharge 

This section provides Figures in which catchment area is compared with peak discharge. For a range 
of AEP’s, the following four Figures are provided:  

[1] Design peak flow (Q) versus catchment area (A)  
[2] Q/A versus A  
 

  

 

  
 



 

Peak flow (Q) versus catchment area (A) 
 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

  

 

  
 



 

Q/A versus catchment area 
 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 

  
 



 

Appendix B 
‘With-dams’ frequency 
tables and figures for peak 
discharges 
 

 

 

 

 

  
 



 

 

  
 

B.1 Table 

Wivenhoe peak outflows above 28,000 m3/s are displayed in red, because the maximum outflow capacity of Wivenhoe dam is equal to 28,000 m3/s. Estimates 
in excess of the maximum outlet capacity should be treated with caution, as the dam is likely to fail under such circumstances. Note: the 1 in 100,000 AEP 
peak discharge is only provided for locations for which the AEP of the PMP is below 1 in 100,000. 

Table B1 Peak flows (m3/s) versus AEP; MCS results 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Somerset Dam 0 1700 1700 1800 2200 2500 3000 3300 3600 4000 5400 10,700 20,900 

Wivenhoe 0 470 930 1700 3300 6300 8800 10,300 12,500 12,900 21,200 35,800 43,700 

Savages Crossing 300 1200 2200 3500 6100 9000 12,000 15,500 17,500 20,400 28,000  57,200 

Mount Crosby 360 1200 2200 3600 6000 8600 11,700 14,800 17,100 19,700 27,200  55,500 

Ipswich 450 960 1400 1900 2700 3400 3900 4800 5400 5900 7900 11,500 16,400 

Moggill 850 2100 3300 4800 7300 10,200 12,400 15,700 18,000 20,400 29,300  57,600 

Centenary Bridge 880 2200 3300 4800 7200 9700 11,900 14,600 16,800 19,500 28,100  56,700 

Brisbane 930 2300 3500 4900 7600 9700 11,700 14,400 16,300 19,100 26,900  54,800 
 
 
 

 

 



 

B.2 Frequency plots 

 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

 

  
 



 

B.3 Plots of catchment area versus peak discharge 

This section contains figures in which catchment area is compared with peak discharge. For a range 
of AEP’s, the design peak flows are plotted against catchment area. 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

 

  
 



 

B.4 Frequency plots of reservoir water levels 

The Figures below show MCS frequency curves for water levels at Somerset Dam and Wivenhoe 
Dam. 

 
 

 
 

 

  
 



 

Appendix C 
‘No-dams’ design flow 
volumes 

 

 

 

 

 

  
 



 

 

  
 

C.1 Tables 

Note: the 1 in 100,000 AEP flow volume is only provided for locations for which the AEP of the PMP is below 1 in 100,000. 

Table C1 Maximum 24-hour flow volumes (1000 ML) versus AEP; MCS results 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Linville 11 40 81 120 180 240 270 320 360 390 520 890 1400 

Gregors Creek 24 75 140 230 340 450 520 600 670 730 980 1800 2400 

Fulham Vale 19 72 140 230 350 440 510 600 670 740 1000 1800 2400 

Peachester 7 12 18 24 31 38 45 53 60 65 90 120 150 

Woodford 17 33 47 62 84 100 120 140 160 180 230 310 390 

Somerset Dam 45 88 130 180 250 310 350 410 450 500 650 930 1200 

Tinton 4 13 22 32 46 61 71 82 93 100 140 200 330 

Middle Ck 76 190 310 480 670 880 1000 1200 1300 1400 2000 3600 4100 

Wivenhoe 73 190 320 480 690 880 990 1200 1300 1500 1900 3600 4100 

Helidon 2 8 16 24 35 46 53 62 69 78 110 160 310 

Gatton 8 29 51 82 110 160 190 230 260 290 420 720 1200 

Glenore Grove 11 43 75 110 160 220 270 330 360 410 590 1000 1600 

Savages Crossing 88 230 390 600 860 1100 1300 1500 1700 1900 2600  5000 

Mount Crosby 90 230 390 600 860 1100 1300 1500 1700 1800 2600  5000 

Walloon 14 26 39 55 78 95 110 130 140 160 220 310 480 

Kalbar Weir 13 24 34 47 65 79 91 110 120 130 170 250 390 

Amberley 20 38 53 74 100 130 150 180 200 220 280 420 650 

Loamside 4 10 14 20 27 33 38 46 52 56 75 100 150 



 

 

  
 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Ipswich 35 75 110 150 200 250 290 340 380 430 580 900 1200 

Moggill 130 290 470 690 960 1200 1400 1600 1900 2100 2900  5300 

Centenary Bridge 130 290 460 680 930 1200 1300 1600 1800 2100 2800  5200 

Brisbane 130 290 460 700 940 1100 1300 1600 1800 2000 2700  5100 
 
Table C2 Maximum 48-hour flow volumes (1000 ML) versus AEP; MCS results 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Linville 15 53 120 190 270 380 420 480 530 590 760 1300 2000 

Gregors Creek 32 110 220 350 520 710 810 930 1000 1100 1500 2700 3600 

Fulham Vale 27 98 220 350 520 710 810 920 1000 1100 1500 2700 3500 

Peachester 10 19 28 40 51 62 75 89 99 110 140 190 220 

Woodford 26 51 73 100 140 170 200 240 280 310 380 500 610 

Somerset Dam 69 140 210 300 410 510 590 690 770 860 1100 1500 1800 

Tinton 5 17 33 52 71 98 110 130 140 160 200 300 510 

Middle Ck 120 290 510 810 1100 1400 1700 1900 2100 2400 3100 5700 6600 

Wivenhoe 120 300 520 790 1200 1500 1700 2000 2100 2400 3200 6000 6900 

Helidon 3 11 22 38 52 72 83 96 110 120 150 240 460 

Gatton 10 37 72 120 180 250 300 360 390 450 610 1000 1700 

Glenore Grove 15 56 100 170 250 370 440 510 570 660 880 1500 2200 

Savages Crossing 150 370 630 980 1400 1900 2200 2600 2800 3200 4400  8600 

Mount Crosby 150 380 650 1000 1500 1900 2200 2600 2900 3300 4400  8900 



 

 

  
 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Walloon 20 39 61 88 120 160 180 210 230 250 330 470 720 

