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Diuron is absorbed principally through the roots of plants. It is then translocated acropetally (i.e. 

movement upwards from the base of plants to the apex) in the xylem and accumulates in the 

leaves (BCPC 2012). Diuron exerts its toxicity in aquatic plants (including algae) by inhibiting 

electron transport in the photosystem II (PSII) complex (University of Hertfordshire 2013), a key 

process in photosynthesis that occurs in the thylakoid membranes of chloroplasts. Urea herbicides 

bind to the plastoquinone B (QB) protein binding site on the D1 protein in PSII. This prevents the 

transport of electrons to synthesise adenosine triphosphate (ATP, used for cellular metabolism) 

and nicotinamide adenine dinucleotide phosphate (NADPH, used in converting CO2 to glucose), 

and therefore prevents CO2 fixation (Wilson et al. 2000). 

In addition to its main mode of action, PSII-inhibiting can lead to marked increases in the formation 

of reactive oxygen species (ROS) (Halliwell 1991). These include the synthesis of singlet oxygen 

(OH-), superoxide (O2
-) and hydrogen peroxide (H2O2). Reactive oxygen species are highly reactive 

forms of oxygen that readily react with, and bind to, biomolecules including deoxyribonucleic acid 

(DNA) and ribonucleic acid (RNA). Reactive oxygen species are created during normal cellular 

functioning particularly in biochemical processes that involve the generation of energy, e.g. 

photosynthesis in chloroplasts and the Krebs cycle in the mitochondria of cells. In phototrophs, 

ROS are formed when the absorbed light energy exceeds the ability to convert CO2 to organic 

molecules, thus accumulating oxygen (Chen et al. 2012). Normal concentrations of ROS are 

involved in a number of cellular processes (Chen et al. 2012). However, prolonged exposure to 

elevated concentrations of ROS in plants, as a result of biotic (e.g. disease) and/or abiotic 

stressors (e.g. PSII-inhibiting herbicides), can cause irreversible cell damage and ultimately lead to 

cell death (apoptosis). 

Diuron ultimately ends up in aquatic environments as a result of surface and/or subsurface runoff 

from agricultural applications following heavy or persistent rain events, as well as from antifouling 

paints (biocides) applied to the hull of marine vessels (APVMA 2009). Loss of diuron via 

volatilisation is minimal due to its solubility in water (Table 1) and low soil adsorption ability as 

indicated by its low log Koc value (Table 1) (Field et al. 2003). Diuron is relatively mobile and has 

been found to leach to groundwater and be transported in surface waters (Field et al. 2003; 

AVPMA 2011). A USEPA report (USEPA 1987) of surface and groundwater samples in six states 

of the USA did not detect diuron in any of eight surface water samples; however it was detected in 

approximately 2.6% of groundwater samples in California and Georgia. Australian figures from 

2011–15 show that diuron has been detected in approximately 66% of surface water samples 

collected between 2011-15 in waterways that drain agricultural land and discharge to the Great 

Barrier Reef (based on data in Turner et al. 2013a, 2013b; Wallace et al. 2014, 2015, 2016; 

Garzon-Garcia et al. 2015). 

In Australia, the APVMA suspended the registration of selected diuron products in late 2011 and 

enforced significant restrictions on the use of reaffirmed products. The main restriction prohibited 

the use of diuron during no-spray windows (from December 5, 2011 to March 31, 2012 onwards) 

for tropical crops including sugarcane, with restrictions being specific to the climatic and 

geographic conditions of each region. Other restrictions included specifying maximum application 

rates for different times of the year. Diuron is currently registered for use in Australia and many 

other countries, however, it has been reviewed in the United States (draft 2003), Canada (2007), 

United Kingdom (2007) and Europe (2007 and 2008) (APVMA 2009). Current restraints on diuron 

use in Australia can be found at http://apvma.gov.au/node/12511. 

2 Aquatic Toxicology 

The review of the literature revealed that there were two published studies (Kumar et al. 2010; 

Foster et al. 1998) that determined the toxicity of diuron to Australasian species and one 
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unpublished study (Seery and Pradella, in prep). Foster et al. (1998) determined the toxicity of 

diuron to the cladoceran Ceriodaphnia dubia while Kumar et al. (2010) determined its toxicity to 

shrimp Parataya australiensis and Seery and Pradella (in prep.) determined its toxicity to the 

macroalga Lemna aequinoctialis. In addition, there is an honours thesis in existence by Sarah 

Stone (University of Wollongong) that is determining the toxicity of diuron to four algal species and 

to a mixture of three of the alga. As this work was not yet completed, it was not included in this 

review. All the other chronic data for Australasian species were included as they passed the 

normal quality assurance and screening processes. 

A summary of the high and moderate quality raw toxicity data for freshwater species is presented 

in Section 5 – Toxicity Data Used in Derivation and Appendix A, Table 4 contains all the this data. 

The lowest reported chronic toxicity value to freshwater species is for microalgae, Fragilaria 

capucina var vaucheriae, with a 96-hour EC5 of 0.069 µg/L. The lowest reported acute toxicity 

value to freshwater species is for macrophyte, Lemna aequinoctialis, with a 4-day EC10 of 

2.79 µg/L. 

3 Factors Affecting Toxicity 

No factors have been reported as modifying the toxicity of diuron. As with many organic chemicals 

it might be expected that dissolved and particulate organic matter and suspended solids would 

affect its bioavailability and toxicity. However, any such effect would be relatively minor given the 

relatively low log Koc value of diuron (Table 1). 

4 Guideline Derivation 

The Australian and New Zealand default Guideline Values (GVs) for diuron in freshwaters are 

provided in Table 2. Details of how the default GVs were calculated and the toxicity data that were 

used are provided below. As with all the other pesticides that have GVs, the GVs for diuron are 

expressed in terms of the concentration of the active ingredient. 

Measured log bioconcentration factor (BCF) values for diuron are low (Table 1) and below the 

threshold at which secondary poisoning must be considered (i.e. threshold log BCF = 4, Warne et 

al. 2015). Therefore, the default GVs for diuron do not need to account for secondary poisoning. 
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the more sensitive group of organisms (in this case, phototrophs) were used in calculating the 

default GVs. 

There were freshwater chronic 5% effect concentration (EC5), 10% effect concentration (EC10), no 

observed effect concentration (NOEC) and no observed effect level (NOEL) data for 15 

phototrophic species (that belonged to only three phyla and five classes), which does not meet the 

minimum data requirements (i.e., at least five species belonging to at least four phyla) to use a 

SSD to derive a GV (Warne et al. 2015). When the dataset was expanded to include chronic 

estimated NOEC (chronic LOEC/EC50 toxicity data that had been converted to estimates of 

chronic NOEC/EC10 by dividing by 5) values of freshwater phototrophic species, there were 26 

species belonging to 4 phyla and 7 classes which met the minimum data requirements to use a 

SSD to derive default GVs (Warne et al. 2015). The number of species and taxa in the toxicity data 

used to derive the default GVs (Table 2) combined with the good fit of the distribution to these 

toxicity data (Figure 2) resulted in a very high reliability set of default GVs. 

A summary of the toxicity data (one value per species) used to calculate the default GVs for diuron 

in freshwater environments is provided in Table 3. Further details about all the data for freshwater 

species that passed the screening and quality assurance schemes, including those used to derive 

the single species values used to calculate the default GVs are presented in Attachments A.  
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1 Chronic NOEC/NOEL/EC5/EC10 = no conversions applied; Chronic est. NOEC = chronic LOEC/EC50 values that were converted 

to chronic NOEC/NOEL/EC10 values by dividing by 5 (Warne et al. 2015). 2 This species has also been called Chlorella vulgaris 

and Chlorella pyrenoidosa. 3 AUC = area under the growth curve. 4 This species has also been called Ulnaria ulna. 5 This species has 

also been called Desmodesmus subspicatus. 6 This species has also been called Raphidocelis subcapitata and Pseudokirchneriella 

subcapitata. 
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6 Species Sensitivity Distribution 

The cumulative frequency (species sensitivity) distribution (SSD) of the 26 phototrophic freshwater 

species that were used to derive the default GVs is presented in Figure 2.  

Figure 2 Cumulative frequency distribution generated using Burrlioz 2.0 (2016) of the sensitivity 
(chronic 5% effect concentration (EC5), 10% effect concentration (EC10), no observed effect 
concentration (NOEC) and no observed effect level (NOEL) data with chronic estimated NOEC data) 
values of freshwater phototrophic species to diuron. Chronic NOEC/NOEL/EC5/EC10 = no 
conversions applied; Chronic est. NOEC = chronic LOEC/EC50 values that were converted to chronic 
NOEC/NOEL/EC10 values by dividing by 5 (Warne et al. 2015). 
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8 Glossary, acronyms, abbreviations 

Acute toxicity An adverse effect that occurs as the result of a short-term exposure to a 

chemical relative to the organism’s life span. Refer to Warne et al. (2015) 

for examples of acute exposures. 

ANZECC Australian and New Zealand Environment and Conservation Council. 

ARMCANZ Agricultural and Resource Management Council of Australia and New 

Zealand. 

Bimodal When the distribution of the sensitivity of species to a toxicant has two 

modes. This typically occurs with chemicals with specific modes of 

action. For example, herbicides are designed to affect plants at low 

concentrations but most animals are only affected at high 

concentrations.  

CAS no. Chemical Abstracts Service number. Each chemical has a unique 

identifying number that is allocated to it by the American Chemical 

Society. 

Chronic toxicity An adverse effect that occurs as the result of exposure to a chemical for 

a substantial portion of the organism’s life span or an adverse sub-lethal 

effect on a sensitive early life stage. Refer to Warne et al. (2015) for 

examples of chronic exposures. 

