Department of Transport and Main Roads: **Coomera Connector Stage 1** EPBC 2020/8646 Offset Area Management Plan

28 June 2024 Date:

Prepared for: Queensland Department of Transport and Main Roads

Our Reference: 20222460F

Environmental Offset Solutions Pty Ltd

trading as Earthtrade REGISTERED ADDRESS Level 11, 309 Queen St Brisbane QLD 4000

ACN: 128 110 976 ABN: 87 128 110 976

POSTAL ADDRESS PO Box 1069

Hervey Bay QLD

4655

Tel: 1300 036 401

alan.key@earthtrade.com.au

www.earthtrade.com.au

DOCUMENT CONTROL						
Version No	Date	Revision details	Prepared by	Approved by		
А	17 November 2022	Review and released to TMR for review		Alan Key		
В	10 December 2022	Updated to incorporate TMR comments and released to TMR	David Sasse Steve Lyngcoln Alan Key	Alan Key		
С	7 April 2023	Updated to incorporate EPBC approval conditions	David Sasse	Alan Key		
D	28 April 2023	Updated to incorporate TMR comments	David Sasse	Alan Key		
E	12 May 2023	Updated to incorporate further TMR comments	David Sasse	Alan Key		
F	2 October 2023	Updated property areas to be consistent with DAMP forms	David Sasse	Alan Key		
G	15 February 2024	Updated to incorporate DCCEEW comments	David Sasse	Alan Key		
Н	28 June 2024	Updated to incorporate DCCEEW comments	TMR Environmental Officer			

ACKNOWLEDGEMENTS AND DISCLAIMER

This report should be cited as: Department of Transport and Main Roads: Coomera Connector Stage 1 EPBC 2020/8646 – Offset Area Management Plan

ACKNOWLEDGEMENTS:

This document has been prepared by Environmental Offset Solutions Pty Ltd t/a Earthtrade with support from Queensland Department of Transport and Main Roads (TMR).

DISCLAIMER:

This document may only be used for the purpose for which it was commissioned and in accordance with the contract between Environmental Offsets Solutions Pty Ltd and TMR. The scope of services was defined in consultation with TMR by time and budgetary constraints imposed by the client, and the availability of reports and other data on the subject area. Changes to available information, legislation and schedules are made on an ongoing basis and readers should obtain up to date information.

Environmental Offsets Solutions Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. Information provided is not intended to be a substitute for site specific assessment or legal advice in relation to any matter. Unauthorised use of this report in any form is prohibited.

TRADEMARK:

The Earthtrade logo is a registered trademark and may not be used in any form of publication whatsoever without consent from the trademark owner.

Accessibility statement

Contact us for alternate accessible formats. Please telephone 1800 568 978 or email coomeraconnector@tmr.qld.gov.au. This information can also be found on our website www.tmr.qld.gov.au/coomeraconnector.

Table of contents

De	eclaratio	n	6
Ε×	cecutive	summary	7
1	Introd	uction	11
	1.1	Action description	11
	1.2	Purpose and objectives of this management plan	11
	1.2.1	Significant residual impacts to protected matters	11
	1.2.2	Approval conditions related to offset requirements and delivery	12
	1.3	Commitments made in the OAMP	19
	1.4	OAMP structure	20
2	EPB(Act Environmental Offsets Policy and framework	21
	2.1	Policy principles	21
	2.2	Addressing relevant EPBC plans and advice	23
3	Offse	t properties	30
	3.1	Overview of the offset properties	30
	3.1.1	Tabooba	30
	3.1.2	Greenridge	35
	3.2	Suitability of the offset properties	36
	3.3	Coastal swamp oak TEC – offset requirements and attributes	40
	3.3.1	Coastal swamp oak TEC – habitat requirements	40
	3.3.2	Field survey methodology for coastal swamp TEC offset areas	41
	3.3.3	Field survey results for coastal swamp TEC offset areas	41
	3.3.4	Ecological benefits of the proposed coastal swamp oak TEC offsets	42
	3.3.5	OAG inputs for coastal swamp oak TEC	43
	3.4	Koala habitat – offset requirements and attributes	46
	3.4.1	Koala habitat requirements	46
	3.4.2	Field survey methodology for koala offset areas	46
	3.4.3	Field survey results for koala offset areas	48
	3.4.4	Ecological benefits of the proposed koala offsets	49
	3.4.5	OAG inputs for koala offsets	51
	3.5	Grey-headed flying-fox - offset site requirements and attributes	55
	3.5.1	Grey-headed flying fox habitat requirements	55
	3.5.2	Field survey methodology for GHFF offset areas	55
	3.5.3	Field survey results for GHFF offset areas	57
	3.5.4	Ecological benefits of the proposed GHFF offsets	57
	3.5.5	OAG inputs for GHFF offsets	58
4	Analy	sis of risks to achieving management objectives and offset completion criteria	60
5	Offse	t management measures	67
	5.1	Responsible parties	81

T 5	e20 le marganay procedures	81
6	Offset completion criteria and performance targets	81
7	Offset site management and protection additional to those that currently exist	84
8	Monitoring and reporting	85
9	Legally binding mechanism	96
10	Adaptive management and plan review	96
11	Conclusion	97
List	of abbreviations	99
Glo	ssary	100
Ref	erence list	102
App	pendix A: Field survey methodology	106
App	pendix B: Pest animal control Standard Operating Procedures	110
App	pendix C: Coastal swamp oak TEC revegetation plan	111
App	pendix D: Pasture photo standards – SEQ (basalt)	119
App	pendix E: Impact site field survey data – coastal swamp oak TEC	121
Δ	Appendix E1: Coastal swamp oak TEC raw data	121
Δ	Appendix E2: Coastal swamp oak TEC summarised HQS data	121
App	pendix F: Impact site field survey data – koala habitat	122
Δ	Appendix F1: Koala habitat raw data	122
Δ	Appendix F2: Koala habitat summarised HQS data	122
App	pendix G: Impact site field survey data – GHFF habitat	123
Δ	Appendix G1: GHFF habitat raw data	123
Δ	Appendix G2: GHFF habitat summarised HQS data	123
App	pendix H: Tabooba BioCondition data	124
App	pendix I: Greenridge BioCondition data	125
App	oendix J: Offset HQS tables coastal swamp oak TEC	126
App	oendix K: Offset HQS tables koala habitat	127
App	pendix L: Offset HQS tables GHFF habitat	128
App	pendix M: OAG outputs coastal swamp oak TEC	129
App	oendix N: OAG outputs koala habitat	130
App	pendix O: OAG outputs GHFF habitat	131

Index of figures

Figure 1: Action location and route	10
Figure 2: Tabooba location and topography map	
Figure 3: Tabooba – RE and Koala habitat mapping	
Figure 4: Tabooba – biodiversity corridors	
Figure 5: Greenridge location map	
Figure 6: Greenridge – RE and Koala habitat mapping and biodiversity corridors	
Figure 7: Greenridge – biodiversity corridors	
Figure 8: Coastal Swamp Oak TEC offset area - Greenridge	
Figure 9: Tabooba – Koala and Grey-headed Flying-fox offset area	
Figure 10: Greenridge – Koala and Grey-headed Flying-fox offset area	
Figure 11: Monitoring sites -Tabooba	
Figure 12: Monitoring sites - Greenridge	95
Index of tables	
Table 1: Summarised action impacts versus proposed offset area values	9
Table 2: EPBC approval conditions for offsets addressed in this document	14
Table 3: Commitments made in this OAMP	19
Table 4: EPBC Act Environmental Offset Policy principles	21
Table 5: Conservation Advice and Threat Abatement Plans addressed in the OAMP	24
Table 6: Coastal swamp oak TEC at the offset site	42
Table 7: Koala habitat at the offset sites	51
Table 8: Grey-headed Flying-fox habitat at the offset sites	58
Table 9: Risk matrix	
Table 10: Risk assessment for the terrestrial offset sites at Tabooba	
Table 11: Risk assessment for the terrestrial offset sites at Greenridge	64
Table 12: Tabooba offsets - management actions, triggers and corrective actions	
Table 13: Greenridge offsets - management actions, triggers and corrective actions	
Table 14: Tabooba offsets fire management strategy	
Table 15: Greenridge offsets fire management strategy	
Table 16: Interim targets and completion criteria	
Table 17: Biosecurity Act 2014 (Qld) obligations	
Table 18: Monitoring schedule and methodology to be used	
Table 19: Reporting schedule	
Table 20: Monitoring sites	

Declaration

I declare that to the best of my knowledge, all the information contained in, or accompanying this document is complete, current and correct. I am duly authorised to sign this declaration on behalf of the proponent/approval holder. I am aware that:

- a. section 490 of the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act) makes it an offence for an approval holder to provide information in response to an approval condition where the person is reckless as to whether the information is false or misleading.
- b. section 491 of the EPBC Act makes it an offence for a person to provide information or documents to specified persons who are known by the person to be performing a duty or carrying out a function under the EPBC Act or the Environment Protection and Biodiversity Conservation Regulations 2000 (Cth) where the person knows the information or document is false or misleading.
- c. the above offences are punishable on conviction by imprisonment, a fine or both.