Kalbar Weir 18 34 52 75 100 130 150 170 190 2410 260 380 590 

Amberley 30 60 88 130 170 220 250 280 320 350 450 670 1000 

Loamside 6 14 21 32 42 54 53 75 82 93. 110 160 230 

Ipswich 52 110 170 250 330 420 490 560 630 710 920 1400 1800 

Moggill 210 490 790 1200 1700 2200 2500 3000 3300 3800 5000  9800 

Centenary Bridge 210 500 790 1200 1700 2200 2500 2900 3300 3700 4900  9800 

Brisbane 220 510 810 1200 1700 2200 2500 2900 3200 3700 4900  9700 
 
Table C3 Maximum 72-hour flow volumes (1000 ML) versus AEP; MCS results 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Linville 17 65 140 220 340 470 520 610 660 730 920 1600 2600 

Gregors Creek 38 120 260 440 660 920 1000 1200 1300 1400 1800 3300 4500 

Fulham Vale 32 120 260 420 650 8890 1000 1200 1300 1400 1800 3300 4400 

Peachester 13 25 35 47 64 77 91 110 130 150 190 250 290 

Woodford 32 63 92 130 170 210 250 310 360 400 510 660 790 

Somerset Dam 87 170 260 380 490 630 750 860 980 1100 1400 1900 2300 

Tinton 6 20 40 62 92 120 140 160 180 200 250 360 650 

Middle Ck 150 370 630 1000 1400 1900 2200 2500 2800 3100 3900 7400 8600 

Wivenhoe 150 390 660 1000 1500 2000 2300 2600 2900 3200 4100 7700 8900 

Helidon 3 13 28 45 66 92 100 120 130 150 180 290 590 



 

 

  
 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Gatton 11 44 90 150 210 310 380 450 490 560 730 1200 2100 

Glenore Grove 19 66 130 210 320 460 550 650 730 800 1000 1800 2700 

Savages Crossing 190 460 820 1200 1900 2600 3000 3500 3800 4400 5700  11,000 

Mount Crosby 190 480 850 1300 2000 2600 3000 3600 3900 4400 5800  12,000 

Walloon 23 49 77 110 150 200 220 260 290 320 400 580 910 

Kalbar Weir 22 44 66 95 130 170 190 220 240 270 330 470 790 

Amberley 38 75 110 170 240 290 330 380 420 460 570 850 1300 

Loamside 8 17 26 39 53 68 79 93 100 120 140 200 290 

Ipswich 63 140 210 320 440 570 640 740 830 900 1100 1700 2400 

Moggill 270 630 1100 1600 2200 3000 3500 4000 4600 5100 6700  13,000 

Centenary Bridge 270 650 110 1600 2200 3000 3400 4000 4500 5100 6700  13,000 

Brisbane 280 660 1100 1700 2300 3000 3400 4000 4500 5000 6800  13,000 
 
 

 

 

 



 

C.2 Frequency plots 

 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

 

  
 



 

C.3 Plots of catchment area versus flow volumes 

This section contains ten figures in which flows 24-, 48- and 72 hour flow volumes are plotted against 
catchment area: five for DEA results (one figure per AEP) and five for MCS results. 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

  

 

  
 



 

C.4 Comparison with observed volumes for selected locations 

 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 

 

 

 

 

 

 

 

  
 



 

Appendix D 
‘With-dams’ design flow 
volumes 

 

 

 

 

 

  
 



 

 

  
 

D.1 Tables 

Note: the 1 in 100,000 AEP flow volume is only provided for locations for which the AEP of the PMP is below 1 in 100,000. 

Table D1 Maximum 24-hour flow volumes (1000ML) versus AEP; MCS results 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Somerset Dam 0 94 120 150 170 180 220 270 300 330 430 830 1600 

Wivenhoe 0 40 78 150 270 480 640 830 950 1100 1500 2800 3200 

Savages Crossing 22 91 170 260 450 670 920 1200 1300 1500 2100  4300 

Mount Crosby 26 94 170 280 460 670 910 1200 1300 1500 2100  4300 

Ipswich 30 67 95 130 180 220 260 300 330 380 520 800 1100 

Moggill 61 150 250 370 580 840 1000 1300 1500 1700 2400  4800 

Centenary Bridge 64 160 260 380 590 820 990 1200 1400 1600 2300  4700 

Brisbane 67 170 260 390 620 820 980 1200 1400 1600 2200  4600 
 
Table D2 Maximum 48-hour flow volumes (1000ML) versus AEP; MCS results 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Somerset Dam 0 130 180 210 270 300 350 450 490 550 730 1400 2700 

Wivenhoe 0 75 150 280 500 830 1100 1300 1600 1800 2500 5000 5700 

Savages Crossing 39 150 290 450 770 1100 1500 1900 2200 2600 3600  7600 

Mount Crosby 44 160 290 460 800 1200 1500 2000 2200 2600 3600  7600 

Ipswich 44 98 150 210 300 390 440 510 580 640 810 1200 1700 

Moggill 96 250 430 670 1000 1500 1900 2300 2600 3000 4200  8800 



 

 

  
 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Centenary Bridge 100 260 450 690 1100 1500 1800 2300 2600 3000 4200  8700 

Brisbane 110 270 470 710 1100 1500 1800 2300 2500 3000 4200  8700 
 
Table D3 Maximum 72-hour flow volumes (1000ML) versus AEP; MCS results 

Location AEP (1 in N) 

2 5 10 20 50 100 200 500 1,000 2,000 10,000 100,000 AEP of PMP 

Somerset Dam 0 150 200 260 320 380 460 590 600 680 980 1900 3600 

Wivenhoe 0 110 210 390 670 1100 1400 1700 2000 2300 3300 6800 7700 

Savages Crossing 52 200 360 610 1100 1500 2000 2500 2800 3300 4600  10,000 

Mount Crosby 59 200 390 640 1100 1600 2000 2600 3000 3400 4700  10,000 

Ipswich 53 120 190 280 400 490 560 650 740 820 1000 1600 2200 

Moggill 120 330 570 900 1400 2100 2500 3100 3500 4100 5700  12,000 

Centenary Bridge 130 340 590 950 1400 2100 2500 3100 3500 4100 5700  12,000 

Brisbane 140 360 610 670 1500 2100 2600 3100 3500 4100 5700  12,000 
 
 

 



 

D.2 Frequency plots 

 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

 

  
 



 

D.3 Plots of catchment area versus flow volumes 

This section contains nine figures in which flows 24-, 48- and 72 hour flow volumes are plotted against 
catchment area. 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