Default guideline 

value (Default GV) 

A guideline value recommended for generic application in the absence of 

a more specific guideline value (e.g. site-specific), in the Australian and 

New Zealand Water Quality Guidelines. 

ECx The concentration of a chemical in water that is estimated to produce a 

x% effect on a sub-lethal endpoint. The magnitude of x can vary from 1 

to 100, however values between 5 and 50 are more typical. The ECx is 

usually expressed as a time-dependent value (e.g. 24-hour or 96-hour 

ECx). 

EC50 (Median 

effective 

concentration) 

The concentration of a chemical in water that is estimated to produce a 

50% effect on a sub-lethal endpoint. The EC50 is usually expressed as a 

time-dependent value (e.g. 24-hour or 96-hour EC50). 

Endpoint A measurable biological effect including, but not limited to, lethality, 

immobility, growth inhibition, immunological responses, organ effects, 

developmental and reproductive effects, behavioural effects, biochemical 

changes, genotoxicity, etc. 

Guideline value (GV) A measurable quantity (e.g. concentration) or condition of an indicator 

for a specific environmental value below which (or above which, in the 

case of stressors such as pH, dissolved oxygen and many biodiversity 

responses) there is considered to be a low risk of unacceptable effects 

occurring to that environmental value. Guideline values for more than 

one indicator should be used simultaneously in a multiple lines of 
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evidence approach. 

LC50 (Median lethal 

concentration) 

The concentration of a chemical in water that is estimated to kill 50% of 

the test organisms. The LC50 is usually expressed as a time-dependent 

value (e.g. 24-hour or 96-hour LC50). 

LOEC (Lowest 

observed effect 

concentration) 

The lowest concentration of a chemical used in a toxicity test that has a 

statistically significant (p≤0.05) adverse effect on the exposed population 

of test organisms as compared with the controls. All higher 

concentrations should also cause statistically significant effects. 

Mode of action The means by which a chemical exerts its toxic effects. For example, 

triazine herbicides inhibit the photosystem II component of plants 

photosynthesis biochemical reaction.  

NOEC (No observed 

effect concentration) 

The highest concentration of a toxicant used in a toxicity test that does 

not have a statistically significant (p>0.05) effect, compared to the 

controls. The statistical significance is measured at the 95% confidence 

level. 

Phototrophs 
Organisms that photosynthesize as their main means of obtaining 

energy e.g. plants and algae. 

PSII Photosystem II of the photosynthetic biochemical pathway. 

Site-specific Relating to something that is confined to, or valid for, a particular place. 

Site-specific trigger values are relevant to the location or conditions that 

are the focus of a given assessment. 

Species A group of organisms that resemble each other to a greater degree than 

members of other groups and that form a reproductively isolated group 

that will not produce viable offspring if bred with members of another 

group. 

SSD Species sensitivity distribution. A method that plots the cumulative 

frequency of species sensitivity and fits the best possible statistical 

distribution to the data. From the distribution the concentration that 

should theoretically protect a selected percentage of species can be 

determined. 

Toxicity The inherent potential or capacity of a material to cause adverse effects 

in a living organism. 

Toxicity test The means by which the toxicity of a chemical or other test material is 

determined. A toxicity test is used to measure the degree of response 

produced by exposure to a concentration of chemical. 
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Arthropoda Branchiopoda Cladoceran 

(Ceriodaphnia 

dubia) 

<24 hour old 

neonates 

1 Acute EC50 

(Immobilisation) 

Soft diluted 

mineral water 

25 ± 1 Not 

stated 

2,300 Foster et al. 

(1998) 

Arthropoda Branchiopoda Cladoceran 

(Ceriodaphnia 

dubia) 

<24 hour old 

neonates 

1 Acute EC50 

(Immobilisation) 

Soft diluted 

mineral water 

25 ± 1 Not 

stated 

1,200 Foster et al. 

(1998) 

          1,661.32 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran 

(Ceriodaphnia 

dubia) 

<24 hour old 

neonates 

2 Acute EC50 

(Immobilisation) 

Soft diluted 

mineral water 

25 ± 1 Not 

stated 

1,700 Foster et al. 

(1998) 

Arthropoda Branchiopoda Cladoceran 

(Ceriodaphnia 

dubia) 

<24 hour old 

neonates 

2 Acute EC50 

(Immobilisation) 

Soft diluted 

mineral water 

25 ± 1 Not 

stated 

1,000 Foster et al. 

(1998) 

          1,303.84 GEOMETRIC 

MEAN 

Arthropoda Insecta Midge 

(Chironomus 

tentans) 

1st instar 

larvae  

(2 days old) 

10 Chronic NOAEL 

(Mortality) 

0.45 µm 

filtered well 

water 

24 6.9 ± 

0.1 

1,900 Nebeker and 

Schuytema 

(1998) 

          1,900 GEOMETRIC 

MEAN 

Arthropoda Insecta Midge 

(Chironomus 

tentans) 

1st instar 

larvae  

(2 days old) 

10 Chronic LOAEL  

(Mortality) 

0.45 µm 

filtered well 

water 

24 6.9 ± 

0.1 

3,400 Nebeker and 

Schuytema 

(1998) 

          3,400 GEOMETRIC 

MEAN 

Arthropoda Insecta Midge 

(Chironomus 

tentans) 

1st instar 

larvae  

(2 days old) 

10 Chronic NOAEL 

(Larval weight) 

0.45 µm 

filtered well 

water 

24 6.9 ± 

0.1 

3,400 Nebeker and 

Schuytema 

(1998) 

          3,400 GEOMETRIC 

MEAN 

Arthropoda Insecta Midge 

(Chironomus 

tentans) 

1st instar 

larvae  

(2 days old) 

10 Chronic LOAEL 

(Larval weight) 

0.45 µm 

filtered well 

water 

24 6.9 ± 

0.1 

7,100 Nebeker and 

Schuytema 

(1998) 

          7,100 GEOMETRIC 

MEAN 

Arthropoda Insecta Midge 

(Chironomus 

1st instar 

larvae  

10 Chronic LC50 

(Mortality) 

0.45 µm 

filtered well 

24 6.9 ± 

0.1 

3,300 Nebeker and 

Schuytema 
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tentans) (2 days old) water (1998) 

          3,300 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia 

magna) 

< 24 hours 2 Acute LOEC 

(Immobilisation) 

Natural or 

reconstituted 

water 

20 ± 1 Not 

stated 

3,500 Fernandez-

Alba et al. 

(2002a) 

          3,500 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia 

magna) 

< 24 hours 2 Acute EC50 

(Immobilisation) 

Natural or 

reconstituted 

water 

20 ± 1 Not 

stated 

8,600 Fernandez-

Alba et al. 

(2002a) 

Arthropoda Branchiopoda Cladoceran  

(Daphnia 

magna) 

< 24 hours 2 Acute EC50 

(Immobilisation) 

Natural or 

reconstituted 

water 

20 ± 1 Not 

stated 

8,600 Fernandez-

Alba et al. 

(2002b) 

Arthropoda Branchiopoda Cladoceran 

(Daphnia 

magna) 

<24 hour old 

neonates 

2 Acute EC50 

(Immobilisation) 

Non-

chlorinated 

tap water and 

spring water 

(1:1 ratio) 

20 ± 1 Not 

stated 

8,600 Hernando et 

al. (2003) 

          8,600 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia 

magna) 

Not stated 4 Acute LC50 

(Mortality) 

* * * 400 Knapek and 

Lakota (1974) 

          400 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia 

magna) 

Life cycle 21 Chronic LOEC 

(Body length/Dry 

weight) 

Surface or 

ground, 

reconstituted 

or 

dechlorinated 

tap water 

20 ± 1 Not 

stated 

113 US EPA 

(2015a) 

          113 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran 

(Daphnia 

magna) 

Life cycle 21 Chronic NOEL 

(Body length/Dry 

weight) 

Surface or 

ground, 

reconstituted 

or 

dechlorinated 

20 ± 1 Not 

stated 

57 US EPA 

(2015a) 



Department of Science, Information Technology and Innovation  

20 

tap water 

          57 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran 

(Daphnia 

magna) 

Life cycle 28 Chronic LOEC 

(Body length/Dry 

weight) 

Surface or 

ground, 

reconstituted 

or 

dechlorinated 

tap water 

20 ± 1 Not 

stated 

200 US EPA 

(2015a) 

          200 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia 

magna) 

Life cycle 28 Chronic NOEL 

(Body length/Dry 

weight) 

Surface or 

ground, 

reconstituted 

or 

dechlorinated 

tap water 

20 ± 1 Not 

stated 

200 US EPA 

(2015a) 

          200 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia pulex) 

1st instar 

larvae 

2 Acute EC50 

(Body length/Dry 

weight) 

Surface or 

ground, 

reconstituted 

or 

dechlorinated 

tap water 

20 ± 2 Not 

stated 

1,400 US EPA 

(2015a) 

          1,400 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia pulex) 

Not stated 2 Acute EC50 

(Immobilisation) 

Reconstituted 

de-ionised 

water 

18 6.5 - 

8.5 

1,400 Sanders and 

Cope (1966) 

Arthropoda Branchiopoda Cladoceran 

(Daphnia pulex) 

Not stated 2 Acute EC50 

(Immobilisation) 

Well water, 

reconstituted 

water 

15 ± 1 7.4 - 

7.8 

1,400 Johnson and 

Finley (1980) 

          1,400 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia pulex) 

Adults  

(5 days old) 

4 Acute LC50 

(Mortality) 