Signed:

Andrew Wheeler 2024.07.05

09:40:41 +10'00'

Full name: Andrew Wheeler

Organisation: Queensland Department of Transport and Main Roads

EPBC Referral Number: EPBC 2020/8646

EPBC Offset Area Management Plan

Date: 5 / 7 /2024

Executive summary

The Coomera Connector Stage One (1) Project (the **action**) involves the construction and operation of a new 16 kilometre (**km**) high-speed arterial road between Shipper Drive, Coomera and Nerang-Broadbeach Road, Nerang, in the northern Gold Coast region in Queensland. The proponent for the action is the Queensland Department of Transport and Main Roads (**TMR**).

By constructing additional crossings of the Coomera and Nerang rivers, the action will reduce pressure on the Pacific Motorway (**M1**) by providing an alternative route for the growing communities and commercial hubs of Helensvale and Coomera. The approval has been given for the ultimate 6-lane motorway; however, the action (see *Figure 1*) will initially be built to 4 lanes to meet medium-term traffic needs with upgrading when required. Key major structures will be future-proofed to 6 lanes, to help minimise future construction impacts to adjacent residents and the travelling public.

The action was assessed as being a controlled action by the Australian Government (DAWE, August 2020).¹ The action has been granted approval under the *Environment Protection and Biodiversity Conservation Act 1999* (Cth) (**EPBC Act**). The EPBC Act approval conditions were issued by the Department of Climate Change, Energy, the Environment and Water (**DCCEEW**) on 17 March 2023.

An Offset Strategy (**OS**) for the action was prepared by Biodiversity Assessment and Management Pty Ltd (**BAAM**) and submitted to DCCEEW in October 2022 (Appendix 15 of the Public Environment Report (**PER**)) and was deemed adequate on 1 December 2022. The PER and OS (BAAM, 2022, *Coomera Connector Stage 1 Offset Strategy - EPBC 2020/8646: Offsets for Coastal Swamp Oak TEC, Koala and Grey-headed Flying-fox*) quantified the impacts of the action to Matters of National Environmental Significance (**MNES**), identified the proposed offset sites, and also described the proposed offset outcomes and environmental gains from the proposed offsets. The OS detailed the survey methods and results for both the impact and offset areas. On that basis, the OS demonstrated that the proposed offsets will be adequate to compensate for the action's impacts on MNES and meet the requirements of the EPBC Act Environmental Offsets Policy (**EOP**). As was required by the PER Guidelines by the now DCCEEW, the precautionary principle was applied and discussed in the executive summary on page 17 and in section 13.11.1 on page 552 of the PER as approved by the Delegate. This assessment included all baseline data, impact assessment and offsets (including Offset Strategy – Appendix 15) as required by the Public Environment Report Guidelines.

The EPBC Act approval conditions require TMR to prepare an Offset Area Management Plan (**OAMP**) for the approval of the Minister. This document is the OAMP for the action that has been prepared to meet all offset obligations and for MNES proposed to be impacted by the action. This OAMP is based on the approved Offset Strategy.

Impacts to MNES requiring offsets include one threatened ecological community (**TEC**), being the endangered Coastal Swamp Oak (*Casuarina glauca*) Forest of New South Wales and South East Queensland ecological community (**Coastal Swamp Oak TEC**), and to habitat for both Koala (*Phascolarctos cinereus*) and Grey-headed Flying-fox (*Pteropus poliocephalus* - **GHFF**). The GHFF is listed as vulnerable under the EPBC Act. The Koala's EPBC Act listing was upgraded to endangered in February 2022 (Koala was listed as vulnerable at the time of the controlled action

 $^{^{1}\, \}text{EPBC Approvals register, at} \, \underline{\text{http://epbcnotices.environment.gov.au/}} \, \underline{\text{entity/annotation/965239af-e553-ec11-80d2-00505684c563/a71d58ad-4cba-48b6-8dab-f3091fc31cd5?t=1662596424011}} \, \underline{\text{entity/annotation/965239af-e553-ec11-80d2-00505684c563/a71d58ad-4cba-48b6-8dab-f3091fc31cd5?t=1662596424011}} \, \underline{\text{entity/annotation/965239af-e553-ec11-8dab-f3091fc31cd5?t=1662596424011}} \, \underline{\text{entity/annotation/965239af-e553-ec11-8dab-f3091fc31cd5}} \, \underline{\text{entity/annotation/965239af-e553-ec11-8dab-f3091fc31cd5}} \, \underline{\text{entity/annotatio$

decision; however both the PER and OS assessed the species as being endangered). An overview of the impacts to each MNES and the resultant offset requirements are summarised in *Table 1*.

The offsets will be located on two properties that are owned by TMR, known as 'Tabooba' which is located approximately 16 km south of Beaudesert in the Scenic Rim Regional Council local government area (**LGA**), and 'Greenridge' which is located in Pimpama, 3.5 km north-east of the northern extent of the action, within the Gold Coast City Council LGA. The offsets for the Coastal Swamp Oak TEC will be located at Greenridge, and offsets for Koala and GHFF will be located at both properties.

This OAMP demonstrates that the offset areas are suitable to meet all the EOP requirements and approval conditions. This OAMP has been prepared to meet all offset obligations as detailed in the OS. TMR commits to the implementation of this OAMP.

Table 1: Summarised action impacts versus proposed offset area values

MNIES	EPBC status	Impact area (ha)	Impact site quality (- /10)	Impact quantum	Offset property	Offset Area	Offset start quality (- /10)		Quality with offset (- /10)	Offset quantum and % of liability provided
					Greenridge	Remnant RE 12.1.1 AU1: 14.2 ha	8	7	9	17.47%
					Greenridge	Regrowth RE 12.1.1 AU2: 5.16 ha	7	7	9	5.67%
Coastal swamp	END	15.9*	8	12.72	Greenridge	Non-remnant (cleared) RE 12.1.1 AU3: 22.03 ha	3	3	6	34.98%
oak TEC	END	15.9	0	12.72	Greenridge	Remnant RE 12.3.20 AU4: 28.22 ha	8	7	9	34.71%
					Greenridge	Regrowth RE 12.3.20 AU5: 4.74 ha	7	7	9	5.23%
					Greenridge	Non-remnant RE 12.3.20 AU6: 12.48 ha	2	2	9	41.96%
Total area	of coas	tal swam		C offset at Greenridge		86.83 ha				143.91%
					Tabooba	Remnant RE 12.8.16 AU1: 49.84 ha	8	8	9	8.78%
					Tabooba	Advanced regrowth RE 12.8.16 AU2: 145.02 ha	6	6	8	48.46%
					Tabooba	Young regrowth RE 12.8.16 AU3: 48.1 ha	4	3	7	30.73%
Phascolarctos cinereus	VUL#	73.81	7	51.67	Tabooba	Remnant RE 12.8.14 AU4: 50.62 ha	8	8	8	0.75%
koala	VOL	75.61	,	31.07	Tabooba	Advanced regrowth AU5: 19.8 ha	7	6	8	6.62%
					Greenridge	Remnant RE 12.3.20 AU4: 28.22 ha	8	8	8	0.42%
					Greenridge	Regrowth RE 12.3.20 AU5: 4.74 ha	7	7	9	1.56%
					Greenridge	Non-remnant RE 12.3.20 AU6: 12.48 ha	4	4	7	5.91%
Total	area of	koala off		booba and Freenridge		358.82 ha				103.23%
					Tabooba	Remnant RE 12.8.16 AU1: 49.84 ha	6	6	6	0.60%
					Tabooba	Advanced regrowth 12.8.16 AU2: 145.02 ha	5	5	7	76.58%
					Tabooba	Young regrowth RE 12.8.16 AU3: 48.1 ha	5	1	6	40.98%
Pteropus poliocephalus	VUL	68.76	7	48.13	Tabooba	Remnant RE 12.8.14 AU4: 50.62 ha	6	6	7	9.38%
grey-headed flying-fox	702	00.70	,	10.10	Tabooba	Advanced regrowth RE 12.8.14 AU5: 19.8 ha	5	5	6	3.63%
					Greenridge	Remnant RE 12.3.20 AU4: 28.22 ha	6	6	7	5.23%
					Greenridge	Regrowth RE 12.3.20 AU5: 4.74 ha	6	6	6	0.06%
					Greenridge	Non-remnant RE 12.3.20 AU6: 12.48 ha	2	2	7	10.59%
Total are	ea of gre			ox offset at Greenridge		358.82 ha				147.05%
Includes functions	al loss of	0 928 ha								

^{*}Includes functional loss of 0.928 ha

^{*}The EPBC conservation status of the Koala was upgraded to endangered in February 2022; however, at the time of the controlled action decision for the action, the Koala was listed as vulnerable.

Figure 1: Action location and route

1 Introduction

1.1 Action description

The Coomera Connector Stage 1 (**the action** - see *Figure 1*) involves the construction and operation of a new 16 km high-speed arterial road between Shipper Drive, Coomera and Nerang-Broadbeach Road, Nerang, in the northern Gold Coast region in Queensland. The proponent for the action is the Queensland Department of Transport and Main Roads (**TMR**).

By constructing additional crossings of the Coomera and Nerang rivers, the action will reduce pressure on the Pacific Motorway (**M1**) by providing an alternative route for the growing communities and commercial hubs of Helensvale and Coomera. The corridor is wide enough for an ultimate 6-lane motorway. The 16 km Stage 1 route will be built to 4 lanes to meet medium-term traffic needs. Key major structures will be future-proofed to 6 lanes, to help minimise future construction impacts to adjacent residents and the travelling public.