 

  
 



 

Appendix E 
Comparison of ‘with-dams’ 
and ‘no-dams’ results 

 

  

 

  
 



 

This appendix contains Figures in which ‘with-dams’ results are compared to ‘no-dams’ results. These 
Figures are provided for locations Ipswich, Somerset Dam and Wivenhoe Dam and the five Lower 
Brisbane locations. The following Figures are provided for each location: 

1. Frequency plots for ‘no dam’ peak flows and ‘with dam’ peak flows 
2. Scatter plots of simulated ‘no dam’ peak flows versus ‘with dam’ flows 
3. Frequency plots for ‘no dam’ flow volumes and ‘with dam’ flow volumes 
 
No scatter plot is provided for location Somerset Dam because the simulated synthetic events for ‘no 
dams’ and ‘with dams’ conditions are different for this location. MCS results for Somerset Dam were 
abstracted from the Wivenhoe Dam simulation run. The reason to use these results instead of carrying 
out an individual run for the Somerset Dam catchment is that the operation of the Somerset Dam 
heavily depends on Wivenhoe Dam levels, which means an individual run for the Somerset Dam 
catchment is not meaningful for ‘with dams’ conditions. This is a difference with the ‘no dams’ 
conditions, for which frequency curves for Somerset Dam were based on an individual run for the 
Somerset Dam catchment. This means the simulated synthetic events for ‘no dams’ and ‘with dams’ 
conditions are different for location Somerset. For the other seven locations, the simulated synthetic 
events for ‘no dams’ and ‘with dams’ conditions are the same. 

This appendix contains the following sections: 

E1. Frequency plots of peak discharges 
E2. Scatter plots for peak discharges 
E3. Frequency plots of flow volumes 
 

  

 

  
 



 

E.1 Frequency plots of peak discharges 

 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

 

  
 



 

E.2 Scatter plots for peak discharges 

 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

 

  
 



 

E3. Frequency plots of flow volumes 

 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

 

  
 



 

Appendix F 
Peak discharge versus AEP 
of the rainfall depth 

 

  

 

  
 



 

This appendix contains figures in which the peak discharge of each simulated event is plotted against 
the annual exceedance probability of the rainfall depth. Different colours are used to distinguish for 
different burst durations. Furthermore, three lines are added that represent the 10%, 50% and 90% 
quantiles. These lines can be interpreted as follows: for a given rainfall AEP, the p-percentile is the 
peak discharge which has a p% probability of being exceeded, given the occurrence of a rainfall event 
with a rainfall depth that corresponds to the AEP shown on the horizontal axis. For a given 
combination of rainfall burst duration and AEP, the variability of peak discharges in the Figures are 
caused by the combined influence of the variability of initial losses, spatio-temporal rainfall patterns 
and, for the ‘with dams’ case, initial reservoir volumes. 

  

 

  
 



 

F.1 No-dams conditions 

 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

 

  
 



 

F.2 With-dams conditions 

 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

 

  
 



 

Appendix G 
Frequency curves per burst 
duration 

 

  

 

  
 



 

This appendix contains Figures that show frequency curves for various burst durations.  

G.1 No-dams conditions 

 
 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

  
 



 

 

 
 

 

 
 

 

 

  
 



 

G.2 With dams conditions 

 
 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

 
 

 

 
 

 

 

  
 



 

Appendix H 
Case study for the TPT and 
CRC –CH methods 

 

  

 

  
 



 

An academic case study was carried out for comparison of the TPT and CRC-CH joint probability 
techniques. Specific objectives of the case study were: 

 Gain insight in the details of both methods 

 Mutual comparison of resulting design flows 

 Influence of numerical settings on the model results 

 Investigation of potential benefits from applying importance sampling 
 
A test study for a hypothetical catchment in Australia was set-up. Relatively minor effort was put in the 
derivation and analysis of input statistics of forcing factors like rainfall depth, rainfall duration, initial 
losses and temporal and spatial rainfall patterns, as the focus of the case study was not to derive 
design discharges of a real world catchment. Instead, input statistics were copied from or modelled 
after related case studies in Australia. There were several reason for carrying out this academic test 
case:  

 It allows for a detailed analysis of the pros and cons of the TPT and CRC-CH methods in a phase of 
the project in which the actual MCS modelling framework is not available 

 The relatively straightforward model set-up allows for millions of hydrological model runs within a 
matter of minutes, as such providing excellent opportunities for analysis of the accuracy and 
variability of the MCS design flow estimates 

 Differences in results of the TPT and CRC-CH methods can be explained relatively easy in such a 
“controlled” modelling environment 

 
H1 Catchment and rainfall runoff model 

The area of the catchment is chosen to be equal to 100 km2. Runoff percentages during a storm event 
are influenced by the following forcing factors: 

1. Rainfall depth 
2. Temporal patterns of the rainfall 
3. Spatial distribution of the rainfall 
4. Initial losses 
5. Continuing losses 
 
[1], [2] and [4] are modelled as random variables in the Monte Carlo set-up. For the spatial pattern ([3]) 
a uniform distribution is assumed and the continuing losses ([5]) are assumed to be 2.5 mm/hr 
(independent of the storm event). The net rainfall, ie the proportion of the rainfall that becomes 
available for runoff, is derived by first subtracting the initial loss from the rainfall and subsequently 
subtracting continuing losses from the “remaining” rainfall. Figure H1 shows an example of a temporal 
pattern of the rainfall during an synthetic extreme event of 72 hours and the subdivision of the rainfall 
into initial losses, continuing losses and net rainfall.  

The net rainfall in the catchment is modelled with a storage-discharge relation: 

mS kQ=   (37) 

In which S is a storage component of the net rainfall (mm), Q is the discharge at the catchment outlet 
(mm/hr) and k and m are model parameters. Higher values of k and m generally result in an increase 
in the peak discharge and earlier timing of the peak. In the current studies, k=0.2 and m=1. 

 

  
 



 

 

 
Figure H1 Example of the temporal pattern of the rainfall depth, initial losses, continuing losses and net rainfall 

 
Input statistics 

In the Monte Carlo approach, the following factors are treated as random variables: 

1. Event duration, D (only in the CRC-CH approach) 
2. Rainfall depth, R  
3. Temporal pattern of the rainfall 
4. Initial losses, IL 
 
H1.1 Duration, D 

The duration of storm events is assumed to be exponentially distributed, following the assumption of 
the pioneering papers of the CRC-CH method by Rahman et al[2001] and Rahman et al[2002]. A 
mean duration of 20 hours was adopted.  