0.45 µm 

filtered well 

water 

Not 

stated 

6.9 ± 

0.1 

17,900 Nebeker and 

Schuytema 

(1998) 
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          17,900 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia pulex) 

Adults  

(5 days old) 

7 Chronic NOAEL 

(Mortality) 

0.45 µm 

filtered well 

water 

Not 

stated 

6.9 ± 

0.1 

4,000 Nebeker and 

Schuytema 

(1998) 

          4,000 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia pulex) 

Adults  

(5 days old) 

7 Chronic LOAEL 

(Mortality) 

0.45 µm 

filtered well 

water 

Not 

stated 

6.9 ± 

0.1 

7,700 Nebeker and 

Schuytema 

(1998) 

          7,700 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia pulex) 

Adults  

(5 days old) 

7 Chronic NOAEL 

(Progeny) 

0.45 µm 

filtered well 

water 

Not 

stated 

6.9 ± 

0.1 

4,000 Nebeker and 

Schuytema 

(1998) 

          4,000 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia pulex) 

Adults  

(5 days old) 

7 Chronic LOAEL 

(Progeny) 

0.45 µm 

filtered well 

water 

Not 

stated 

6.9 ± 

0.1 

7,700 Nebeker and 

Schuytema 

(1998) 

          7,700 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran  

(Daphnia pulex) 

Adults  

(5 days old) 

7 Chronic LC50 

(Mortality) 

0.45 µm 

filtered well 

water 

Not 

stated 

6.9 ± 

0.1 

7,100 Nebeker and 

Schuytema 

(1998) 

          7,100 GEOMETRIC 

MEAN 

Arthropoda Malacostraca Shrimp 

(Gammarus 

fasciatus) 

Not stated 2 Acute LC50 

(Mortality) 

Untreated well 

water 

15.5 ± 

0.5 

7.4 1,800 Sanders 

(1970) 

          1,800 GEOMETRIC 

MEAN 

Arthropoda Malacostraca Shrimp 

(Gammarus 

fasciatus) 

Not stated 4 Acute LC50 

(Mortality) 

Well water, 

reconstituted 

water 

21 ± 1 6.5 - 

8.5 

160 Johnson and 

Finley (1980) 

Arthropoda Malacostraca Shrimp 

(Gammarus 

fasciatus) 

Not stated 4 Acute LC50 

(Mortality) 

Untreated well 

water 

15.5 ± 

0.5 

7.4 700 Sanders 

(1970) 
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          335 GEOMETRIC 

MEAN 

Arthropoda Malacostraca Amphipod 

(Gammarus 

lacustris) 

Not stated 2 Acute LC50 

(Mortality) 

* * * 380 Sanders 

(1969) 

          380 GEOMETRIC 

MEAN 

Arthropoda Malacostraca Amphipod 

(Gammarus 

lacustris) 

Not stated 4 Acute LC50 

(Mortality) 

* * * 160 Sanders 

(1969) 

          160 GEOMETRIC 

MEAN 

Arthropoda Malacostraca Amphipod 

(Hyalella 

azteca) 

2 day old 

young 

4 Acute LC50 

(Mortality) 

0.45 µm 

filtered well 

water 

22 6.9 ± 

0.1 

19,400 Nebeker and 

Schuytema 

(1998) 

          19,400 GEOMETRIC 

MEAN 

Arthropoda Malacostraca Amphipod 

(Hyalella 

azteca) 

2 day old 

young 

10 Acute NOAEL 

(Mortality) 

0.45 µm 

filtered well 

water 

22 6.9 ± 

0.1 

7,900 Nebeker and 

Schuytema 

(1998) 

          7,900 GEOMETRIC 

MEAN 

Arthropoda Malacostraca Amphipod 

(Hyalella 

azteca) 

2 day old 

young 

10 Acute LOAEL  

(Mortality) 

0.45 µm 

filtered well 

water 

22 6.9 ± 

0.1 

15,700 Nebeker and 

Schuytema 

(1998) 

          15,700 GEOMETRIC 

MEAN 

Arthropoda Malacostraca Amphipod 

(Hyalella 

azteca) 

2 day old 

young 

10 Acute NOAEL 

(Length) 

0.45 µm 

filtered well 

water 

22 6.9 ± 

0.1 

22,900 Nebeker and 

Schuytema 

(1998) 

          22,900 GEOMETRIC 

MEAN 

Arthropoda Malacostraca Amphipod 

(Hyalella 

azteca) 

2 day old 

young 

10 Acute NOAEL 

(Blotted wet 

weight) 

0.45 µm 

filtered well 

water 

22 6.9 ± 

0.1 

22,900 Nebeker and 

Schuytema 

(1998) 

          22,900 GEOMETRIC 

MEAN 
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Arthropoda Malacostraca Amphipod 

(Hyalella 

azteca) 

2 day old 

young 

10 Acute LC50 

(Mortality) 

0.45 µm 

filtered well 

water 

22 6.9 ± 

0.1 

18400 Nebeker and 

Schuytema 

(1998) 

          18,400 GEOMETRIC 

MEAN 

Arthropoda Malacostraca Australian Glass 

Shrimp  

(Paratya 

australiensis) 

Not stated 4 Acute LC50 

(Mortality) 

Not stated 23 ± 1 7 - 8.5 8,800 Kumar et al. 

(2010) 

          8,800 GEOMETRIC 

MEAN 

Arthropoda Malacostraca Australian Glass 

Shrimp  

(Paratya 

australiensis) 

Not stated 4 Acute LC10 

(Mortality) 

Not stated 23 ± 1 7 - 8.5 4,700 Kumar et al. 

(2010) 

Arthropoda Malacostraca Australian Glass 

Shrimp  

(Paratya 

australiensis) 

Not stated 4 Acute NOEC 

(Mortality) 

Not stated 23 ± 1 7 - 8.5 5,000 Kumar et al. 

(2010) 

          4,847.68 GEOMETRIC 

MEAN 

Arthropoda Insecta Stonefly 

(Pteronarcys 

californica) 

Not stated 2 Acute LC50 

(Mortality) 

Reconstituted 

water 

15.5 ± 

0.5 

7.1 2,800 Sanders and 

Cope (1968) 

          2,800 GEOMETRIC 

MEAN 

Arthropoda Insecta Stonefly 

(Pteronarcys 

californica) 

Not stated 4 Acute LC50 

(Mortality) 

Reconstituted 

water 

15.5 ± 

0.5 

7.1 1,200 Sanders and 

Cope (1968) 

Arthropoda Insecta Stonefly 

(Pteronarcys 

californica) 

Not stated 4 Acute LC50 

(Mortality) 

Reconstituted 

water 

15.5 ± 

0.5 

7.1 1,200 Sanders and 

Cope (1968) 

          1,200 GEOMETRIC 

MEAN 

Arthropoda Branchiopoda Cladoceran 

(Simocephalus 

serrulatus) 

Not stated 2 Acute EC50 

(Immobilisation) 

Reconstituted 

water 

10.0 - 

26.66 

7.4 - 

7.8 

2,000 Sanders and 

Cope (1966) 

Arthropoda Branchiopoda Cladoceran 

(Simocephalus 

Not stated 2 Acute EC50 

(Immobilisation) 

Well water, 

reconstituted 

15 ± 1 6.5 - 

8.5 

2,000 Johnson and 

Finley (1980) 
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serrulatus) water 

          2,000 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Achnanthidium 

minutissimum) 

Exponential 

growth 

phase 

4 Chronic EC5 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

3.15 Larras et al. 

(2012) 

          3.15 GEOMETRIC 

MEAN 

          3.15 VALUE USED 

IN SSD 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Achnanthidium 

minutissimum) 

Not stated 4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

45 Larras et al. 

(2013) 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Achnanthidium 

minutissimum) 

Exponential 

growth 

phase 

4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

7.67 Larras et al. 

(2013) 

          18.6 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Achnanthidium 

minutissimum) 

Exponential 

growth 

phase 

4 Chronic EC50 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

108 Larras et al. 

(2012) 

          108 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Achnanthidium 

minutissimum) 

Not stated 4 Chronic EC50 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

56 Larras et al. 

(2013) 

          56 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Craticula 

accomoda) 

Exponential 

growth 

phase 

4 Chronic EC5 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

261 Larras et al. 

(2012) 

          261 GEOMETRIC 

MEAN 

          261 VALUE USED 
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IN SSD 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Craticula 

accomoda) 

Not stated 4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

185 Larras et al. 

(2013) 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Craticula 

accomoda) 

Exponential 

growth 

phase 

4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

644 Larras et al. 

(2013) 

          345 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Craticula 

accomoda) 

Exponential 

growth 

phase 

4 Chronic EC50 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

1,734 Larras et al. 

(2012) 

          1,734 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Craticula 

accomoda) 

Not stated 4 Chronic EC50 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

1,426 Larras et al. 