As the action is the construction and operation of a permanent road corridor, it requires the permanent removal of habitat within the action corridor (impact area).

1.2 Purpose and objectives of this management plan

The purpose of this OAMP is to address the requirements of EPBC 2020/8646 approval conditions dated 17 March 2023 relating to MNES offset requirements and offset delivery.

1.2.1 Significant residual impacts to protected matters

The EPBC approval provides for the clearing of 15.928 ha of coastal swamp oak TEC, 73.8 ha of koala habitat (consisting of 68.756 ha of koala habitat, plus an additional 5.044 ha although the habitat will not be cleared), and 68.756 ha of grey-headed flying-fox (**GHFF**) habitat from the action corridor. This OAMP details the offsets that will be provided for these significant residual impacts.

Coastal swamp oak TEC

The coastal swamp oak TEC was recorded at Helensvale (Helensvale Road, adjacent to Coombabah Wetlands; and Careel Reserve) and Coomera (at Oaky Creek). The coastal swamp oak TEC was represented by primarily by RE 12.1.1 and very small areas of RE 12.3.20 where *Casuarina glauca* was dominant. Approximately 15.93 ha of the TEC has been recorded within the proposed action corridor, of which 15.928 ha is considered to be critical habitat for the survival of this TEC.²

PlanIt Consulting prepared an assessment in 2022 of the extent and quality of this TEC at the impact site. Their report formed Appendix 11 of the approved PER. The vegetation was assessed in accordance with the *Queensland Guide to Determining Terrestrial Habitat Quality (version 1.3)* and *BioCondition Assessment Framework for Terrestrial Biodiversity in Queensland Assessment Manual (version 2.2)*, and the quality assessment across all assessment sites resulted in an average score of 8/10 including the areas of physical loss (15.01 ha) and the areas of functional loss (0.918 ha). A full set of scoresheets for individual assessment sites is available provided in Attachment 1 of the PlanIt report, which is provided at *Appendix E*.³

² Department of Transport and Main Roads (2022). Coomera Connector Stage 1 Public Environment Report, p.257. Available at

https://coomeraconnectorreport.tmr.qld.gov.au/Coomera+Connector+Stage+1+Public+Environment+Report+(EPBC+2 020-8646).pdf

³ ibid, see Appendix 11.

Koala habitat

Field surveys were undertaken to ground-truth the desktop data for koalas. The on-ground surveys were conducted in accordance with the *Koala Referral Guidelines*, incorporating numerous direct and indirect detection methods (e.g., line transects, nocturnal spotlighting, call playback, sensor activated cameras and Spot Assessment Technique (**SAT**) surveys). An intensive surveying period of 12 months was conducted from July 2018 to July 2019, encompassing all seasons, weather and climate events. Additional surveys were undertaken to develop a significant baseline. On-ground surveys for koalas were undertaken during peak (August to January) and off-peak (February to July) periods.

PlanIt Consulting prepared an assessment in 2022 of the extent and quality of koala habitat at the impact site, in accordance with the guidelines stated in the approved PER. Their report formed Appendix 12 of the approved PER. The vegetation was assessed in accordance with the *Queensland Guide to Determining Terrestrial Habitat Quality (version 1.3)* and *BioCondition Assessment Framework for Terrestrial Biodiversity in Queensland Assessment Manual (version 2.2)*. The results have been applied in accordance with *How to use the offsets assessment guide* (DSEWPaC, 2012), taking into account site condition, site context and species stocking rate to contribute to the calculation of habitat quality using the EPBC Act Offsets assessment guide.

The quality assessment resulted in an average score across all assessment sites of 7/10. The removal of 73.81 ha of habitat (which includes 5.0 ha of functional loss) results in an adjusted residual impact of 51.67 ha. A full set of scoresheets for individual assessment sites is available provided in Attachment 1 of the PlanIt report, which is provided at *Appendix F*.⁴

Grey-headed flying fox habitat

Three main survey efforts were carried out to identify the grey-headed flying-fox, which included daytime field surveys for camps, surveys of vegetation communities and food plants, and night-time surveys which included walking transects (100 metres apart) looking for feeding and flying bats.

PlanIt Consulting prepared an assessment in 2022 of the extent and quality of GHFF habitat at the impact site, in accordance with the guidelines stated in the approved PER. Their report formed Appendix 13 of the approved PER. The vegetation was assessed in accordance with the *Queensland Guide to Determining Terrestrial Habitat Quality (version 1.3)* and *BioCondition Assessment Framework for Terrestrial Biodiversity in Queensland Assessment Manual (version 2.2)*. The results have been applied in accordance with *How to use the offsets assessment guide* (DSEWPaC, 2012), taking into account site condition, site context and species stocking rate to contribute to the calculation of habitat quality using the EPBC Act Offsets assessment guide.

The quality assessment resulted in an average score across all assessment sites of 7/10. The removal of 68.76 ha of habitat results in an adjusted residual impact of 48.132 ha. A full set of scoresheets for individual assessment sites is available provided in Attachment 1 of the PlanIt report, which is provided at *Appendix G*. 5

1.2.2 Approval conditions related to offset requirements and delivery

The requirements of each of the approval conditions relating to the offset requirements and delivery are summarised in

⁴ ibid, see Appendix 12.

⁵ ibid, see Appendix 13.

Table 2, and references the OAMP section that addresses each requirement.

The environmental outcomes of this OAMP are specific improvements in ecological values in habitat for each of the matters impacted by the action. These improvements are defined in detail in *Section 6* of this OAMP (Offset completion criteria and performance targets).

Table 2: EPBC approval conditions related to offsets addressed in this document

Condition	OAMP section or comment	Brief information about how the condition is addressed
Compensatory measures		
9) To compensate for the loss of up to 73.8 ha of Koala habitat, up to 15.928 ha of Coastal Swamp Oak TEC and up to 68.756 ha of Greyheaded Flying-fox habitat, the approval holder must:		
 a) Legally secure a minimum of 313.38 ha of land within the Tabooba offset area and 85.82 ha of Coastal Swamp Oak TEC, 45.35 ha of Koala and Grey-headed Flying-fox offsets within the Greenridge offset area within 12 months of this approval decision. 	See Section 9	The offset will be legally secured to the titles of the properties through the use of a declared area under the Vegetation Management Act 1999 (Qld).
b) Within 20 business days of legally securing the areas within the Tabooba offset area and Greenridge offset area specified in condition 9(a), provide the department with:	See Section 9	The proponent will provide written evidence of the
i) Written evidence demonstrating that the areas within the Tabooba offset area and Greenridge offset area specified in condition 9(a), have been legally secured	See Section 9	offsets being legally secured within 20 days of the declared areas being registered on the titles of the properties.
 ii) Shapefiles and offset attributes of the areas within the Tabooba offset area and Greenridge offset area specified in condition 9(a). 	See Section 9	Shapefiles will be provided within 20 days of the declared areas being registered.
c) Achieve all the habitat quality uplift outcomes within the timeframes specified.	See Section 6	Management actions have been developed to ensure that the vegetation communities are restored to benchmark condition.
10) Within 6 months of this approval decision, the approval holder must submit an Offset Area Management Plan for the Tabooba offset area and Greenridge Offset area (OAMP-TOA&GOA) to the department for the Minister's approval. The OAMP-TOA&GOA must meet the requirements of the Environmental Offsets Policy, the Environmental Management Plan Guidelines and meet the requirements specified in Attachment F to the satisfaction of the Minister.	This document	
11) If the Minister writes to the approval holder stating that he/she considers that the OAMP-TOA&GOA, required under condition 10 is not likely to achieve the outcomes required under condition 9(c), the approval holder must cease all clearing and/or construction at the development area within 2 months of receiving such a notice, or as otherwise directed by the Minister. Clearing and/or construction may only restart after the Minister	See Section 10	Noted.

Cor	ndition	OAMP section or comment	Brief information about how the condition is addressed
	notifies the approval holder that the Minister has approved the revised OAMP-TOA&GOA, or otherwise with the Minister's written direction.		
12)	The approval holder must implement the OAMP-TOA&GOA as approved by the Minister until the expiry of this approval.	See Section 11	The proponent commits to implementing this OAMP. <i>Table 3</i> lists all commitments made as part of this management plan.
Sub	mission and publication of plans		
32)	The approval holder must submit all plans required by these conditions electronically to the department.	See Section 10	The approval holder will submit this plan electronically.
33)	Unless otherwise agreed to in writing by the Minister, the approval holder must publish each plan on the website within 15 business days of the date:	See Section 10	Once approved by the Minister, the approval holder
	 b) the plan is approved by the Minister in writing, if the plan requires the approval of the Minister; or 		will publish this plan on the website and keep it
34)	The approval holder must keep all published plans required by these conditions on the website until the expiry date of this approval.	See Section 10	published on the website until the approval expiry date.
Ger	neral		
39)	The approval holder must maintain accurate and complete compliance records.	See Section 8	The approval holder will maintain accurate and complete compliance records.
40)	If the department makes a request in writing, the approval holder must provide electronic copies of compliance records to the department within the timeframe specified in the request.	See Section 8	The approval holder will provide electronic copies of compliance records to the department within the timeframe specified in the request.
43)	The approval holder must submit all monitoring data (including sensitive ecological data), surveys, maps, other spatial and metadata and all species occurrence record data (sightings and evidence of presence) electronically to the department within 12 months of the approval or in accordance with the requirements of the OAMP-TOA&GOA.	See Section 8	The approval holder will submit all monitoring data electronically to the department within 12 months of the approval or in accordance with the requirements of the OAMP.
48)	The approval holder must notify the department electronically, within 2 business days of becoming aware of any incident and/or potential non-compliance and/or actual non-compliance with the conditions or commitments made in a plan.	See Section 10	The approval holder will notify the department electronically, within 2 business days of becoming
49)	The approval holder must specify in the notification: a) Any condition or commitment made in a plan which has been or may have been breached. b) A short description of the incident and/or potential non-compliance and/or actual non-compliance.	See Section 10	aware of any incident and/or potential non-compliance and/or actual non-compliance with the conditions or commitments made in this OAMP; specifying which condition or commitment has been breached, a short description of the incident and its location.