H1.2 Rainfall depth, R 

Table H1 shows the assumed IFD relations for the catchment that are used to sample rainfall 
intensities. Values for 1-100 years ARI and 5 mins – 72 hours were obtained from the BoM website for 
location Brisbane (ARR, 1987). Values for ARI’s>100 years were estimated though extrapolation, 
assuming a linear relation between log(ARI(Ir)) and Ir. Values for durations>72 hours were obtained 
using a linear relationship between log (D) and log(Ir). 

 

 

 

  
 



 

 

 
 

Table H1 Assumed IFD curve for the catchment (rainfall depth in mm) 

 ARI (years) 

D 1 2 5 10 20 50 100 1000 104 105 106 

5Mins 9.8 12.6 16.0 18.0 20.7 24.3 27.1 36.2 45.3 54.3 63.4 

6Mins 11.0 14.1 17.9 20.2 23.2 27.3 30.4 40.6 50.8 61.0 71.2 

10Mins 15.0 19.3 24.7 27.8 32.2 37.8 42.3 56.8 71.3 85.8 100.3 

20Mins 22.0 28.5 36.7 41.7 48.3 57.3 64.3 87.0 109.7 132.3 155.0 

30Mins 26.9 34.9 45.3 51.5 60.0 71.0 80.0 108.5 137.0 165.5 194.0 

1 hr 36.0 46.7 61.2 70.0 81.7 97.5 110.0 150.0 190.0 230.0 270.0 

2hrs 45.2 58.8 77.6 89.2 104.4 125.2 141.4 194.0 246.0 298.0 350.2 

3 hrs 50.4 66.0 87.3 100.8 118.2 141.9 160.5 219.0 279.0 339.0 399.3 

6 hrs 60.6 79.8 106.2 122.4 144.0 174.0 197.4 270.0 348.0 420.0 497.4 

12 hrs 75.6 98.4 132.0 152.4 180.0 217.2 246.0 336.0 432.0 528.0 620.4 

24 hrs 98.4 127.2 170.4 196.8 232.8 278.4 316.8 432.0 552.0 672.0 796.8 

48 hrs 129.6 168.0 220.8 254.4 297.6 360.0 408.0 576.0 720.0 864.0 1012.8 

72 hrs 144.0 187.2 244.8 280.8 331.2 396.0 453.6 648.0 792.0 936.0 1116.0 

96 hrs 153.6 201.6 268.8 307.2 355.2 432.0 480.0 662.4 835.2 1017.6 1200.0 

120 hrs 168.0 216.0 288.0 324.0 384.0 456.0 516.0 696.0 888.0 1068.0 1260.0 

168 hrs 184.8 235.2 302.4 352.8 420.0 487.2 554.4 756.0 957.6 1159.2 1360.8 
 
Given the duration of an event, the rainfall depth in the CRC-CH method is sampled as follows 
(Rahman et al., 2002). First sample the Annual Exceedance Probability (AEP) of the rainfall depth, 
from a standard uniform distribution. Subsequently, compute the Average Return Interval (ARI): 
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  (38) 

The resulting ARI is then used in combination with the given duration to derive the rainfall depth from 
Table H1.  

Note: The ARI’s in Table H1 are expressed in the unit (year). For an event based method like CRC-
CH, which allows for the simulation of multiple events per year, it makes more sense to use an IFD 
table that is expressed in terms of exceedance probability per event instead of per year. The main 
reason for using IFD-tables with ARI’s in years, is that these are readily available for all of Australia 
(from the Bureau of meteorology) and therefore easy to obtain and implement in design studies.  

In order to take into account the fact that there are multiple events per year, while IFD’s are defined 
per year is to use the following approach: 

Sample a probability P(Ir) from the standard uniform distribution function. P is the probability of 
exceedance of the rainfall depth for an individual event. Since we now consider multiple events per 
year, P(Ir) should not be confused with the AEP. Subsequently, we derive the value of the ARI from 
P(Ir) as follows: 
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Where λ is the average number of events per year. The AEP of this event can subsequently be 
derived from the following equation (which is the inverse of equation (38):  
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The use of equation (39) results in the following distribution function for ARI(R): 

( ) 1expP ARI R x
xλ

 < = −      
 (41) 

This means that the reciprocal of ARI(Ir), ie the Annual Exceedance Frequency (AEF), is exponentially 
distributed. This information is relevant later on when importance sampling is applied.  

Temporal patterns 

Sampling of temporal rainfall patterns is carried out with a 3-layer multiplicative cascade model 
(Hoang). The multiplicative cascade model sequentially divides each half by assigning weights to each 
side. For example, the 3-level model yields 8 intervals and requires specification of 7 weights ie 1 for 
the first split, 2 for the second split and 4 for the third split. The concept is shown in Figure H2. The 
third layer consists of 8 intervals, each representing 1/8th of the time interval considered. This means 
each event is subdivided into 2^3 = 8 intervals of equal size in which the rainfall depth remains 
constant. The fraction of the total rainfall that falls in the first interval is equal to W1*W2*W4. The 
fraction of the total rainfall that falls in the second interval is equal to W1*W2*(1-W4) etc. Each value 
of W1…W7 is sampled from the same distribution function. In the current application, a uniformly 
distribution is used over the interval (0.2-0.8). Figure H3 shows resulting patterns from the cascade 
model for 10 synthetic rainfall patterns. 

 
Figure H2 Three layer multiplicative cascade model 

 
Figure H3 Sampled temporal patterns for 10 synthetic events 

 

  
 



 

Initial losses 

Initial losses (variable IL) are assumed to have a four-parameter beta-distribution, after Ilahee et al, 
[2001]. The first two parameters of this distribution are the minimum, Dmean, and maximum, Dmax, 
values and these are taken equal to 0 mm and 100 mm respectively. Shape parameters a and β are 
taken equal to 2 and 5 respectively. In Figure H4 shows the resulting probability density function for 
variable IL. 