(2013) 

          1,426 GEOMETRIC 

MEAN 

Bacillariophyta Mediophyceae Microalgae 

(Cyclotella 

meneghiniana) 

Exponential 

growth 

phase 

4 Chronic EC5 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

1.59 Larras et al. 

(2012) 

          1.59 GEOMETRIC 

MEAN 

          1.59 VALUE USED 

IN SSD 

Bacillariophyta Mediophyceae Microalgae 

(Cyclotella 

meneghiniana) 

Not stated 4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

27 Larras et al. 

(2013) 

Bacillariophyta Mediophyceae Microalgae 

(Cyclotella 

meneghiniana) 

Exponential 

growth 

phase 

4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

2.74 Larras et al. 

(2013) 

          8.6 GEOMETRIC 
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MEAN 

Bacillariophyta Mediophyceae Microalgae 

(Cyclotella 

meneghiniana) 

Exponential 

growth 

phase 

4 Chronic EC50 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

23 Larras et al. 

(2012) 

          23 GEOMETRIC 

MEAN 

Bacillariophyta Mediophyceae Microalgae 

(Cyclotella 

meneghiniana) 

Not stated 4 Chronic EC50 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

49 Larras et al. 

(2013) 

          49 GEOMETRIC 

MEAN 

Bacillariophyta Mediophyceae Microalgae 

(Cyclotella 

nana) 

Not stated 3 Chronic EC50 

(Biomass Yield, 

Growth Rate, 

AUC) 

ASTM Type 1 

water 

24 ± 2 7.5 ± 

0.1 

39 US EPA 

(2015a) 

          39 GEOMETRIC 

MEAN 

          7.8
@

 VALUE USED 

IN SSD 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Encyonema 

silesiacum) 

Exponential 

growth 

phase 

4 Chronic EC5 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

3.11 Larras et al. 

(2012) 

          3.11 GEOMETRIC 

MEAN 

          3.11 VALUE USED 

IN SSD 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Encyonema 

silesiacum) 

Not stated 4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

90 Larras et al. 

(2013) 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Encyonema 

silesiacum) 

Exponential 

growth 

phase 

4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

3.98 Larras et al. 

(2013) 

          18.93 GEOMETRIC 

MEAN 
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Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Encyonema 

silesiacum) 

Exponential 

growth 

phase 

4 Chronic EC50 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

8.79 Larras et al. 

(2012) 

          8.79 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Encyonema 

silesiacum) 

Not stated 4 Chronic EC50 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

286 Larras et al. 

(2013) 

          286 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Eolimna 

minima) 

Exponential 

growth 

phase 

4 Chronic EC5 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

3,007 Larras et al. 

(2012) 

          3,007 GEOMETRIC 

MEAN 

          3,007 VALUE USED 

IN SSD 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Eolimna 

minima) 

Exponential 

growth 

phase 

4 Chronic EC50 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

4,236 Larras et al. 

(2012) 

          4,236 GEOMETRIC 

MEAN 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Fragilaria 

capucina var 

vaucheriae) 

Exponential 

growth 

phase 

4 Chronic EC5 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

0.069 Larras et al. 

(2012) 

          0.069 GEOMETRIC 

MEAN 

          0.069 VALUE USED 

IN SSD 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Fragilaria 

capucina var 

vaucheriae) 

Not stated 4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

21 Larras et al. 

(2013) 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Fragilaria 

capucina var 

vaucheriae) 

Exponential 

growth 

phase 

4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

0.11 Larras et al. 

(2013) 
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          1.52 GEOMETRIC 

MEAN 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Fragilaria 

capucina var 

vaucheriae) 

Exponential 

growth 

phase 

4 Chronic EC50 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

4.03 Larras et al. 

(2012) 

          4.03 GEOMETRIC 

MEAN 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Fragilaria 

capucina var 

vaucheriae) 

Not stated 4 Chronic EC50 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

44 Larras et al. 

(2013) 

          44 GEOMETRIC 

MEAN 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Fragilaria 

rumpens) 

Exponential 

growth 

phase 

4 Chronic EC5 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

18 Larras et al. 

(2012) 

          18 GEOMETRIC 

MEAN 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Fragilaria 

rumpens) 

Not stated 4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

0.76 Larras et al. 

(2013) 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Fragilaria 

rumpens) 

Exponential 

growth 

phase 

4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

30 Larras et al. 

(2013) 

          4.77 GEOMETRIC 

MEAN 

          4.77 VALUE USED 

IN SSD 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Fragilaria 

rumpens) 

Exponential 

growth 

phase 

4 Chronic EC50 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

122 Larras et al. 

(2012) 

          122 GEOMETRIC 

MEAN 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Fragilaria 

rumpens) 

Not stated 4 Chronic EC50 

(Growth 

Rate/Chlorophyll

DV culture 

medium 

Not 

stated 

Not 

stated 

8.89 Larras et al. 

(2013) 
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-a fluorescence) 

          8.89 GEOMETRIC 

MEAN 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Fragilaria 

ulna
1
) 

Exponential 

growth 

phase 

4 Chronic EC5 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

12.6 Larras et al. 

(2012) 

          12.6 GEOMETRIC 

MEAN 

          12.6 VALUE USED 

IN SSD 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Ulnaria ulna) 

Not stated 4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

24 Larras et al. 

(2013) 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Ulnaria ulna) 

Exponential 

growth 

phase 

4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

18 Larras et al. 

(2013) 

          20.78 GEOMETRIC 

MEAN 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Fragilaria 

ulna
1
) 

Exponential 

growth 

phase 

4 Chronic EC50 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

51 Larras et al. 

(2012) 

          51 GEOMETRIC 

MEAN 

Bacillariophyta Fragilariophyc-

eae 

Microalgae 

(Ulnaria ulna) 

Not stated 4 Chronic EC50 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

42 Larras et al. 

(2013) 

          42 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Gomphonema 

parvulum) 

Exponential 

growth 

phase 

4 Chronic EC5  

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

904 Larras et al. 

(2012) 

          904 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc- Microalgae Not stated 4 Chronic EC10 DV culture Not Not 53 Larras et al. 
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eae (Gomphonema 

parvulum) 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

medium stated stated (2013) 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Gomphonema 

parvulum) 

Exponential 

growth 

phase 

4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

1016 Larras et al. 

(2013) 

          232.05 GEOMETRIC 

MEAN 

          232.05 VALUE USED 

IN SSD 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Gomphonema 

parvulum) 

Exponential 

growth 

phase 

4 Chronic EC50 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

2,255 Larras et al. 

(2012) 

          2,255 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Gomphonema 

parvulum) 

Not stated 4 Chronic EC50 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

1,423 Larras et al. 

(2013) 

          1,423 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Mayamaea 

fossalis) 

Exponential 

growth 

phase 

4 Chronic EC5 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

74 Larras et al. 

(2012) 

          74 GEOMETRIC 

MEAN 

          74 VALUE USED 

IN SSD 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Mayamaea 

fossalis) 

Not stated 4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

91 Larras et al. 

(2013) 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Mayamaea 

fossalis) 

Exponential 

growth 

phase 

4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

96 Larras et al. 

(2013) 

          93.5 GEOMETRIC 

MEAN 
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Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Mayamaea 

fossalis) 

Exponential 

growth 

phase 

4 Chronic EC50 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

463 Larras et al. 

(2012) 

          463 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Mayamaea 

fossalis) 

Not stated 4 Chronic EC50 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

139 Larras et al. 

(2013) 

          139 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Nitzschia 

palea) 

Exponential 

growth 

phase 

4 Chronic EC5 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

106 Larras et al. 

(2012) 

          106 GEOMETRIC 

MEAN 

          106 VALUE USED 

IN SSD 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Nitzschia 

palea) 

Not stated 4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

380 Larras et al. 

(2013) 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Nitzschia 

palea) 

Exponential 

growth 

phase 

4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

196 Larras et al. 

(2013) 

          272.9 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Nitzschia 

palea) 

Exponential 

growth 

phase 

4 Chronic EC50 

(Cell density) 

DV culture 

medium 

21 ± 2 Not 

stated 

1,539 Larras et al. 

(2012) 

          1,539 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Nitzschia 

palea) 

Not stated 4 Chronic EC50 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

1,667 Larras et al. 

(2013) 

          1,667 GEOMETRIC 

MEAN 
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Bacillariophyta Bacillariophyc-

eae 

Microalgae  

(Sellaphora 

minina) 

Not stated 4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

693 Larras et al. 

(2013) 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Sellaphora 

minina) 

Exponential 

growth 

phase 

4 Chronic EC10 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

3218 Larras et al. 

(2013) 

          1493.34 GEOMETRIC 

MEAN 

          1493.34 VALUE USED 

IN SSD 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Sellaphora 

minina) 

Not stated 4 Chronic EC50 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

2606 Larras et al. 

(2013) 

Bacillariophyta Bacillariophyc-

eae 

Microalgae  

(Sellaphora 

minina) 

Exponential 

growth 

phase 

4 Chronic EC50  

(Growth 

Rate/Chlorophyll

-a fluorescence) 

DV culture 

medium 

Not 

stated 

Not 

stated 

4236 Larras et al. 

(2013) 

          3322.5 GEOMETRIC 

MEAN 

Bacillariophyta Bacillariophyc-

eae 

Microalgae 

(Stauroneis 

amphoroides) 

Not stated 3 Chronic EC50 

(Biomass Yield, 

Growth Rate, 

AUC) 

ASTM Type 1 

water 

24 ± 2 7.5 ± 

0.1 

31 US EPA 

(2015a) 

          31 GEOMETRIC 

MEAN 

          6.2
@

 VALUE USED 

IN SSD 

Chlorophyta Trebouxiophyc-

eae 

Microalgae 

(Chlorella 

pyrenoidosa
2
) 

Not stated 4 Chronic EC50 

(Cell count) 

HB-4 media 25 Not 

stated 

2.3 Ma et al. 

(2002) 

Chlorophyta Trebouxiophyc-

eae 

Microalgae 

(Chlorella 

pyrenoidosa
2
) 

Not stated 4 Chronic EC50 

(Cell count) 

HB-4 media 25 Not 

stated 

1.3 Ma et al. 

(2001) 

Chlorophyta Trebouxiophyc-

eae 

Microalgae 

(Chlorella 

vulgaris
2
) 

Not stated 4 Chronic EC50 

(Cell count) 