Condition	OAMP section or comment	Brief information about how the condition is addressed
 c) The location (including co-ordinates), date, and time of the incident and/or potential non-compliance and/or actual non-compliance. 		
 50) The approval holder must provide to the department in writing, within 12 business days of becoming aware of any incident and/or potential non-compliance and/or actual non-compliance, the details of that incident and/or potential non-compliance and/or actual non-compliance with the conditions or commitments made in a plan. The approval holder must specify: a) Any corrective action or investigation which the approval holder had already taken b) The potential impacts of the incident and/or non-compliance and/or non-compliance c) The method and timing of any corrective action that will be undertaken by the approval holder. 	See Seedion 10	The approval holder will provide to the department in writing, within 12 business days of becoming aware of any incident and/or potential non-compliance and/or actual non-compliance, the details of that incident and/or potential non-compliance and/or actual non-compliance with the conditions or commitments made in this OAMP; specifying any corrective action or investigation which the approval holder has already taken; the potential impacts of the incident and/or non-compliance; and the method and timing of any corrective action that will be undertaken by the approval holder.
Offset Management Plan Requirements (Attachment F of approval)		
Include a reference to the EPBC Act approval conditions (and state or local government approval conditions) to which the Offset Management Plan refers	This table	
b. Specify referenced plans, including revegetation and rehabilitation plans, and how these can be accessed.	Provided at Appen	ndix B and Appendix C
c. Include detailed information on the residual impacts to protected matters that will be offset. This must include the area(s) of habitat for protected matters and its condition and quality at all impact sites which the offset is to address	See Section	Coastal swamp oak TEC impact habitat quality score (HQS) = 8/10; koala habitat impact HQS = 7/10, grey headed flying-fox impact HQS = 7/10. Detailed data provided at <i>Appendix E</i> , <i>Appendix F</i> and <i>Appendix G</i> .
d. Identify a suitable environmental offset(s) for the impacts on protected matters, and provide detailed baseline information on the proposed offset(s) and commit to achievable and measurable ecological benefits, and timeframes for their achievement, for the proposed offset(s)	See Section 3. See Section 1.3 See Section 6	BioCondition data for the 2 offset properties is provided at <i>Appendix H</i> and <i>Appendix I</i> . HQS tables for offsets for each matter are provided at <i>Appendix J</i> , <i>Appendix K</i> and <i>Appendix L</i> .
Detail how the offset(s) will be protected, and ecological benefits maintained, in perpetuity	See Section 5 See Section 9	TMR will legally secure the offset areas in perpetuity through the use of a declared area. Thus, the ecological benefits to the species from the implementation of this OAMP will result in a permanent change to the legal status of the vegetation/habitat which will be protected under the EPBC Act as MNES

Condition	OAMP section or comment	Brief information about how the condition is addressed
		habitat, Vegetation Management Act 1999 (Qld) as remnant vegetation and essential habitat and the Nature Conservation Act 1992 (Qld) as habitat for a protected species.
		With respect to the property Tabooba, TMR may enter into an agreement with the Queensland Department of Environment and Science (DES) and/or Scenic Rim Regional Council (SRRC) to have the property established as a nature conservation area and/or be maintained under the Land for Wildlife program respectively. Brief informal discussions have already been had with SRRC's Land for Wildlife Program as to TMR and Council maintaining the property post approval. Decisions on the maintenance of the property would be made closer to the lapsing of the approval. With respect to the property Greenridge, DES and Gold Coast City Council (GCCC) have previously expressed interest in acquiring Greenridge. Given the interest by both DES and GCCC, TMR may enter into an agreement with either or both DES and GCCC to maintain the property particularly given its proximity to the Pimpama River Conservation Area. Decisions on the maintenance of the property would be made closer to the lapsing of the approval.
f. Include a table of commitments to achieve the ecological benefits for relevant protected matters, and a reference to where the commitments are detailed in the Offset Area Management Plan	See Table 3	
g. Include timebound management actions that will be implemented to achieve the measurable ecological benefits for relevant protected matters	See Section 5	Management actions, triggers and corrective actions are detailed in <i>Table 12</i> through <i>Table 15</i> .
h. Include an assessment of risks to achieving the ecological benefit(s) and what risk management strategies will be applied to address these	See Section 4	Each risk identified in the respective conservation advice, listing advice and recovery plans has been assessed and is detailed in <i>Table 10</i> and <i>Table 11</i> .
i. Include reporting and review mechanisms, and documentation standards to inform others annually regarding compliance with management and	See Section 8	Annual reporting is detailed in <i>Table 189</i> .

Со	ndition	OAMP section or comment	Brief information about how the condition is addressed
	environmental commitments, and attainment and maintenance of ecological benefits, as specified in the Offset Area Management Plan.		The methodology for reporting compliance and attainment of ecological benefits is detailed in <i>Table</i> 19.
j.	Propose corrective actions to ensure ecological benefits for the protected matters are attained or maintained, if trigger values are reached or performance indicators not attained	See Section 5	Corrective actions and the triggers for these corrective actions are detailed in <i>Table 12</i> through <i>Table 15</i> .
k.	Include a monitoring program for the full duration of the proposed offset management period, which must include: i. measurable performance indicators to monitor progress towards attainment of the ecological benefits for the protected matters ii. a randomisation of monitoring within the offset area to ensure ecological benefits reflect the whole offset site(s) iii. trigger values and timing of corrective actions iv. the timing and frequency of monitoring to detect trigger values and changes in the performance indicators.	See Section 8	The methodology for reporting compliance and attainment of ecological benefits is detailed in <i>Table 19</i> . While undertaking monitoring activities, the responsible person will move between the permanent survey points in a random manner noting any substantial variation in the condition of the offset area between the permanent monitoring points. Any substantial variation is to be noted in the subsequent report. Corrective actions and the triggers for these corrective actions are detailed in <i>Table 12</i> through <i>Table 15</i>

1.3 Commitments made in the OAMP

This section summarises the commitments made throughout this OAMP to achieve ecological benefit(s) for the relevant MNES. These ecological benefits will be achieved through the integrated implementation of many elements of this OAMP. Additional commitments are also made in alignment with the general conditions of the approval. *Table 3* below lists each of these commitments and provides references to the sections in this OAMP where these commitments are detailed.

Table 3: Commitments made in this OAMP

Commitment	OAMP section or comment
The approval holder commits to the implementation of this OAMP.	See Executive summary and Section 11
The approval holder commits to achieve the ecological benefits for each protected matter.	See Section 3.3.4, Section 3.4.4 and Section 3.5.4
The approval holder commits to undertaking the management actions as described in <i>Table 12 and Table 13</i> .	See Section 5.1
The approval holder will engage suitably qualified persons to undertake the BioCondition assessments, ecological studies and surveys, prepare reports and undertake inspections, as required.	See Section 5 and Section 8
The approval holder will notify the Department (within the timeframe stipulated by the approval conditions) of any incident, non-compliance with conditions, or non-compliance with any of the commitments made in this OAMP	See Section 5.2 and Section 10
The approval holder will provide an annual compliance report to the Department describing the progress of the offset area over the relevant 12-month period.	See Section 8
The approval holder commits to registering a legally binding conservation mechanism to provide long-term protection to the offset area within 12 months of the date of the approval conditions (i.e 17 March 2024).	See Section 9 and Section 11
The approval holder will provide written evidence to the Department within 20 business days of the mechanisms to legally secure the offsets having been registered.	Section 9
The approval holder will notify the Department of any incident or potential or actual non-compliance with the conditions or commitments made in this OAMP as soon as practical and no later than 2 business days after becoming aware of the incident or non-compliance.	Section 10
The approval holder will provide to the Department in writing, within 12 business days of becoming aware of any incident and/or potential non-compliance and/or actual non-compliance, the details of that incident and/or potential non-compliance and/or actual non-compliance with the conditions or commitments made in this OAMP. The notification will specify any corrective action or investigation which the approval holder has already taken; the potential impacts of the incident and/or non-compliance and/or non-compliance; and the method and timing of any corrective action that will be undertaken by the approval holder.	Section 10
If the approval holder wishes to carry out any activity otherwise than in accordance with this OAMP, the approval holder will submit to the Department for the Minister's written approval a revised version of the OAMP. The varied activity will not commence until the Minister has approved the varied OAMP in writing. If the	Section 10

Commitment	OAMP section or comment
Minister approves the revised OAMP, that OAMP will be implemented in place of the OAMP originally approved.	
This OAMP will be published on TMR's website within 15 business days of the OAMP being approved by the Minister. The OAMP will remain on the website and accessible to the public for the duration of the EPBC Act approval.	Section 11

1.4 OAMP structure

The OAMP is divided into 7 sections that provide the following:

- Offset property and offset area descriptions
- Risk analysis
- Offset management measures
- Completion criteria and performance targets
- Monitoring and reporting
- Legally binding mechanism
- Adaptive management and plan review.