 

 
Figure H4 Density function of the initial losses (IL) 

 
H2. Application of the CRC-CH method 

H2.1 Procedure 

The steps taken in the CRC-CH methodology (Rahman et al, 2001; 2002) can be summarized as 
follows: 

1. Sample the storm event duration from the exponential distribution function 
2. Sample the average rainfall depth, conditional on the duration 
3. Sample the rainfall temporal pattern from the multiplicative cascade model 
4. Sample the initial loss from the beta-distribution 
5. Run the rainfall runoff-model to derive the peak discharge at the catchment outlet 
 
Note: The IFD curves of Table H2 have been derived by BoM for bursts. In the current application 
these will be used to sample average intensities for events. In real-world application this should not be 
done, as event statistics are different from burst statistics. For the current academic case this is no 
problem, we just needed “academic” input statistics. The procedure is repeated N times, in order to 
simulate N storm events. The probability that a selected threshold discharge level q is exceeded in a 
storm event is subsequently estimated from: 
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Where êP  is the estimated probability of exceedance of q per event, qi is the computed discharge in 

simulation i and I[A] is the indicator function (I=1 if qi>q, I=0 otherwise) and N is the number of 
simulated storm events. In order to estimate the ARI of q, the average number of storm events per 
year, λ, needs to be taken into account: 
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The value of λ is taken equal to 5, similar to Rahman et al [2002]. Instead of computing the probability 
of exceedance for a single threshold discharge q, the MC procedure can provide exceedance 
probabilities for a range of discharges with negligible additional computation time. This can be done 
with the following procedure: 

1. Place the N computed peak discharge q1, … qN h in descending order 
2. Assign exceedance probability per event of 1/N to the highest observed value, exceedance 

probability 2/N to the second highest observed value etc 
 
This is a very straightforward procedure, which is one of the reasons of the popularity of the MC 
procedure. Note that a more formal approach to step 2 is to determine the ARI as follows: 
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In which r is the ranking number of discharge qr in the series of N computed discharges (r=1 for the 
highest discharge, r=2 for the second highest discharge etc) and c is the plotting constant. Plotting 
constant c can be chosen between 0 and 0.5. The choice of constant c is somewhat arbitrarily, unless 
the underlying statistical distribution function of the discharge is known. In the remainder of this 
section, c is taken equal to 0. 

H2.2 Results 

The method was applied with N=20,000 simulated storm events, representing a series of 20,000/λ = 
4,000 years. The number 20,000 was adopted from Rahman et al. [2001]. The procedure was 
repeated 10 times to assess the variability in the Monte Carlo estimates. Results are shown in Figure 
10.5. Two main disadvantages of this method (or any crude Monte Carlo sampling method) are clearly 
demonstrated in this figure: 

1. The variation in estimated design discharges increases with increasing value of ARI 
2. For ARI’s that are larger than the number of simulated years (4,000 in this case) there is no 

estimate available 
 
For this reason, the CRC-CH method has been cited on numerous occasions as “not the preferred 
method” for estimating design discharges for high (extreme ) ARI’s (ARR, 2013, Mirfenderesk et al., 
2013, Aurecon, 2013a). The TPT method is preferred for higher ARI’s, because it applies stratified 
sampling on the rainfall depth, which enables the estimation of discharges with extreme ARI’s (up to 
the PMP) without requiring millions of model simulations. In the CRC-CH method, the stratified 
sampling approach could also have been adopted. In that case, however, stratified sampling would 
have to be applied on rainfall depth and event duration, whereas in the TPT method the stratified 

 

  
 



 

sampling is only applied on rainfall depth. The reason for this difference is that the rainfall depth is 
conditionally distributed on the storm event duration, and the event duration is a random variable in 
the CRC-CH method, as opposed to the TPT method. Stratified sampling on two random variables is 
significantly more time-consuming than stratified sampling for one variable, which is why this 
technique is more efficient in the TPT approach. Therefore, it is proposed to apply an alternative 
efficient sampling technique in the CRC-CH method: “importance sampling”. 

 

 
Figure H5 ARI’s and corresponding discharges as estimated from 10 different MC runs, using the CRC-CH method 

 
H2.3 Application of importance sampling in the CRC-CH method 

The cause of the high uncertainties in estimates of extreme discharges in the CRC-CH procedure (or 
any crude Monte Carlo procedure) is the fact that the percentage of simulated events resulting in 
extreme discharges is low. Consequently, the method provides little or no information on exceedance 
probabilities of the higher range of discharges. This is no problem if one is interested in design 
discharge in the lower ARI-ranges, eg up to 100 years. However, especially in PMP/PMF studies for 
dam design, discharges with ARI’s of 100,000 – 1,000,000 years are required. In that case, the 
required number of model simulations in the CRC-CH method is a multitude of these high numbers, 
which is very impractical with regard to simulation time and data storage. 

In the current case study it was therefore decided to investigate the potential benefits of applying 
importance sampling in the CRC-CH method. Importance sampling (see eg Engelund and Rackwitz, 
1993) is a method to increase the efficiency of the crude Monte Carlo method, that is, to decrease the 
number of samples required to produce a reliable estimate of ARI’s and corresponding design 
discharges. This is done by replacing the actual probability density function, f, of one or more random 
variables by a more efficient one, h. Efficient refers in this case to the proportion of the samples which 
will result in exceedance of extreme discharges.  

 

 

 

  
 



 

Because the sampling procedure does not use the actual distribution function, the estimator of the 
failure probability as applied in crude Monte Carlo (see equation above) needs to be adapted. This is 
done via the following formula: 
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In which xi is the vector of samples of the random variables in the ith synthetic event. In equation (45), 
a factor f/h has been added in comparison with the crude Monte Carlo estimate of equation (42). The 
reciprocal of this factor, h/f, is the factor by which the sampling probability of x has been increased 
through introduction of the importance sampling function h. The correction factor in equation (30) 
compensates for this increase. Put more simply: if the probability of an event is increased by a factor 
10, the contribution of this event to the estimated exceedance probability of discharge level q needs to 
be divided by a factor 10 there afterwards. 

The choice of importance sampling function h determines the efficiency of the importance sampling 
method and this function can be taken equal to virtually any probability density function. Efficient 
choices for h depend on the problem under consideration. Ideally, a sampling strategy is chosen that 
results in a uniform sampling distribution of the simulated peak river discharges, over the range of 
discharges of interest. In that case, the MC estimates can be expected to be equally accurate for all 
discharges. 