HB-4 media 25 Not 

stated 

4.3 Ma et al. 

(2002) 
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          2.34 GEOMETRIC 

MEAN 

          0.47
@

 VALUE USED 

IN SSD 

            

            

            

Chlorophyta Chlorophyceae Microalgae 

(Scenedesmus 

acutus) 

Not stated 8 Chronic EC50 

(Cell count) 

Inorganic 

medium 

23 Not 

stated 

13.29 Grossmann et 

al. (1992) 

          13.29 GEOMETRIC 

MEAN 

          2.67
@

 VALUE USED 

IN SSD 

Chlorophyta Chlorophyceae Microalgae 

(Scenedesmus 

obliquus) 

Not stated 4 Chronic EC50 

(Cell count) 

HB-4 media 25 Not 

stated 

4.09 Ma (2002) 

          4.09 GEOMETRIC 

MEAN 

          0.82
@

 VALUE USED 

IN SSD 

Chlorophyta Chlorophyceae Microalgae 

(Scenedesmus 

quadricauda) 

Not stated 4 Chronic EC50 

(Cell count) 

HB-4 media Not 

stated 

Not 

stated 

2.7 Ma et al. 

(2003) 

          2.7 GEOMETRIC 

MEAN 

          0.54
@

 VALUE USED 

IN SSD 

Chlorophyta Chlorophyceae Microalgae 

(Scenedesmus 

vacuolatus) 

Exponential 

growth 

phase 

2 Chronic EC50 

(Cell density) 

Not stated 25 Not 

stated 

14.3 Copin and 

Chevre (2015) 

          14.3 GEOMETRIC 

MEAN 

          2.86
@

 VALUE USED 

IN SSD 
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Chlorophyta Chlorophyceae Microalgae 

(Scenedesmus 

subspicatus
3
) 

Not stated 1 Acute NOEC 

(Cell count) 

Inorganic 

medium 

containing 

sucrose 

20 ± 2 Not 

stated 

7 Schafer et al. 

(1994) 

          7 GEOMETRIC 

MEAN 

Chlorophyta Chlorophyceae Microalgae 

(Scenedesmus 

subspicatus
3
) 

Not stated 3 Chronic NOEC 

(Cell count) 

Inorganic 

medium 

containing 

sucrose 

20 ± 2 Not 

stated 

10 Schafer et al. 

(1994) 

          10 GEOMETRIC 

MEAN 

          10 VALUE USED 

IN SSD 

Chlorophyta Chlorophyceae Microalgae 

(Scenedesmus 

subspicatus
3
) 

Not stated 3 Chronic EC50 

(Cell count) 

Inorganic 

medium 

containing 

sucrose 

20 ± 2 Not 

stated 

36 Schafer et al. 

(1994) 

          36 GEOMETRIC 

MEAN 

Chlorophyta Chlorophyceae Microalgae 

(Desmodesmus 

subspicatus) 

Not stated 3 Chronic EC50 

(Cell density) 

Inorganic 

medium 

containing 

sucrose 

23 ± 2 8 ± 1 46.3 Masojidek et 

al. (2011) 

          46.3 GEOMETRIC 

MEAN 

Chlorophyta Chlorophyceae Microalgae 

(Pseudokirchner

-iella 

subcapitata
4
) 

Not stated 3 Chronic EC50 

(Cell density) 

De-ionised 

water and 

growth 

medium 

(algaltoxkit) 

23 ± 2 8.1 ± 

0.2 

45 Mezcua et al. 

(2002) 

Chlorophyta Chlorophyceae Microalgae 

(Selenastrum 

capricornutum
4
) 

Exponential 

growth 

phase 

3 Chronic EC50 

(Cell density) 

Distilled water 

and algal 

growth 

medium 

(algaltoxkit) 

23 ± 2 8 ± 1 23,000 Fernandez-

Alba et al. 

(2002a) 

          149 GEOMETRIC 

MEAN 

Chlorophyta Chlorophyceae Microalgae Not stated 3 Chronic LOEC De-ionised 23 ± 2 8.1 ± 15 Mezcua et al. 



Proposed Ecosystem Protection Guideline Values for Diuron in Freshwater 

35 

(Pseudokirchner

-iella 

subcapitata
4
) 

(Cell density) water and 

growth 

medium 

(algaltoxkit) 

0.2 (2002) 

Chlorophyta Chlorophyceae Microalgae 

(Selenastrum 

capricornutum
4
) 

Exponential 

growth 

phase 

3 Chronic LOEC 

(Cell density) 

Distilled water 

and algal 

growth 

medium 

(algaltoxkit) 

23 ± 2 8 ± 1 45 Fernandez-

Alba et al. 

(2002b) 

          26 GEOMETRIC 

MEAN 

Chlorophyta Chlorophyceae Microalgae 

(Pseudokirchner

-iella 

subcapitata
4
) 

Not stated 4 Chronic EC50 

(Cell count) 

Not stated 25 - 

27 

7.6 - 

9.0 

36.4 Schrader et 

al. (1998) 

Chlorophyta Chlorophyceae Microalgae 

(Raphidocelis 

subcapitata
4
) 

Not stated 4 Chronic EC50 

(Cell count) 

HB-4 media 25 Not 

stated 

0.7 Ma et al. 

(2006) 

          5.05 GEOMETRIC 

MEAN 

Chlorophyta Chlorophyceae Microalgae 

(Selenastrum 

capricornutum
4
) 

Not stated 4 Chronic EC50 

(Biomass Yield, 

Growth Rate, 

AUC) 

ASTM Type 1 

water 

24 ± 2 7.5 ± 

0.1 

2.4 US EPA 

(2015a) 

          2.4 GEOMETRIC 

MEAN 

Chlorophyta Chlorophyceae Microalgae 

(Selenastrum 

capricornutum
4
) 

Not stated 4 Chronic NOEL 

(Biomass Yield, 

Growth Rate, 

AUC) 

ASTM Type 1 

water 

24 ± 2 7.5 ± 

0.1 

0.44 US EPA 

(2015a) 

          0.44 GEOMETRIC 

MEAN 

          0.44 VALUE USED 

IN SSD 

Chordata Actinopterygii Goldfish 

(Carassius 

auratus) 

Not stated 2 Acute LC50 

(Mortality) 

* * * 5,800 Nishiuchi and 

Hashimoto 

(1967) 

          5,800 GEOMETRIC 

MEAN 
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Chordata Actinopterygii Grass Carp 

(Ctenopharyngo

-don idella) 

1+ years 1 Acute LC50 

(Mortality) 

Dechlorinated 

tap water 

13.5 ± 

0.5 

8.1 47,000 Tooby et al. 

(1980) 

          47,000 GEOMETRIC 

MEAN 

Chordata Actinopterygii Grass Carp 

(Ctenopharyngo

-don idella) 

1+ years 2 Acute LC50 

(Mortality) 

Dechlorinated 

tap water 

13.5 ± 

0.5 

8.1 44,000 Tooby et al. 

(1980) 

          44,000 GEOMETRIC 

MEAN 

Chordata Actinopterygii Grass Carp 

(Ctenopharyngo

-don idella) 

1+ years 4 Acute LC50 

(Mortality) 

Dechlorinated 

tap water 

13.5 ± 

0.5 

8.1 31,000 Tooby et al. 

(1980) 

          31,000 GEOMETRIC 

MEAN 

Chordata Actinopterygii Common Carp 

(Cyprinus 

carpio) 

Not stated 2 Acute LC50 

(Mortality) 

* * * 3,200 Nishiuchi and 

Hashimoto 

(1967) 

          3,200 GEOMETRIC 

MEAN 

Chordata Actinopterygii Common Carp 

(Cyprinus 

carpio) 

Not stated 4 Acute LC50 

(Mortality) 

* * * 2,900 Knapek and 

Lakota (1974) 

          2,900 GEOMETRIC 

MEAN 

Chordata Actinopterygii Bluegill Sunfish 

(Lepomis 

macrochirus) 

Not stated 2 Acute LC50 

(Mortality) 

* * * 7,400 Cope (1965) 

          7,400 GEOMETRIC 

MEAN 

Chordata Actinopterygii Bluegill Sunfish 

(Lepomis 

macrochirus) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

water 

22 ± 2 6.0 - 

8.0 

3,200 US EPA 

(2015a) 

Chordata Actinopterygii Bluegill Sunfish 

(Lepomis 

macrochirus) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

22 ± 2 6.0 - 

8.0 

2,800 US EPA 

(2015a) 
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water 

Chordata Actinopterygii Bluegill Sunfish 

(Lepomis 

macrochirus) 

Not stated 4 Acute LC50 

(Mortality) 

Reconstituted 

water 

23.8 7.1 8,900 Macek et al. 

(1969) 

Chordata Actinopterygii Bluegill Sunfish 

(Lepomis 

macrochirus) 

Not stated 4 Acute LC50 

(Mortality) 

Reconstituted 

water 

23.8 7.1 5,900 Macek et al. 

(1969) 

Chordata Actinopterygii Bluegill Sunfish 

(Lepomis 

macrochirus) 

Not stated 4 Acute LC50  

(Mortality) 

Reconstituted 

water 

23.8 7.1 7,600 Macek et al. 