2 EPBC Act Environmental Offsets Policy and framework

This section describes how the proposed offset meets the relevant requirements of the EPBC Act *Environmental Offsets Policy* (October 2012) (**EOP**), plans and guidelines.

2.1 Policy principles

The EPBC Act EOP sets out eight key overarching principles to determine the suitability of offsets. *Table 4* outlines each of the policy principles and how it has been considered in the OAMP, with a reference to the relevant OAMP section.

Table 4: EPBC Act Environmental Offset Policy principles

Policy principle **Action offsets** Suitable offsets must The offset will deliver a conservation outcome by providing habitat for deliver an overall Coastal Swamp Oak TEC, koala and GHFF. The habitat will be conservation outcome managed to improve the habitat values for those species, and the that improves or offset area will be secured as a declared area under the Vegetation maintains the viability of Management Act 1999 (Qld) (VM Act) to ensure legal protection of the the protected matters. offset area TMR will legally secure the offset areas in perpetuity through the use of a declared area. Thus, the ecological benefits to the species from the implementation of this OAMP will result in a permanent change to the legal status of the vegetation/habitat which will be protected under the EPBC Act as MNES habitat, Vegetation Management Act 1999 (Qld) as remnant vegetation and essential habitat and the Nature Conservation Act 1992 (Qld) as habitat for a protected species. Additionally, the completion criteria and the 'with offset' non-native species attribute (provided in *Appendix J*, *Appendix K* and *Appendix L*) establishes the acceptable limits to non-native species in the offset area. These will be achieved as a requirement of this OAMP. With respect to the property Tabooba, TMR may enter into an agreement with DES and/or SRRC to have the property established as a nature conservation area and/or be maintained under the Land for Wildlife program respectively. Brief informal discussions have already been had with SRRC's Land for Wildlife Program as to TMR and Council maintaining the property post approval. Decisions on the maintenance of the property would be made closer to the lapsing of the approval. With respect to the property Greenridge, DES and GCCC have previously expressed interest in acquiring Greenridge. Given the interest by both DES and GCCC, TMR may enter into an agreement with either or both DES and GCCC to maintain the property particularly given its proximity to the Pimpama River Conservation Area. Decisions on the maintenance of the property would be made closer to the lapsing of the approval. Suitable offsets must be 100% of the action's MNES offset obligations for Coastal Swamp Oak built around direct offsets TEC, koala and GHFF will be acquitted by the proposed direct landbut may include other based offsets. compensatory measures.

Policy principle	Action offsets
Suitable offsets must be in proportion to the level of statutory protection that applies to the protected matter.	The status of the impacted threatened species has been taken into account by the offset assessment guide that has been used to calculate the offset area requirements. The koala was listed as 'vulnerable' under the EPBC Act at the time of the controlled action decision but assessed as 'endangered' in the PER. Coastal Swamp Oak TEC is listed as 'endangered' under the EPBC Act, and the GHFF is listed as 'vulnerable'.
Suitable offsets must be of a size and scale proportionate to the residual impacts on the protected matter.	The extent of the offset has been calculated using ecological reports that include both flora and fauna surveys, for both the impact and offset sites to inform inputs into the offset assessment guide (OAG). The inputs to the OAGs for each of the protected matters impacted are detailed in <i>Section 3.3</i> to <i>Section 3.5</i> .
Suitable offsets must effectively account for and manage the risks of the offset not succeeding.	As was required by the Public Environment Report Guidelines by the now DCCEEW, the Precautionary Principle was applied and discussed in the executive summary on page 17 and in section 13.11.1 on page 552 of the Public Environment Report as approved by the Delegate. This assessment included all baseline data, impact assessment and offsets (including Offset Strategy – Appendix 15) as required by the Public Environment Report Guidelines.
	This OAMP is based on the approved Offset Strategy, and the risks associated with the offsets have been assessed (<i>Table 10</i> and <i>Table 11</i>) and mitigation and appropriate management actions proposed in the offset area management measures shown in <i>Table 12</i> and <i>Table 13</i> . In addition, uncertainty, and therefore risk, associated with averted loss and net gain in habitat quality were addressed by applying the offset assessment guide.
Suitable offsets must be additional to what is already required, determined by law or planning regulations, or agreed to under other schemes or programs.	Vegetation clearing as a native forest practice, or a forest practice; the use of fire to manage regrowth and grazing on the offset site; is not currently prohibited by legal mechanisms at either the local, state or Australian government legislative level. See Section 5 and Section 7. The offset areas are zoned rural and have previously been used for timber harvesting and cattle grazing. Areas of the offset properties have been subject to vegetation clearing ⁶ under the land management practices of previous owners over the last 3 decades. The current regulated vegetation will be secured via a declared area that has its head of power under the VM Act. This threat will be removed from the offset sites. See Section 9 for further detail.
	The offset area is not subject to other schemes or programs. The offset areas are being rehabilitated from intensive grazing. The <i>Biosecurity Act</i> has a baseline duty of care for weed and pest animal control as detailed in <i>Table 17</i> . All of the management actions detailed in <i>Table 12</i> to <i>Table 15</i> inclusive are above and beyond the requirements of the Biosecurity Act.
Suitable offsets must be efficient, timely, transparent, scientifically robust and reasonable	The proposed offsets will be efficient and timely as the offset will be established and implementation commenced within 6 months of the Minister approving this OAMP. The offsets' scale and suitability are transparent, and the offsets are based on the terrestrial ecology reports prepared by suitably qualified ecologists for the impact and offset sites (Planit 2021a, 2021b; 2022, BAAM, 2022); They have been prepared using the EPBC Act OAG inputs and calculators. Refer to Section 3 for further detailed application of the OAG.
	Implementation of the OAMP has begun, with fire management lines installed and security to mitigate illegal access installed. The

⁶ Vegetation Management Act 1999, Schedule dictionary

Policy principle	Action offsets
	management actions within this OAMP will be implemented on approval of the OAMP
Suitable offsets must have transparent governance arrangements including being able to be readily measured, monitored, audited and enforced.	The offset sites were surveyed in May 2022 (Tabooba) and June-August 2022 (Greenridge), providing the baseline habitat quality assessment and these scores were compared against the relevant BioCondition benchmarks ⁷ for each regional ecosystem (RE). Habitat quality assessments were conducted in accordance with the <i>Guide to Determining Terrestrial Habitat Quality Version 1.3, 2020</i> (Queensland Department of Environment and Science (DES)) which involved collecting spatial data; and conducting in situ vegetation surveys, assessing site condition, spatial context as well as targeted species habitat criteria (refer to BAAM 2022, and <i>Appendix A</i> of this OAMP). Future habitat assessment measurements will be conducted in accordance with this plan during its implementation phase. Monitoring and reporting are detailed in the Offset Area Management Measures outlined in <i>Table 12</i> and <i>Table 13</i> , and the monitoring schedule and reporting schedule are shown in <i>Table 18</i> and <i>Table 19</i> . The offset will be protected from clearing and secured via a Declared Area that has its head of power under the VM Act. Refer to <i>Section 9</i> for further detail.
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

2.2 Addressing relevant EPBC plans and advice

The EOP states that an offset should address key priority actions for the impacted MNES in any approved recovery plans, threat abatement plans, conservation advice, ecological character description or approved Commonwealth Management Plan.

Table 5 summarises how this OAMP addresses the relevant conservation advice, recovery plans and threat abatement plans, on the offset sites.

⁷ Benchmarks are quantitative values derived from data collected from field-based reference sites for each site condition attribute assessed in BioCondition