For the current study it was decided to first try out a sampling strategy in which importance sampling 
was only applied on the rainfall depth. Figure H6 shows the relation between the rainfall depth and the 
peak river discharge, based on 20,000 simulated events. It shows, not surprisingly, that there is a 
positive correlation between these two variables. However, it also shows that the correlation is not 
strong, which is mainly due to the fact that the plotted events can have a variety of durations. For 
example, an average intensity of 5 mm/hr for a 72 hour storm event can be expected to lead to 
extreme discharges, but the same intensity will cause little or no runoff for a 1 hour storm event. This 
makes the relation between rainfall depth and discharge rather disperse, which is further enhanced by 
the variability in other variables like temporal rainfall patterns or initial losses. This complicates the 
importance strategy for rainfall depth, as high rainfall intensities will not necessarily result in high river 
discharges.  

A much stronger relation is established when the peak discharge is plotted against the ARI of the 
sampled rainfall depth (Figure H7). Clearly, extremely high samples of ARI(Ir) will automatically result 
in (extremely) high peak river discharges. For this reason it was decided to apply importance sampling 
on the ARI(Ir) of the rainfall. Figure H7 also reveals that there is a near linear relation between the 
logarithm of ARI(Ir) and the expected peak river discharge. So, in order to have a produce that results 
in (near) uniform samples of the simulated peak river discharge, it seems a sampling strategy should 
be chosen in which the logarithm of ARI(Ir) is uniformly distributed: 

( ){ } ( )ln U ,rARI I a b�  (46) 

The boundaries, a and b, of this distribution are taken equal to the limits of the ARI’s for which rainfall 
intensities are given in the IFD relations of Table H1. This means a = ln(1) and b = ln(1,000,000). This 
will provide samples of intensities over the entire range for which input statistics are available. 
Equation (31) translates into the following importance sampling distribution function for ARI(Ir): 
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Figure H6 Relation between the event rainfall depth and peak discharge for 20,000 events 

 

 
Figure H7 Relation between ARI (Ir) and peak discharge for 20,000 events 

 

 

 

  
 



 

The corresponding density function is equal to: 
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The original distribution function of ARI(Ir) is equal to (see equation (26)): 
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The corresponding density function is equal to: 
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This means the importance sampling correction factor (see equation (30)) is equal to: 
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This correction factor needs to be quantified for each simulated event in the Monte Carlo procedure, 
by replacing the value of x in equation (36) by the sampled value of ARI(Ir). Figure H8 compares the 
actual density function of ARI(Ir), f(x), and the importance sampling density function of ARI(Ir), h(x) for 
the case that λ=5. Figure H9 shows the corresponding importance sampling correction factor f(x)/h(x). 
It shows that the correction factor is roughly equal to 2.76/ARI(Ir), where 2.76 = (b-a)/ λ in this 
example. This means the probability of sampling a given value of ARI(Ir) has been approximately 
increased by a factor ARI(Ir)/2.76 by the importance sampling procedure. Especially for larger values 
of ARI(Ir) this means a major increase in the probability of being sampled, which is exactly the purpose 
of introducing the importance sampling procedure. 

 
Figure H8 Comparison of the actual density function of ARI(Ir), f(x) and the importance sampling density function of 
ARI(Ir), h(x) 

 

  
 



 

 

 
Figure H9 Importance sampling correction factor f(x)/h(x) for a range of values of ARI(Ir) 

 
Figure H10 shows the results of the above described importance sampling procedure. The lines 
represent 10 different Monte Carlo simulations, using 20,000 samples each time. As can be seen, the 
results for the higher ranges of the ARI have significantly improved in comparison with the original 
crude Monte Carlo procedure (Figure H5). The variance in the MC estimators have decreased 
dramatically and estimates are available for a much wider range of ARI’s. This clearly demonstrates 
that importance sampling provides the required counterarguments for the fact that the existing CRC-
CH method is not capable of providing reliable estimates for high ARI’s without requiring millions of 
model simulations. 

If importance sampling is properly applied, no bias is introduced. Potentially, a bias can be introduced 
if h(x)=0 for values of x that are contributing to exceedance probabilities of relevant discharge levels. 
So, h(x) needs to be properly chosen that this does not occur. In the current application this seems to 
be the case as h(x)>0 for all values of ARI(Ir) for which IFD relations are available. To verify this, the 
results of the importance sampling procedure are compared with results from the crude Monte Carlo 
procedure. The importance sampling procedure is carried out with N=20,000 samples while the crude 
Monte Carlo procedure is carried out with 1 million samples. Each sampling procedure is repeated 5 
times to quantify the variability in the results. 

Figure H11 shows the results (black line: crude Monte Carlo with 1 million samples, red lines: 
importance sampling with 20,000 variables). It can be seen that the two methods provide consistent 
results up to approximately 1000 year ARI. This consistency confirms that no bias is introduced by the 
adopted importance sampling procedure. For higher ARI’s, the variability in the crude MC procedure 
starts to cause noticeable differences between the two methods. So even though 1 million samples 
have been used, the crude MC method is still less reliable for high ARI’s than the importance sampling 
procedure with “only” 20,000 samples. The variability of the importance sampling procedure is 
negligible up to an ARI of at least 1,000,000 years. 

 

 

  
 



 

 
Figure H10 ARI’s and corresponding discharges as estimated from 10 different MC runs, using the CRC-CH method 
with importance sampling 

 
Figure H11 ARI’s and corresponding discharges as estimated from 5 different MC runs with crude Monte Carlo, 1 
million samples each (black lines) and 5 different MC runs with Monte Carlo with importance sampling, 20,000 samples 
each (red lines) 

 

 

  
 



 

Sensitivity analysis 

A sensitivity analysis was conducted to verify which parameters may influence the results of the CRC-
CH methods. First, the sensitivity analysis was carried out for the CRC-CH method, to verify which 
parameters can cause significant shifts in the derived design discharges. The Table H2 provides an 
overview of the variables and the perturbations that were applied in the sensitivity analysis.  

Table H2 Estimated design flows (m3/s) for different ARI’s with TPT and CRC-CH 

parameter meaning Base case Perturbation 

Dmean Mean duration of a storm event  20 hrs 10 hrs 

λ Number of events per year  5 3 

# cascades Number of cascades in the model for  

temporal variation of rainfall 

3 4 

ILmax Maximum initial loss 100 mm 50 mm 
 
Figure H12 shows the results of the sensitivity analysis. It turns out that the model results are fairly 
insensitive to all of these variables. 