(1969) 

Chordata Actinopterygii Bluegill Sunfish 

(Lepomis 

macrochirus) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

water 

22 ± 2 6.0 - 

8.0 

84,000 US EPA 

(2015b) 

Chordata Actinopterygii Bluegill Sunfish 

(Lepomis 

macrochirus) 

Not stated 4 Acute LC50 

(Mortality) 

* * * 4,000 Cope (1965) 

Chordata Actinopterygii Bluegill Sunfish 

(Lepomis 

macrochirus) 

Not stated 4 Acute LC50 

(Mortality) 

Well water, 

reconstituted 

water 

18 ± 1 6.5 - 

8.5 

8,200 Johnson and 

Finley (1980) 

Chordata Actinopterygii Bluegill Sunfish 

(Lepomis 

macrochirus) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

water 

22 ± 2 6.0 - 

8.0 

3,200 US EPA 

(2015b) 

Chordata Actinopterygii Bluegill Sunfish 

(Lepomis 

macrochirus) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

water 

22 ± 2 6.0 - 

8.0 

2,800 US EPA 

(2015b) 

          6,231.35 GEOMETRIC 

MEAN 

Chordata Actinopterygii Striped Bass 

(Morone 

saxatilis) 

Not stated 2 Acute LC50 

(Mortality) 

* * * 8,000 Hughes 

(1973) 

Chordata Actinopterygii Striped Bass 

(Morone 

saxatilis) 

Not stated 2 Acute LC50 

(Mortality) 

* * * 500 Hughes 

(1973) 
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          2,000 GEOMETRIC 

MEAN 

Chordata Actinopterygii Striped Bass 

(Morone 

saxatilis) 

Not stated 3 Acute LC50 

(Mortality) 

* * * 500 Hughes 

(1973) 

Chordata Actinopterygii Striped Bass 

(Morone 

saxatilis) 

Not stated 3 Acute LC50 

(Mortality) 

* * * 6,000 Hughes 

(1973) 

          1,732.05 GEOMETRIC 

MEAN 

Chordata Actinopterygii Striped Bass 

(Morone 

saxatilis) 

Not stated 4 Acute LC50 

(Mortality) 

* * * 6,000 Hughes 

(1973) 

Chordata Actinopterygii Striped Bass 

(Morone 

saxatilis) 

Not stated 4 Acute LC50 

(Mortality) 

Distilled water 21 8.2 3,100 Wellborn 

(1969) 

Chordata Actinopterygii Striped Bass 

(Morone 

saxatilis) 

Not stated 4 Acute LC50 

(Mortality) 

* * * 500 Hughes 

(1973) 

          2,102.94 GEOMETRIC 

MEAN 

Chordata Actinopterygii Cutthroat Trout 

(Oncorhynchus 

clarkii) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

water 

12 ± 2 6.0 - 

8.0 

1,400 US EPA 

(2015a) 

Chordata Actinopterygii Cutthroat Trout 

(Oncorhynchus 

clarkii) 

Not stated 4 Acute LC50 

(Mortality) 

Well water, 

reconstituted 

water 

10 ± 1 6.5 - 

8.5 

1,400 Johnson and 

Finley (1980) 

Chordata Actinopterygii Cutthroat Trout 

(Oncorhynchus 

clarkii) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

water 

12 ± 2 6.0 - 

8.0 

710 US EPA 

(2015a) 

          1,116.45 GEOMETRIC 

MEAN 

Chordata Actinopterygii Coho Salmon 

(Oncorhynchus 

kisutch) 

Not stated 2 Acute LC50 

(Mortality) 

* * * 16,000 Hughes and 

Davis (1962) 
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          16,000 GEOMETRIC 

MEAN 

Chordata Actinopterygii Coho Salmon 

(Oncorhynchus 

kisutch) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

water 

12 ± 2 6.0 - 

8.0 

2,400 US EPA 

(2015a) 

          2,400 GEOMETRIC 

MEAN 

Chordata Actinopterygii Rainbow Trout 

(Oncorhynchus 

mykiss) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

water 

12 ± 2 6.0 - 

8.0 

1,950 US EPA 

(2015a) 

Chordata Actinopterygii Rainbow Trout 

(Oncorhynchus 

mykiss) 

Not stated 4 Acute LC50 

(Mortality) 

Well water, 

reconstituted 

water 

13 ± 1 6.5 - 

8.5 

4,900 Johnson and 

Finley (1980) 

Chordata Actinopterygii Rainbow Trout 

(Oncorhynchus 

mykiss) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

water 

12 ± 2 6.0 - 

8.0 

19,600 US EPA 

(2015b) 

Chordata Actinopterygii Rainbow Trout 

(Oncorhynchus 

mykiss) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

water 

12 ± 2 6.0 - 

8.0 

23,800 US EPA 

(2015b) 

Chordata Actinopterygii Rainbow Trout 

(Oncorhynchus 

mykiss) 

Not stated 4 Acute LC50 

(Mortality) 

Well water, 

reconstituted 

water 

13 ± 1 6.5 - 

8.5 

16,000 Johnson and 

Finley (1980) 

Chordata Actinopterygii Rainbow Trout 

(Oncorhynchus 

mykiss) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

water 

12 ± 2 6.0 - 

8.0 

16,000 US EPA 

(2015b) 

          10,222.35 GEOMETRIC 

MEAN 

Chordata Actinopterygii Rainbow Trout 

(Oncorhynchus 

mykiss) 

Juveniles 

(<24 hours 

after 

7 Acute LC50 

(Mortality) 

Dechlorinated 

tap water 

20 Not 

measu

red 

74,000 Okamura et 

al. (2002) 
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hatching) 

          74,000 GEOMETRIC 

MEAN 

Chordata Actinopterygii Rainbow Trout 

(Oncorhynchus 

mykiss) 

Juveniles 

(<24 hours 

after 

hatching) 

14 Acute LC50 

(Mortality) 

Dechlorinated 

tap water 

20 Not 

measu

red 

15,000 Okamura et 

al. (2002) 

          15,000 GEOMETRIC 

MEAN 

Chordata Actinopterygii Rainbow Trout 

(Oncorhynchus 

mykiss) 

Juveniles 

(<24 hours 

after 

hatching) 

21 Chronic LC50 

(Mortality) 

Dechlorinated 

tap water 

20 Not 

measu

red 

5,900 Okamura et 

al. (2002) 

          5,900 GEOMETRIC 

MEAN 

Chordata Actinopterygii Rainbow Trout 

(Oncorhynchus 

mykiss) 

Juveniles 

(<24 hours 

after 

hatching) 

28 Chronic LC50 

(Mortality) 

Dechlorinated 

tap water 

20 Not 

measu

red 

230 Okamura et 

al. (2002) 

          230 GEOMETRIC 

MEAN 

Chordata Actinopterygii Japanese Rice 

Fish  

(Oryzias latipes) 

Not stated 2 Acute LC50 

(Mortality) 

* * * 3,500 Nishiuchi and 

Hashimoto 

(1967) 

          3,500 GEOMETRIC 

MEAN 

Chordata Actinopterygii Rice Fish 

(Oryzias 

melastigma) 

Larvae 4 Acute LC50 

(Mortality) 

Culture 

medium 

prepared with 

filtered 

artificial 

seawater 

(FAS) 

25 ± 1 8.1 - 

8.4 

7,800 Bao et al. 

(2011) 

          7,800 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Adult 1 Acute LC50 

(Mortality) 

Lake Superior 

water 

24.3 ± 

0.8 

Not 

stated 

23,300 Call et al. 

(1987) 
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          23,300 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Adult 2 Acute LC50 

(Mortality) 

Lake Superior 

water 

24.3 ± 

0.8 

Not 

stated 

19,900 Call et al. 

(1987) 

          19,900 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Not stated 4 Acute LC50 

(Mortality) 

Lake water 25 ± 1 6.5 - 

8.0 

14,200 Geiger et al. 

(1986) 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Adult 4 Acute LC50 

(Mortality) 

Lake Superior 

water 

24.3 ± 

0.8 

Not 

stated 

14,200 Call et al. 

(1987) 

          14,200 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Embryo/ 

larval 

7 Chronic NOAEL 

(Mortality) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

8,300 Nebeker and 

Schuytema 

(1998) 

          8,300 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Embryo/ 

larval 

7 Chronic LOAEL 

(Mortality) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

15,100 Nebeker and 

Schuytema 

(1998) 

          15,100 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Embryo/ 

larval 

7 Chronic LC50  

(Mortality) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

11,700 Nebeker and 

Schuytema 

(1998) 

          11,700 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

Embryo/ 

larval 

7 Chronic NOAEL (Number 

of eggs hatched) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

31,200 Nebeker and 

Schuytema 

(1998) 



Department of Science, Information Technology and Innovation  

42 

promelas) 

          31,200 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Embryo/ 

larval 

7 Chronic NOAEL 

(Blotted wet 

weight) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

15,100 Nebeker and 

Schuytema 

(1998) 

          15,100 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Embryo/ 

larval 

7 Chronic NOAEL 

(Length) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

4,200 Nebeker and 

Schuytema 

(1998) 

          4,200 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Embryo/ 

larval 

7 Chronic LOAEL 

(Length) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

8,300 Nebeker and 

Schuytema 

(1998) 

          8,300 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Adult 8 Acute LC50 

(Mortality) 

Lake Superior 

water 

24.3 ± 

0.8 

Not 

stated 

7,700 Call et al. 