Table 5: Conservation Advice and Threat Abatement Plans addressed in the OAMP

Document	Key threats	Section addressed in document
Conservation advice (incorporating listing advice) for the Coastal Swamp Oak (Casuarina glauca) Forest of New South Wales and South East Queensland ecological community. (2018) Department of the Environment and Energy, Canberra.	Clearing and fragmentation	
	Extensive land clearing and landscape modification for agricultural and coastal development over the past 200 years has reduced the extent of the ecological community. This remains an ongoing threat as most of the remaining ecological community, as well as potential regrowth areas, occurs in close proximity to regional centres or on productive agricultural land.	For the contribution to connectivity and biodiversity corridors – Refer to Section 3.1.1 and Section 3.1.2.
		The offset site was selected for its potential to provide a substantial increase to the TEC, connectivity and other ecological values within the surrounding area.
	As Coastal Swamp Oak forest occurs as small patches in a mosaic environment, connectivity with other patches of the ecological community within the mosaic is important, as few individual patches are large enough on their own to provide sufficient species and genetic diversity to ensure their long-term survival.	See also the revegetation plan for the TEC at Greenridge at Appendix C.
	Weeds	
	Invasion by non-native plant species is a major threat to this ecological community (Keith and Scott, 2005; Tozer et al., 2010). It is often a result of physical disturbance to the vegetation structure of the community; landfill associated with adjacent urban and industrial infrastructure, including sporting fields; soil disturbance; dumping of building or excavation waste, rubbish and garden refuse; encroachment of garden plants with spread assisted by birds, wind, water and altered drainage patterns; polluted runoff from urban and agricultural areas; construction of roads and other utilities; or grazing by domestic livestock or feral animals. Invasion of some weed species can also be a result of changed fire regimes (Queensland Herbarium, 2016).	Refer to <i>Table 12</i> and <i>Table 13</i> for details of invasive plant and environmental weed management to be undertaken. Results will be monitored as part of the ongoing monitoring program.
	Invasive fauna	
	The ecological community, particularly its faunal elements, is subject to a range of impacts from invasive animals. These include:	See <i>Table 12</i> and <i>Table 13</i> : Feral animals – monitoring and control as detailed.
	 Predation habitat destruction through trampling and soil disturbance, competition and disease transmission by feral pigs; Predation and spread of invasive plant species by wild dogs, foxes, cats, and other feral species; Grazing and trampling pressures from rabbits, goats, deer and other feral herbivores, which can leave the ecological community open to erosion and weed invasion. 	Existing populations of feral and wild animals (feral cats, wild dogs and feral pigs) will be controlled within the offset areas in accordance with the <i>Biosecurity Act 2014</i> (Qld). Monthly inspections to record the presence of wallow holes, tracks and visual incidents, in the offset area will be undertaken.
		On being notified or becoming aware of the presence of large numbers, for example, approximately 10 feral and/or wild animals

Document	Key threats	Section addressed in document
	Feral pigs (<i>Sus scrofa</i>), are noted as a particular threat to this TEC. As opportunistic omnivores they can have direct impacts such as preying on a range of small animals, eggs, carrion and foliage, or digging up invertebrates, underground fungi, fruit, seeds, roots, tubers, bulbs. This impacts upon the ecological community by altering plant species composition and succession, nutrient and water cycles and degrading water quality.	or multiple tracks in the offset area at any one time, the Landholder is to implement feral animal control measures within one month.
	Impacts resulting from agricultural activities, including grazing	
	Many of the alluvial areas along the east coast of Australia have been	See Table 12 and Table 13: Grazing management.
	grazed and forested since the early to mid-19th century. The need for land for agriculture has driven both the clearing of the ecological community and draining the wetlands it is a part of.	Livestock will be excluded from the offset area.
	Overgrazing can degrade the ecological community through vegetation loss (grazing and trampling), soil compaction (hard hoofed stock), disturbing sediments and increasing nutrient levels	
	Inappropriate fire regimes	See Table 12 and Table 13: Fire management.
	Fire regimes have been changed throughout the extent of the ecological community in association with the growth of agriculture and	Planned burns undertaken in Coastal Swamp Oak TEC will be in accordance with relevant RE fire management guidelines.
	urban development. In rural areas, fire is used to promote green pick for livestock and in urban areas, and hazard reduction management can increase fire frequency. The amount of fallen timber and other plant litter can be diminished during such burns.	See also <i>Table 15</i> for the fire management strategy to be used at Greenridge.
Conservation advice for	Climate change driven processes and drivers:	
Phascolarctos cinereus (Koala). (2022) DAWE, Canberra.	Loss of climatically suitable habitat Areas that are climatically suitable for koalas are contracting.	For the contribution to biodiversity corridors and connectivity – Refer to Section 3.1.1 and Section 3.1.2.
National Recovery Plan for the Koala: Phascolarctos cinereus (combined populations of Queensland, New South Wales and the Australian Capital Territory). (2022) DAWE, Canberra	Climate change predictions indicate drier, warmer conditions across the koala's range. Current and future climate change projections indicate a progressive eastward and southwards contraction in the koala's suitable climate envelope and consequent suitable habitat (Adams-Hosking et al. 2011).	The offset sites were selected for their potential to provide a substantial increase to the habitat, connectivity and other ecological values within the surrounding area. The areas are currently composed of degraded tracts of regulated and regrowth vegetation. Protecting eucalypt forests from native timber
	Increased intensity/frequency of drought Low rainfall has been linked with physiological stress to koalas due to low moisture levels, causing negative effects on population viability (Davies et al. 2013). In the future, average winter and	harvesting and clearing, and inappropriate fire will add significant value to the areas by improving the condition and connectivity of local and regional koala habitat. The prevention of harvesting of larger trees will provide more and larger shelter as the RE rehabilitates to scores closer to the benchmark.

Document	Key threats	Section addressed in document
	 spring rainfall are predicted to continue to decline across the koala's range (BoM 2021). Increased intensity/frequency of heatwaves Due to climate change, average temperatures across the koala's range will continue to increase across all seasons resulting in an increased frequency and intensity of heat stress days and heat wave episodes (BoM 2021). Heat stress threats will synergistically interact with drought, further exacerbating the impacts of reduced water availability. Increased intensity/frequency of bushfires Australia will continue to experience a harsher fire-weather climate into the future (BoM 2019, 2021). The fire season length is increasing and the number of catastrophic fire days will increase in the future by an estimated 15-70% by 2050 (Climate Council 2019). A broad range of fire-related threats exist including high frequency fire, high severity fire, shifts in fire season, biodiversity loss, declining ecological mechanisms, shifts in biotic interactions including reproduction and fire-predator interactions, fire-drought interactions, and fire-fragmentation interactions which can be amplified by land clearing and logging (Bradshaw et al. 2018; Leavesley et al. 2020). All of these threats will have a significant impact on koala habitat and resident populations. 	Additionally, the offset will assist in landscape connectivity and context by improving the existing regulated vegetation adjacent to and within the landscape corridors.
	 Declining nutritional value of foliage Physical disturbance (e.g., logging during forestry activities and/or fire) alters tree species composition and can favour tree species that do not support the koala's nutritional requirements (Au et al. 2019). Additional research is required to assess how elevated levels of CO₂ affect nitrogen and available nitrogen (which integrates the effects of tannins) (DeGabriel et al. 2009). Bushfire effects on the nutritional value of eucalypt regrowth (e.g., epicormic growth) are unknown and research has been initiated. 	The prevention of harvesting of larger trees will provide more and larger foraging and shelter trees as the RE rehabilitates to scores closer to the benchmark.
	Clearing and degradation of koala habitat	
	Human activities (e.g., deforestation and land clearance for grazing, agriculture, urbanisation, timber harvesting, mining and other activities) have resulted in habitat loss, fragmentation and degradation.	Refer to <i>Table 12</i> and <i>Table 13</i> - Forestry and native vegetation - clearing is not allowed under the management plan.
	nave resulted in habitatioss, hagmentation and degradation.	No forestry or timber harvesting activities will be conducted during the period of the declaration of the offset area.

Document	Key threats	Section addressed in document
		Forestry and native timber harvesting practices in the offset areas have previously removed large trees that provide shelter and food and may also contain hollows and deadwood. It is therefore considered a potential threat to the quality of the habitat.
	Increased mortality due to vehicle strikes and dogs	
	Vehicle related mortality occurs regularly on roads in close proximity to occupied koala habitat (Gonzalez-Astudillo 2018; Queensland	Refer to <i>Table 12</i> and <i>Table 13</i> : Feral animals – monitoring and control as detailed.
	Government 2021). Dog attacks are also a significant cause of death and injury especially in areas within and adjacent to peri-urban and residential areas (DPIE 2020). Koalas are unable to adapt to these threats and as human activities continue to expand into koala habitat, trauma from these threats will continue.	Existing populations of feral animals (feral cats, wild dogs and feral pigs) will be controlled within the offset areas in accordance with the <i>Biosecurity Act 2014</i> (Qld). Monthly inspections to record the presence of wallow holes, tracks and visual incidents, (e.g. any injury to or predation of koalas), in the offset areas will be undertaken.
	Koala retrovirus (KoRV) and Chlamydia (Chlamydia percorum)	
	Disease can be a major contributor to population decline and reduces population viability. Infection with the bacterium Chlamydia pecorum can cause infertility, blindness and eventually death (Polkinghorne et al. 2013). The prevalence of disease (chlamydiosis) has been found to increase following extreme stress from hot weather, drought, habitat loss and fragmentation (Lunney et al. 2012; Davies et al. 2013). The Koala Retrovirus (KoRV) is thought to be responsible for a range of conditions, including leukaemia (Tarlinton et al. 2005) and an immunodeficiency syndrome. There is some evidence that chlamydiosis may be exacerbated by KoRV (Tarlinton et al. 2005). KoRV has endogenised in koalas (Hanger 2000, Tarlinton et al. 2006) in Queensland and New South Wales (Simmons et al. 2012). That is, it has infected germ line cells (spermatozoa or oocytes) and is transmitted genetically (by inheritance) from parents to offspring. Although this is a known mechanism of transmission, other nonendogenised (exogenous) variants of KoRV may also spread from koala to koala (horizontal spread) by close contact, and from infected mothers to their joeys via the milk, in a manner similar to the way that many other retroviruses spread (Hanger 2000, Quigley et al. 2018).	Although antibiotics are used successfully to treat some cases of chlamydial disease, there is no known treatment for putative KoRV-associated disease. The establishment of the offset area which adjoins the landscape corridors, as well as buffers and increases in extent and condition of the habitat may act to reduce some of the environmental stressors that are thought to accentuate the diseases. In addition, the Coomera Connector Koala Conservation Strategy defines the management actions that aim to reduce the impact of chlamydial disease in the koala population in the vicinity of the proposed action, as a component of the other compensatory measures proposed - an outcome delivered as part of the Koala Tagging and Monitoring Programs. These management actions include treatment of chlamydiosis-affected koalas and support of koala chlamydial and KoRV vaccine research
National Recovery Plan for the Grey-headed Flying-fox	Loss and degradation of foraging and roosting habitat	Improving the quality of the vegetation will enhance foraging and roosting habitat for the grey-headed flying-fox. Both of the offset