 

 
Figure H12 Peak discharges and corresponding ARI’s; sensitivity analysis for the CRC-CH method 

 

  

 

  
 



 

H2.5 Conclusions 

It has been demonstrated that importance sampling solves the problem of excessive number of 
samples required when applying the CRC-CH method based on crude Monte Carlo sampling. Reliable 
estimates for (extremely) high ARI’s are obtained without requiring millions of model simulations. The 
uncertainty in the estimated design flows of (extremely) high ARI’s can be significantly reduced, 
potentially in combination with a reduction in the number of model simulations. We are confident that 
this will apply to other cases than the one described in this report, but this needs to be demonstrated. 
The importance sampling strategy may need to be tailored to the case under consideration, but it is 
likely that the currently adopted strategy will provide useful results for the majority of Australian 
catchments. 

H3. Application of the TPT method 

H3.1 Procedure 

The TPT method (see eg ARR, 2013a) derives frequency curves of discharge levels separately for a 
set of potentially critical rainfall durations. For each duration, a stratified sampling approach is applied 
to estimate Average Return Intervals (ARI) or, equivalently, Annual Exceedance Probilities, AEP. The 
stratified sampling is applied on the rainfall depth. Stratified sampling is essentially numerical 
integration, where the Total Probability Theorem (TPT) is used to compute the combined exceedance 
probability of discharge levels for all potential rainfall intensities. The formulation of the total probability 
theory in this case is: 
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In which R is the rainfall depth and fI;D is the density function of R, conditional on duration D. In 
practical applications, the discretised version of equation (52) is used: 
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Where Nb is the number of intervals (bins) in which the range of relevant intensities is divided and Ri is 
the ith interval. The conditional probability of occurrence of interval Ri can be obtained directly from IFD 
curves. The conditional exceedance probability of q, given RI and D is determined by the realisations 
of the “remaining” random variables IL (initial losses) and temporal rainfall patterns: 
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Where q is the vector of remaining random variables and fQ is the multivariate probability density 
function of these random variables. In the TPT approach, equation (54) is evaluated with Monte Carlo 
simulations that are carried out for each interval (bin) of the rainfall depth (see section 8.3.3). This 
means random samples are taken of q and model runs are carried out to compute the resulting river 
discharge. For any discharge level q, the proportion of samples that results in discharges>q is used as 
the required estimate of the conditional exceedance probability of equation (54). 

 

 

 

  
 



 

The steps in the TPT approach can be summarized as follows (ARR, 2013): 

1. Choose a range of durations around the critical storm duration (from Design Event Analysis). For 
each duration carry out steps 2-4 

2. Divide the range of relevant values of ARI(R)6 into Nb bins of equal size in terms of their 
standardized normal variate 

3. For each bin, take Ns samples of the remaining random variables (initial losses and rainfall 
patterns) and simulate the hydrological model to evaluate the conditional exceedance probability of 
equation (53) 

4. Evaluate equation (54) to derive the exceedance probabilities of a range of discharge levels and 
translate these into ARI’s 

 
The result of this procedure is a set of frequency curves of the peak discharge, one for each individual 
duration. The overall curve is then taken to be the “envelope” of all frequency curves combined: 

( ) ( )min |ARI q ARI q DD=  (55) 

In which ARI(q) is the ARI of discharge q and D is the duration of a storm burst.  

H3.2 Adaptation of input statistics 

For a fair comparison with the CRC-CH method, input statistics are taken the same as much as 
possible. However, some statistics have to be adapted, because the CRC-CH method requires 
statistics of complete rainfall events, whereas the TPT method is based on storm bursts. For the CRC-
CH method in the current studies, the burst statistics of Table H1 were translated to event statistics by 
taking into account the factor λ, which represents the number of events per year. This translation then 
accounts for the fact that IFD tables are expressed in ARI’s per year, whereas event samples require 
ARI’s per event. Later on in this document further discussion is provided on additional requirements to 
translate burst statistics to event statistics, however, in the absence of event based IFD tables, 
adopting the burst tables is not an unreasonable approach. For the TPT approach, the burst statistics 
of Table H1 can and will be used directly as input. The value of λ, ie the number of simulated storm 
events per year, therefore has no role in the TPT method.  

Storm bursts also require statistics for initial losses that are different from statistics of initial losses for 
events. Storm events by definition start after a period of at least a couple of hours of no rain, whereas 
storm bursts can occur in the middle of a storm event. Storm bursts therefore generally occur on 
wetter initial conditions than storm events. In Rahman et al [2002] a relation was established between 
the two: 

( )( )100.5 0.25logc s cIL IL D= +   (56) 

Where ILc and ILs are initial losses for storm bursts (cores) and storm events respectively and Dc is the 
considered duration of the storm burst. 

 

 

 

 

 

6 ARR, 2013 actually uses AEP instead of ARI, but essentially that doesn’t change the method 

 

  
 

                                                      



 

Simulation results 

The numerical settings for the stratified sampling were initially chosen the same as described in ARR 
[2013]: 

 Sampling of the standard normalised variate was over the interval [0,5], corresponding to AEP’s of 
0.5 and 2.86*10-7 respectively 

 The interval was subdivided in 50 bins of equal size 

 For each bin, 200 MC simulation were executed to derive exceedance probabilities conditioned on 
the rainfall depth that is associated with the bin under consideration 

 
In a second attempt, the sampling interval was extended to [-1,5] and the number of bins increased to 
60. This was done to obtain a more reliable estimate for the lowest ARI’s (1 – 10 years). The 
procedure was carried out 10 times to evaluate the variation in output and results are shown in Figure 
H13. As can be seen, the variation in results is small over the entire range of ARI’s. 

 

 
Figure H13 ARI’s and corresponding discharges as estimated from 10 different MC runs, using the TPT- method 

 
Application of importance sampling in the TPT method 

As described in Section H3, importance sampling provided major improvements in estimated design 
flows for the higher range of ARI’s in the CRC-CH method. A similar improvement cannot be expected 
in the TPT method, as the application of the stratified sampling makes the existing TPT method 
already highly efficient. Figure H13 showed that there is negligible variation in results between 
successive runs, indicating that the accuracy of the MC simulation scheme can hardly be improved. 
The only reason to introduce importance sampling in the TPT method is if a similar accuracy can be 
obtained with a lower number of model simulations. This would save valuable computation time, which 
would be beneficial in the BRCFS project (and other projects) as the Monte Carlo analysis needs to be 
repeated numerous times.  