(1987) 

          7,700 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Juveniles 

(1.5 

months) 

10 Acute NOAEL 

(Mortality) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

20,000 Nebeker and 

Schuytema 

(1998) 

          20,000 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Juveniles 

(1.5 

months) 

10 Acute LOAEL 

(Mortality) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

27,100 Nebeker and 

Schuytema 

(1998) 

          27,100 GEOMETRIC 
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MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Juveniles 

(1.5 

months) 

10 Acute LC50 

(Mortality) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

27,100 Nebeker and 

Schuytema 

(1998) 

          27,100 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Juveniles 

(1.5 

months) 

10 Acute NOAEL 

(Weight) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

3,400 Nebeker and 

Schuytema 

(1998) 

          3,400 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Juveniles 

(1.5 

months) 

10 Acute LOAEL 

(Weight) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

3,400 Nebeker and 

Schuytema 

(1998) 

          3,400 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Juveniles 

(1.5 

months) 

10 Acute NOAEL 

(Length) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

3,400 Nebeker and 

Schuytema 

(1998) 

          3,400 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Juveniles 

(1.5 

months) 

10 Acute LOAEL 

(Length) 

0.45 µm 

filtered well 

water 

24 6.8 ± 

0.1 

3,400 Nebeker and 

Schuytema 

(1998) 

          3,400 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Early life 60 Chronic LOEC 

(Mortality) 

Dilution water 25 ± 2 Not 

stated 

61.8 US EPA 

(2015a) 

          61.8 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead Life cycle 64 Chronic NOEL Dilution water 25 ± 2 Not 26.4 US EPA 
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Minnow 

(Pimephales 

promelas) 

(Mortality) stated (2015a) 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Juveniles 64 Chronic NOEC 

(Mortality) 

Lake Superior 

water 

24.3 ± 

0.8 

Not 

stated 

33.4 Call et al. 

(1987) 

          29.69 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Juveniles 64 Chronic LOEC 

(Mortality) 

Lake Superior 

water 

24.3 ± 

0.8 

Not 

stated 

78 Call et al. 

(1987) 

          78 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Juveniles 64 Chronic NOEC 

(Hatchlings) 

Lake Superior 

water 

24.3 ± 

0.8 

Not 

stated 

29 Call et al. 

(1987) 

          29 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Juveniles 64 Chronic NOEC 

(Length) 

Lake Superior 

water 

24.3 ± 

0.8 

Not 

stated 

29 Call et al. 

(1987) 

          29 GEOMETRIC 

MEAN 

Chordata Actinopterygii Fathead 

Minnow 

(Pimephales 

promelas) 

Juveniles 64 Chronic NOEC 

(Wet weight) 

Lake Superior 

water 

24.3 ± 

0.8 

Not 

stated 

29 Call et al. 

(1987) 

          29 GEOMETRIC 

MEAN 

Chordata Actinopterygii Harlequin 

Rasbora 

(Rasbora 

heteromorpha) 

Not stated 2 Acute LC50 

(Mortality) 

* * * 190,000 Tooby et al. 

(1975) 

          190,000 GEOMETRIC 

MEAN 
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Chordata Actinopterygii Lake Trout 

(Salvelinus 

namaycush) 

Not stated 4 Acute LC50 

(Mortality) 

Clean surface 

or ground 

water, 

reconstituted 

water 

12 ± 2 6.0 - 

8.0 

1,200 US EPA 

(2015b) 

Chordata Actinopterygii Lake Trout 

(Salvelinus 

namaycush) 

Not stated 4 Acute LC50 

(Mortality) 

Well water, 

reconstituted 

water 

10 ± 1 7.2-

7.5 

2,700 Johnson and 

Finley (1980) 

          1,800 GEOMETRIC 

MEAN 

Chordata Actinopterygii Tench 

(Tinca tinca) 

Not stated 4 Acute LC50 

(Mortality) 

* * * 15,500 Knapek and 

Lakota (1974) 

          15,000 GEOMETRIC 

MEAN 

Chordata Amphibia Pacific Tree 

Frog 

(Pseudacris 

regilla) 

Embryo 10 Chronic NOEC 

(Mortality) 

Natural high-

quality, 

chlorine-free 

freshwater 

20 7.4 29,100 Schuytema 

and Nebeker 

(1998) 

          29,100 GEOMETRIC 

MEAN 

Chordata Amphibia Pacific Tree 

Frog 

(Pseudacris 

regilla) 

Embryo 14 Chronic NOEC 

(Length) 

Natural high-

quality, 

chlorine-free 

freshwater 

20 7.4 29100 Schuytema 

and Nebeker 

(1998) 

Chordata Amphibia Pacific Tree 

Frog 

(Pseudacris 

regilla) 

Larvae 14 Chronic NOEC 

(Length) 

Natural high-

quality, 

chlorine-free 

freshwater 

20 7.4 14,500 Schuytema 

and Nebeker 

(1998) 

          20,541.42 GEOMETRIC 

MEAN 

Chordata Amphibia Pacific Tree 

Frog 

(Pseudacris 

regilla) 

Larvae 14 Chronic NOEC 

(Wet weight) 

Natural high-

quality, 

chlorine-free 

freshwater 

20 7.4 29,100 Schuytema 

and Nebeker 

(1998) 

          29,100 GEOMETRIC 

MEAN 

Chordata Amphibia Pacific Tree 

Frog 

(Pseudacris 

Larvae 14 Chronic NOEC 

(Dry weight) 

Natural high-

quality, 

chlorine-free 

20 7.4 21,000 Schuytema 

and Nebeker 

(1998) 
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regilla) freshwater 

          21,000 GEOMETRIC 

MEAN 

Chordata Amphibia Pacific Tree 

Frog 

(Pseudacris 

regilla) 

Larvae 14 Chronic LC50 

(Mortality) 

Natural high-

quality, 

chlorine-free 

freshwater 

20 7.4 10,800 Schuytema 

and Nebeker 

(1998) 

Chordata Amphibia Pacific Tree 

Frog 

(Pseudacris 

regilla) 

Larvae 14 Chronic LC50 

(Mortality) 

Natural high-

quality, 

chlorine-free 

freshwater 

20 7.4 19,600 Schuytema 

and Nebeker 

(1998) 

          14,549.23 GEOMETRIC 

MEAN 

Chordata Amphibia Northern Red-

legged Frog 

(Rana aurora) 

Larvae 14 Chronic NOEC 

(Wet weight) 

Natural high-

quality, 

chlorine-free 

freshwater 

20 7.4 7,600 Schuytema 

and Nebeker 

(1998) 

          7,600 GEOMETRIC 

MEAN 

Chordata Amphibia Northern Red-

legged Frog 

(Rana aurora) 

Larvae 14 Chronic LC50 

(Mortality) 

Natural high-

quality, 

chlorine-free 

freshwater 

20 7.4 22,200 Schuytema 

and Nebeker 

(1998) 

          22,200 GEOMETRIC 

MEAN 

Chordata Amphibia American 

Bullfrog  

(Rana 

catesbeiana) 

Larvae 10 Chronic NOEC  

(Dry weight) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 7,600 Schuytema 

and Nebeker 

(1998) 

          7,600 GEOMETRIC 

MEAN 

Chordata Amphibia American 

Bullfrog  

(Rana 

catesbeiana) 

Larvae 10 Chronic NOEC 

(Wet weight) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 14,500 Schuytema 

and Nebeker 

(1998) 

          14,500 GEOMETRIC 

MEAN 

Chordata Amphibia American Larvae 10 Chronic NOEC Natural high- 24 7.4 14,500 Schuytema 
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Bullfrog  

(Rana 

catesbeiana) 

(Length) quality, 

chlorine-free 

freshwater 

and Nebeker 

(1998) 

          14,500 GEOMETRIC 

MEAN 

Chordata Amphibia American 

Bullfrog  

(Rana 

catesbeiana) 

Larvae 10 Chronic LC50 

(Mortality) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 29,100 Schuytema 

and Nebeker 

(1998) 

          29,100 GEOMETRIC 

MEAN 

Chordata Amphibia American 

Bullfrog  

(Rana 

catesbeiana) 

Larvae 14 Chronic NOEC 

(Dry weight) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 14,500 Schuytema 

and Nebeker 

(1998) 

          14,500 GEOMETRIC 

MEAN 

Chordata Amphibia American 

Bullfrog  

(Rana 

catesbeiana) 

Larvae 14 Chronic NOEC 

(Length) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 14,500 Schuytema 

and Nebeker 

(1998) 

          14,500 GEOMETRIC 

MEAN 

Chordata Amphibia American 

Bullfrog  

(Rana 

catesbeiana) 

Larvae 14 Chronic NOEC 

(Wet weight) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 21,100 Schuytema 

and Nebeker 

(1998) 

          21,100 GEOMETRIC 

MEAN 

Chordata Amphibia American 

Bullfrog  

(Rana 

catesbeiana) 

Larvae 14 Chronic LC50 

(Mortality) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 29,100 Schuytema 

and Nebeker 

(1998) 

          29,100 GEOMETRIC 

MEAN 

Chordata Amphibia American 

Bullfrog  

(Rana 

catesbeiana) 

Larvae 21 Chronic NOEC 

(Dry weight) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 7,600 Schuytema 

and Nebeker 

(1998) 
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          7,600 GEOMETRIC 

MEAN 

Chordata Amphibia American 

Bullfrog  

(Rana 

catesbeiana) 

Larvae 21 Chronic NOEC 

(Wet weight) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 29,100 Schuytema 

and Nebeker 

(1998) 

          29,100 GEOMETRIC 

MEAN 

Chordata Amphibia American 

Bullfrog  

(Rana 

catesbeiana) 

Larvae 21 Chronic NOEC 

(Length) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 29,100 Schuytema 

and Nebeker 

(1998) 

          29,100 GEOMETRIC 

MEAN 

Chordata Amphibia American 

Bullfrog 

(Rana 

catesbeiana) 

Larvae 21 Chronic LC50 

(Mortality) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 12,700 Schuytema 

and Nebeker 

(1998) 

          12,700 GEOMETRIC 

MEAN 

Chordata Amphibia African Clawed 

Frog  

(Xenopus 

laevis) 

Embryo 4 Acute NOEC 

(Dry Weight) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 21,100 Schuytema 

and Nebeker 

(1998) 