Document	Key threats	Section addressed in document
'Pteropus poliocephalus', (2021) DAWE, Canberra.	Human activities (e.g., deforestation and land clearance for grazing, agriculture, urbanisation, and timber harvesting and other activities) have resulted in habitat loss, fragmentation and degradation.	sites and surrounding landscape are dominated by vegetation species that are important habitat such as <i>Eucalyptus tereticornis</i> and <i>E. crebra</i> . The prevention of harvesting of larger trees will provide more and larger foraging and shelter trees as the regional ecosystem rehabilitates to scores closer to the benchmark.
		Habitats of Tabooba are within the typical foraging distance of the 6 known GHFF camps that are located within a 20 km radius of the boundary of the property.
		At Greenridge, the dominant canopy species within the REs present indicates REs 12.3.5, 12.3.20 and 12.11.23 have high value for GHFF, attributed to the dominance of winter-flowering canopy species. During a Koala survey of Greenridge conducted by ddwfauna for Titanium Enterprises Pty Ltd in 2006, GHFF were reported to be widespread throughout vegetated areas and were observed feeding on <i>E. tereticornis</i> and <i>Melaleuca quinquenervia</i> .
		See Section 5, Table 12 and Table 13, and Appendix C.
	Conflict with people	
	Conflict with people, including disturbance in camps and mortality from actions to manage commercial fruit crops, is considered to be a moderate threat, but is increasing in urban areas.	Access limitations to the offset sites will reduce the likelihood of human disturbance to the species and its foraging and roosting habitat.
	Most conflict occurs in heavily urbanised environments where domestic	Public access to the offset area is prohibited.
	gardens can provide an increased density and diversity of food trees. Negative perceptions of GHFF can lead to conflict, impacting the population directly through harassment, deliberate destruction and attempts at dispersal or indirectly by inhibiting community support for conservation initiatives.	Access is restricted to those authorised persons required to undertake actions described in this management plan, including the landholder, and approval holder staff and their contractors and assigns.
	People living near flying-fox camps can find them annoying and unpleasant. Flying-fox camps are often noisy during the day and just before dawn when individuals return from foraging, and can generate a strong smell caused by the dense concentration of animals. People in close proximity can also be concerned about mess from faecal droppings and the potential for transmission of diseases from flying-foxes to people (Eby 1995, Tidemann 1999, Smith 2002).	The offset area is not to be utilised for any purpose including recreational activities, or any other activities that deter from achieving the outcomes of this plan.
		See Section 5, Table 12 and Table 13.

Document	Key threats	Section addressed in document
	Entanglement in barbed wire fencing	
	Flying-foxes can become entangled in barbed wire, usually on the top strand. Actions under the recovery plan include promoting methods of fencing to avoid entanglement.	Use of plain top wire on fencing instead of barbed wire will reduce the likelihood of entanglement. See Section 5, Table 12 and Table 13.
	Climate change driven processes The impact of climate change on grey-headed flying-foxes is unknown but increasing temperatures, storms, bushfires and floods and drought conditions are likely to degrade foraging and roosting habitat, influence the frequency of foraging in commercial orchards, cause heat stress	The connecting of the protected areas around the offset sites will increase the ability of the habitat to withstand periods of drought and increased heat waves. The prevention of harvesting of larger trees will provide more and larger shelter as the regional ecosystem rehabilitates to scores closer to the benchmark.
	and increase heat related mortality.	Additionally, the offset will assist in landscape connectivity and context by improving the existing regulated vegetation adjacent to and within the landscape corridors that link to the offset properties.
Threat Abatement Plan for predation, habitat degradation, competition and disease transmission by feral pigs (2005) Department of Environment and Heritage, Canberra	Predation by feral pigs	Refer to <i>Table 12</i> and <i>Table 13</i> , and to <i>Section 5</i> for a detailed description of the feral pest animal strategy that will be employed. Major damage to the environment/habitat occurs when large numbers of animals congregate in the area. Feral animals will be monitored and controlled as described in <i>Table 12</i> and <i>Table 13</i> .
Threat Abatement Plan for predation by the European red fox (2008) Department of the Environment, Water, Heritage and the Arts, Canberra.	Predation by foxes	The plan will minimise the presence of feral animals and control of existing populations of feral animals (wild dogs and feral pigs) within the offset areas in accordance with the <i>Biosecurity Act</i> 2014 (Qld).

3 Offset properties

3.1 Overview of the offset properties

3.1.1 Tabooba

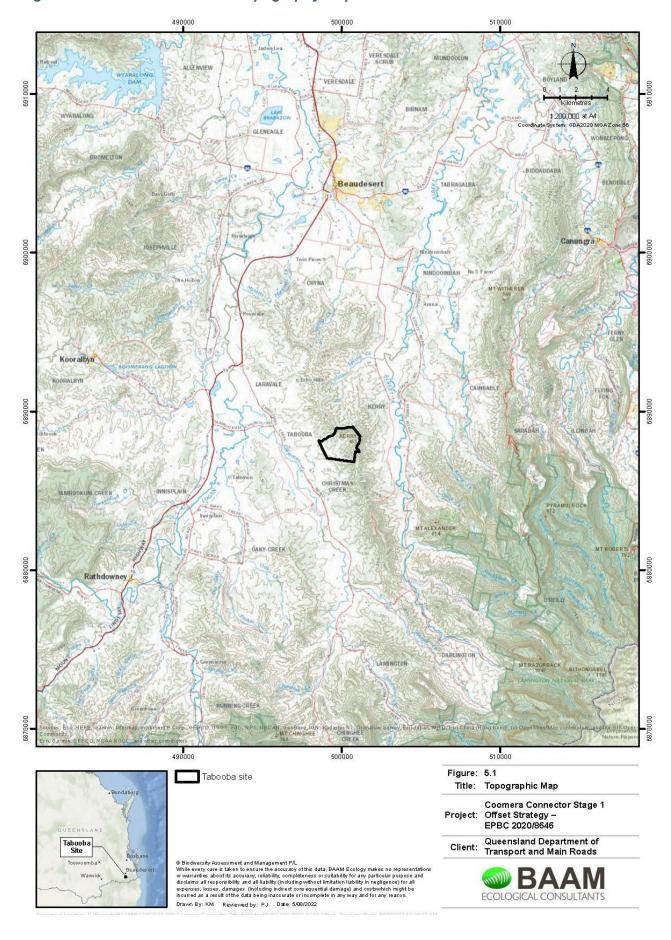
Tabooba is located at 226 Farringdon Road, Tabooba, approximately 16 km south of the town of Beaudesert in the Scenic Rim Regional Council LGA (see *Figure 2*) and 37 km south-west of the southern extent of the action. Tabooba covers 390.25 ha in total and is comprised of four lots:

- Lot 3 on RP32561 (152.61 ha)
- Lot 174 on W311810 (64.75 ha)
- Lot 296 on W312231 (44.08 ha)
- Lot 85 on W311299 (129.54 ha).

Tabooba is located on the western and southern slopes of the Jinbroken Range which separates the Albert and Logan River valleys. Geologically, the Jinbroken Range is formed of Albert Basalt and borders the property to the north and east, reaching its highest point at 453m on the north-eastern property boundary at the location known as 'Kerry'.

The most recent landholder had managed Tabooba for cattle grazing for a period of approximately 30 years, prior to the purchase by TMR in April 2022. Land management practices included maintaining cleared pastures on creek flood zones, stick-raking valleys and slopes in the higher country to remove tree regrowth and sowing of exotic, high-yield pasture grasses such as Rhodes grass (*Chloris gayana*) in the cleared areas. These areas were mapped during the ecological surveys as 'cleared', 'young regrowth' and 'mature regrowth' respectively. The cleared areas have been maintained in that condition for decades. The regrowth areas are subject to a re-clearing cycle of circa 5-7 years with the young regrowth areas having been re-cleared in 2020 and over-sown with exotic pasture grasses. The mature regrowth areas were to be re-cleared in 2021; however, the extended wet season prevented this action.

Fire has been used as a tool to reduce fuel loads and decrease risk of wildfire, control regrowth vegetation, and maintain a grassy understorey for cattle grazing beneath the woodland vegetation on higher slopes. Cool, mosaic pattern burning has been carried out since the 1980s. Cattle have not been fenced from watercourses and evidence of erosion and weed proliferation is apparent in watercourses on the lower slopes and alluvial plains. Weed infestation is present throughout the site, including around the base of koala food trees, which may prevent current greater utilisation. These areas would be managed to enhance the habitat for Koala and/or GHFF.


Figure 3 shows the areas of mapped remnant and regrowth vegetation, REs and core Koala habitat on the property and surrounding area.