 

  
 



 

First of all, it needs to be demonstrated that importance sampling can be used in combination with the 
TPT method (Note that the use of importance sampling in the TPT method is actually a “contradiction 
in terms” because the Total Probability Theorem is not required to compute design flows if importance 
sampling is used instead of stratified sampling). For this purpose, a uniform sampling strategy was 
applied over the same interval in the standard normal space, [-1,5], that was evaluated with the 
stratified sampling approach. Note that the actual density function of the standard normal variate is the 
standard normal density function: 

( )
21 exp

22
xf x

p
 

= − 
 

 (57) 

By using a uniform sampling approach for the standard uniform variate, the importance sampling 
density function, h, is: 

( ) 1 ; 1 5
6

h x x= − ≤ ≤  (58) 

This means the importance sampling correction factor (see equation (30)) in this procedure is equal to: 

( )
( )

26 exp ; 1 5
22

f x x x
h x p

 
= − − ≤ ≤ 

 
 (59) 

The steps in the TPT-importance sampling approach can be summarized as follows: 

1. Choose a range of durations around the critical storm duration (from Design Event Analysis). For 
each duration carry out steps 2-4 

2. Take N samples from the range [-1,5] and translate the resulting standard normal variates into 
rainfall intensities 

3. Take N corresponding samples of the remaining random variables (initial losses and rainfall 
patterns) and simulate the hydrological model to derive samples of peak discharges 

4. Evaluate equation (30) to derive the exceedance probabilities of a range of discharge levels and 
translate these into ARI’s 

 
At first, N=12,000 samples and corresponding model simulations were carried out, similar to the 
number of model simulations in the stratified sampling approach (60 bins * 200 samples per bin). 
Results are shown in A4.4. It shows the two methods (stratified sampling and importance sampling) 
provide consistent results. 

Figure H15 shows the results of the TPT-importance sampling approach if the procedure is repeated 
10 times. It shows the method can compete with the stratified sampling approach in term of the small 
band width (compare Figure H15 with Figure H13). This also makes it hard to distinguish between the 
two in terms of computational accuracy. The next step was therefore to evaluate the performance of 
both methods with a 10 times lower number of samples: 20 samples per bin in the stratified sampling 
method and 1200 samples in total for the importance sampling method. The simulations were 
repeated 100 times to obtain a good insight in the variation in the resulting frequency curves. Results 
are shown in Figure H16 (stratified sampling) and Figure H17 (importance sampling). Again, there is 
no clear distinction between the two, indicating that no major improvements can be expected from 
introducing importance sampling to the TPT method. It was therefore decided not to further pursue this 
issue and to leave the original TPT approach unchanged (ie stratified sampling). 

 

 

  
 



 

 
Figure H14 Comparison of results with importance sampling and stratified sampling 

 

 
Figure H15 ARI’s and corresponding discharges as estimated from 10 different MC runs, using the TPT-importance 
sampling method 

 

 

  
 



 

 
Figure H16 ARI’s and corresponding discharges as estimated from 100 different MC runs, using the TPT-stratified 
sampling method with only 20 samples per bin 

 

 
Figure H17 ARI’s and corresponding discharges as estimated from 100 different MC runs, using the TPT-importance 
sampling method 

 

 

  
 



 

H4. Comparison of results from CRC-CH and TPT 

Figure H18 compares the resulting frequency curves of the CRC-CH method and the TPT method. It 
shows that the TPT provides higher design flows than the CRC-CH method. Differences increase for 
increasing ARI up to 200 m3/s. So, even though the two methods were applied as much as possible in 
a mutually consistent manner, they do not provide exactly the same results. One of the main reasons 
is that, in spite of the attempt to apply consistent input statistics, there are still inconsistencies left. This 
is best demonstrated by an analysis of ‘burst statistics’ that follow from the simulated CRC-CH events. 

Figure H19 compares the burst statistics for a two hour duration that were derived from 100,000 
simulated events. The events were simulated in exactly the same manner as described in Section H3. 
In this case, no importance sampling was applied. The Figure shows that the burst intensities that 
follow from the CRC-CH simulations are significantly lower than the original input statistics, which also 
explains why CRC-CH design discharges are lower than TPT design discharges. This shows that the 
simulated events do not fully capture the burst extremes for the entire range of durations. This is to a 
large extent due to the assumed temporal pattern from the cascade model, which determines the 
intensities of bursts that occur within an event. Once real rainfall patterns are used instead of the 
temporal patterns from the cascade model, this effect should be reduced, but perfect consistency is 
not guaranteed. This will be one of the critical items in the set-up and validation of the Monte Carlo 
framework for the BRCFS. 

In order to further test the influence of the assumed temporal distribution on the estimated design 
flows of the two methods, and alternative distribution for the multiplicative cascade model was used. 
The 2-parameter beta-distribution was applied for sampling the W-parameters of the multiplicative 
cascade model. The mean of the distribution is assumed to be equal to 0.5, the standard deviation is 
equal to 0.25 (events; CRC-CH method) and 0.15 (bursts, TPT method), following the 
recommendations of Carroll D.G. [2012] and Carroll, D and Rahman [2004]. The differences in 
standard deviations account for the fact that the temporal variability during events is generally higher 
than the temporal variation during bursts. Figure H20 shows that with these alternative temporal 
rainfall patterns, the results of the TPT and CRC-CH are much more in accordance, at least for ARI’s 
<104 year. This shows the relevance of the temporal patterns for the estimated design flows and 
confirms that correct modelling of temporal patterns will be one of the crucial items in the set-up of the 
Monte Carlo framework for the BRCFS. 

 

 

  
 



 

 
Figure H18 Peak discharges and corresponding ARI’s: comparison between the TPT and CRC-CH method 

 

 
Figure H19 Comparison of input burst statistics and derived burst statistics from MC simulation, for a duration of 12 
hours 

 

 

  
 



 

 
Figure H20 Peak discharges and corresponding ARI’s: comparison between the TPT and CRC-CH method, using 
alternative temporal rainfall patterns 

 
H5. Conclusions 

The main conclusions of the pilot study are:  

 The CRC-CH can provide accurate results also for high ARI’s, without having to carry out millions of 
model simulations through the use of importance sampling 

 The TPT method can also be applied with importance sampling (instead of stratified sampling), but 
this is not expected to lead to a major improvement in model accuracy and/or reduction in 
computation times 

 Differences in computed design discharges between TPT and CRC-CH were mainly due to 
differences in IFD table definition (bursts vs events), “losses” and temporal patterns. Consistent 
modelling of these factors is a high priority in the MCS framework 
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