Chordata Amphibia African Clawed 

Frog  

(Xenopus 

laevis) 

Embryo 4 Acute NOEC 

(Dry Weight) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 14,500 Schuytema 

and Nebeker 

(1998) 

          17,491.43 GEOMETRIC 

MEAN 

Chordata Amphibia African Clawed 

Frog  

(Xenopus 

laevis) 

Embryo 4 Acute NOEC 

(Length) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 7,600 Schuytema 

and Nebeker 

(1998) 

Chordata Amphibia African Clawed 

Frog  

(Xenopus 

laevis) 

Embryo 4 Acute NOEC 

(Length) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 14,500 Schuytema 

and Nebeker 

(1998) 

          10,497.62 GEOMETRIC 
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MEAN 

Chordata Amphibia African Clawed 

Frog  

(Xenopus 

laevis) 

Larvae 4 Chronic LC50 

(Mortality) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 29,100 Schuytema 

and Nebeker 

(1998) 

          29,100 GEOMETRIC 

MEAN 

Chordata Amphibia African Clawed 

Frog  

(Xenopus 

laevis) 

Embryo 14 Chronic NOEC 

(Dry Weight) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 29,100 Schuytema 

and Nebeker 

(1998) 

          29,100 GEOMETRIC 

MEAN 

Chordata Amphibia African Clawed 

Frog  

(Xenopus 

laevis) 

Embryo 14 Chronic NOEC 

(Length) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 29,100 Schuytema 

and Nebeker 

(1998) 

          29,100 GEOMETRIC 

MEAN 

Chordata Amphibia African Clawed 

Frog  

(Xenopus 

laevis) 

Larvae 14 Chronic LC50 

(Mortality) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 8,100 Schuytema 

and Nebeker 

(1998) 

Chordata Amphibia African Clawed 

Frog  

(Xenopus 

laevis) 

Larvae 14 Chronic LC50 

(Mortality) 

Natural high-

quality, 

chlorine-free 

freshwater 

24 7.4 14,500 Schuytema 

and Nebeker 

(1998) 

          10,837.44 GEOMETRIC 

MEAN 

Cyanobacteria Cyanophyceae Cyanobacteria 

(Anabaena 

variabilis) 

Not stated 12 Chronic EC50 

(Growth 

Rate/Chlorophyll

-a fluorescence) 

BG11 medium 25 ± 1 Not 

stated 

80 Singh et al. 

(2011) 

          80 GEOMETRIC 

MEAN 

          16
@

 VALUE USED 

IN SSD 

Cyanobacteria Cyanophyceae Cyanobacteria <10 days 7 Chronic EC50 MN medium 25 ± 1 8.1 - 4.7 Bao et al. 
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(Chroococcus 

minor) 

(Cell density) without 

inoculants, 

0.45 µm 

filtered 

8.4 (2011) 

          4.7 GEOMETRIC 

MEAN 

          0.94
@

 VALUE USED 

IN SSD 

Mollusca Gastropoda Freshwater 

Snail  

(Physa gyrina) 

15 day old 

young 

10 Acute NOAEL 

(Mortality) 

0.45 µm 

filtered well 

water 

23 6.8 ± 

0.1 

29,100 Nebeker and 

Schuytema 

(1998) 

          29,100 GEOMETRIC 

MEAN 

Mollusca Gastropoda Freshwater 

Snail  

(Physa gyrina) 

15 day old 

young 

10 Acute NOAEL 

(Blotted wet 

weight) 

0.45 µm 

filtered well 

water 

23 6.8 ± 

0.1 

13,400 Nebeker and 

Schuytema 

(1998) 

          13,400 GEOMETRIC 

MEAN 

Mollusca Gastropoda Freshwater 

Snail  

(Physa gyrina) 

15 day old 

young 

10 Acute LOAEL 

(Blotted wet 

weight) 

0.45 µm 

filtered well 

water 

23 6.8 ± 

0.1 

22,800 Nebeker and 

Schuytema 

(1998) 

          22,800 GEOMETRIC 

MEAN 

Tracheophyta Liliopsida Macrophyte 

(Lemna 

aequinoctialis) 

Not stated 4 Acute EC10 

(Frond count) 

0.45 mm 

filtered 

distilled water, 

autoclaved 

and Hoagland 

No. 2 Basal 

Salt Mixture 

30 ± 1 6 ± 

0.2 

2.79 Seery et al. (in 

prep.) 

          2.79 GEOMETRIC 

MEAN 

Tracheophyta Liliopsida Macrophyte 

(Lemna 

aequinoctialis) 

Not stated 4 Acute EC50 

(Frond count) 

0.45 mm 

filtered 

distilled water, 

autoclaved 

and Hoagland 

No. 2 Basal 

Salt Mixture 

30 ± 1 6 ± 

0.2 

5.55 Seery et al. (in 

prep.) 
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          5.55 GEOMETRIC 

MEAN 

Tracheophyta Liliopsida Macrophyte 

(Lemna gibba) 

Not stated 7 Chronic NOEL 

(Total frond 

number/Growth 

rate/Mortality) 

M-Hoaglands 

or 20X-AAP 

nutrient 

media. ASTM 

type 1 water 

25 ± 2 4.8 - 

5.2 

(M-

Hoagl-

ands) 

and 

7.5 ± 

0.1 

20X-

AAP). 

2.49 USEPA 

(2015) 

          2.49 GEOMETRIC 

MEAN 

          2.49 VALUE USED 

IN SSD 

Tracheophyta Liliopsida Macrophyte 

(Lemna gibba) 

Not stated 7 Chronic EC50 

(Total frond 

number/Growth 

rate/Mortality) 

M-Hoaglands 

or 20X-AAP 

nutrient 

media. ASTM 

type 1 water 

25 ± 2 4.8 - 

5.2 

(M-

Hoagl-

ands) 

and 

7.5 ± 

0.1 

20X-

AAP). 

13 USEPA 

(2015) 

          13 GEOMETRIC 

MEAN 

Tracheophyta Liliopsida Macrophyte 

(Lemna minor) 

Not stated 7 Chronic LOEC 

(Total 

chlorophyll) 

Mineral 

medium 

25 ± 1 Not 

stated 

5 Teisseire et 

al. (1999) 

          5 GEOMETRIC 

MEAN 

Tracheophyta Liliopsida Macrophyte 

(Lemna minor) 

Not stated 7 Chronic EC50 

(Total 

chlorophyll) 

Mineral 

medium 

25 ± 1 Not 

stated 

25 Teisseire et 

al. (1999) 

          25 GEOMETRIC 

MEAN 
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          3.16
&
 VALUE USED 

IN SSD 

Tracheophyta Liliopsida Macrophyte 

(Lemna minor) 

Not stated 7 Chronic EC50 

(Frond count) 

Not stated 24 ± 1 6.5 ± 

0.2 

28.3 Gatidou et al. 

(2015) 

          26.6 GEOMETRIC 

MEAN 

Tracheophyta Liliopsida Macrophyte 

(Lemna 

paucicostata) 

Not stated 8 Chronic EC50 

(Frond cover 

area) 

Inorganic 

medium 

containing 

sucrose 

25 Not 

stated 

10.96 Grossmann et 

al. (1992) 

          10.96 GEOMETRIC 

MEAN 

          2.19
@

 VALUE USED 

IN SSD 

* Data were obtained from the USEPA (2015) Office of Pesticide Programs Database, with methods originating from various published studies which were unattainable, 

therefore detail of media, temperature and pH for those entries were unavailable. It is important to note that the USEPA (2015) follows strict quality assurance and quality check 

procedures within their organisation to ensure only high quality ecotoxicology data are reported. It was therefore assumed the data were the equivalent of either high or 

acceptable quality and were therefore usable in the derivation of guideline values for diuron. 
1
 This species has also been called Ulnaria ulna. 

2
 This species has also been called Chlorella vulgaris and Chlorella pyrenoidosa. 

3 
This species has also been called 

Desmodesmus subspicatus. 
4
 This species has also been called Raphidocelis subcapitata and Pseudokirchneriella subcapitata. 

@
 Values were chronic EC/LC50 values that 

were converted to chronic NOEC/EC10 values by dividing by 5 (Warne et al. 2015). 
&
 Value was the geometric mean of chronic LOEC and EC50 values that were converted to 

chronic NOEC/EC10 values by 2.5 and 5, respectively (Warne et al. 2015). 
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Attachment B. Distribution of sensitivities for aquatic 

species used in SSD 

The toxicity data for diuron to all freshwater and marine species that passed the screening and 

quality assessment schemes were combined to create a larger dataset to determine the modality 

of the data. All the data that were not chronic NOEC or EC10 values were first converted to this 

type of data using the methods recommended by Warne et al. (2015). A natural logarithmic (ln) 

transformation was then applied to normalise the data. Visual examination of the histogram of the 

transformed data indicated that the distribution of the diuron ecotoxicity data may be bimodal 

(Figure 3). 

Figure 3 Histogram of the natural logarithm (ln) of all diuron (freshwater and marine) toxicity data for 
phototrophic and non-phototrophic species (n = 103). 

The diuron ecotoxicity data for phototrophic and non-phototrophic species were tested to see if 

they came from the same population. To test for significant differences (i.e. p-value ≤ 0.05) 

between the two groups, the parametric two-sample t test was used as the transformed diuron 

toxicity data had equal variances (Fisher’s F-Test; p = 0.551) but did not follow a normal 

distribution (Anderson-Darling; p < 0.000). Results from the two-sample t test indicated that the two 

groups were significantly different (p = <0.0001), therefore it can be concluded that the distribution 

of the diuron concentration data is bi- or multi-modal.  
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