Connectivity

Where Tabooba includes habitat of the Jinbroken Range to the east, remnant vegetation exists on both the offset property and adjoining properties. This forms a corridor of intact vegetation along the range to the north and south. The *Scenic Rim Regional Council Biodiversity Strategy 2015-2025* indicates that Tabooba is within existing 'core-node' habitat and links landscape along Jinbroken Range connecting to the south with 'core' habitat. Restoring and maintaining koala habitat connectivity between the riparian and ridgeline habitats of Tabooba would have significant benefits by enabling koalas to safely inhabit and move between the range of altitudinal habitats for feeding and breeding purposes and to seek refuge during periods of climatic extremes.

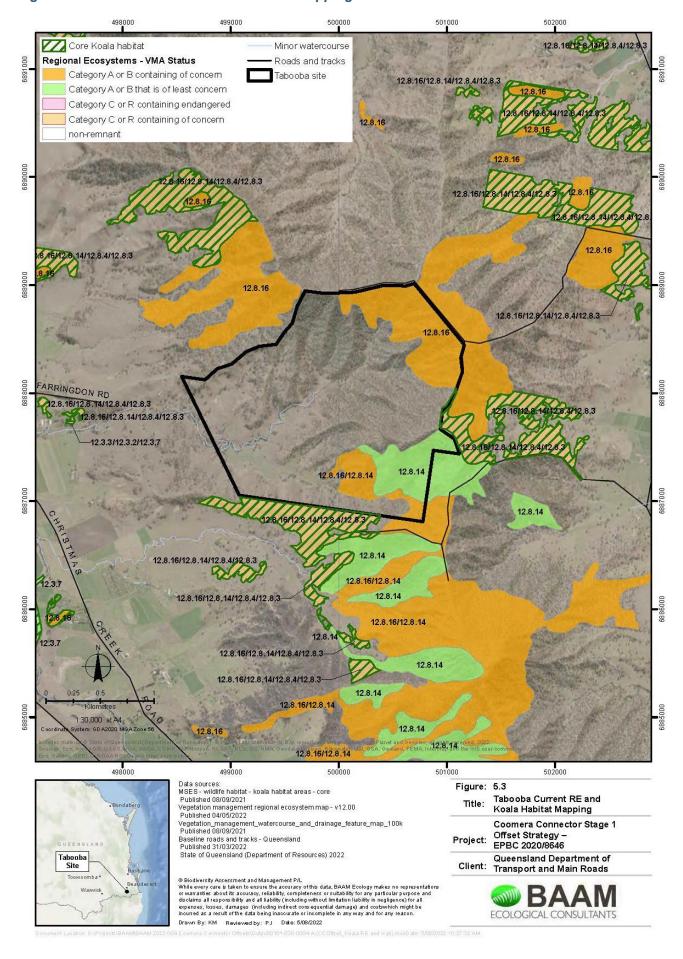

Figure 4 shows the location of Tabooba in relation to riparian features and state and regional biodiversity corridors.

Figure 2: Tabooba location and topography map

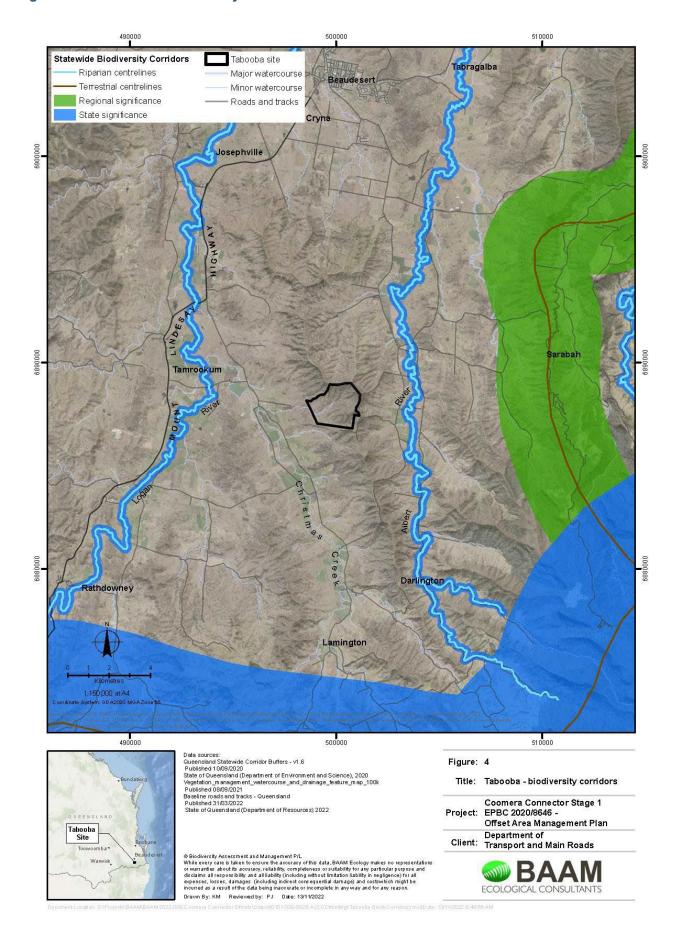

28 June 2024

Figure 3: Tabooba – RE and Koala habitat mapping

28 June 2024

Figure 4: Tabooba - biodiversity corridors

3.1.2 Greenridge

Greenridge is located at 108 Green Meadows Road, Pimpama, approximately 3.5 km north-east of the northern extent of the action. Greenridge covers 407 ha in total and is comprised of 12 lots (see *Figure 5*):

- Lot 121 on RP903491 (28.43 ha)
- Lot 15 on SP145312 (61.71 ha)
- Lot 6 on RP50178 (60.58 ha)
- Lot 7 on RP50178 (26.70 ha)
- Lot 8 on RP50178 (37.70 ha)
- Lot 11 on RP50178 (15.68 ha)
- Lot 12 on RP50178 (16.28 ha)
- Lot 13 on RP50178 (54.61 ha)
- Lot 14 on RP50178 (19.99 ha)
- Lot 15 on RP50178 (40.66 ha)
- Lot 16 on RP50178 (14.37 ha)
- Lot 71 on W31402 (30.36 ha).

Greenridge is situated at the southern-most extent of a broader >100 km² area of agricultural land that exists between the Logan River in the north and McCoys Creek in the south. Agricultural land uses in the broader area are dominated by sugar cane production. Other land uses include extractive industries, including sand mining and hard rock quarrying, along with aquaculture enterprises and facilities for boating. This area is bound to the west by the M1, which is adjoined by industrial and residential development. The eastern boundary is the southern extent of Moreton Bay Marine Park including the Moreton Bay Ramsar Wetland, and there are patches of remnant vegetation along the coastline and associated with inlets, rivers and creeks. New residential developments are beginning to emerge along the coastline. Much of the area is less than 10 m above sea level.

The central to southern portions of Greenridge contains small ridges and hills up to 20 m above sea level and composed of sandy clays to stony lithosols derived from Neranleigh-Fernvale beds with colluvial deposits at the base of slopes. These higher areas are characterised by open eucalypt woodland supporting Koala and GHFF habitat. The north-east and north-west of Greenridge consist predominately of alluvial plains supporting a network of shallow alluvial channels draining into the Pimpama River and McCoys Creek. This area is comprised of poorly drained clays to sandy clays, derived from river alluvial, beach and estuarine sediments and supports a mosaic of aquatic and terrestrial vegetation types typical of low-lying coastal areas.

A considerable portion of Greenridge has been cleared in the past for agricultural purposes. The earliest available aerial imagery (from 1955 8) indicates the north-western portion of Greenridge was historically cleared of vegetation to facilitate sugarcane farming. Sugar-cane production appears to have ceased between 1978 and 1985. By 1989 Greenridge was being managed primarily for cattle grazing and slash pine plantation, as well as for recreational use by light aircraft. All vegetation on Greenridge was either cleared or substantially thinned and cattle grazing has been the predominant use to recent times.

Though most recently used for cattle grazing, Greenridge does not exhibit any signs of recent cattle usage. Pasture dominated by the exotic South African pigeon grass is heavily overgrown and infested with fireweed (prior to the fire in November 2022), which is toxic to livestock, indicative of little pastoral

.

 $^{^8\,}https://www.business.qld.gov.au/running-business/support-assistance/mapping-data-imagery/imagery/aerial-photography$

management. Fencing has also been removed from areas once restricting cattle access to saltmarsh and mangrove communities in the central to southern portions of Greenridge.

Connectivity

Existing RE mapping for Greenridge is shown in *Figure 6*, indicating the presence of remnant REs 12.11.23, 12.3.20, and 12.3.5. Core Koala habitat is mapped over these REs on Greenridge, which adjoins other areas of core Koala habitat external to the Greenridge boundary to the north and southwest. The southern portion of Greenridge intercepts a mapped state biodiversity corridor and the north-eastern tip of Greenridge adjoins a state riparian corridor associated with the Pimpama River. The location of Greenridge within a regional biodiversity corridor is shown in *Figure 7*.

3.2 Suitability of the offset properties

The two properties are considered suitable to provide the values required to address the EOP principles. Consideration was also given to future property planning and any potential future use for the property to avoid the potential for conflicting land use pressures with the offset site.

The properties are suitable for locating the offsets for a number of reasons:

- The delivery of the offset will be close to the impact site.
- The offset area at Tabooba connects to remnant vegetation and Koala habitat along the Jinbroken Range (Figure 3).
- The offset area at Greenridge is located within a corridor of regional significance and has vegetation connectivity to the state significant corridor of the Pimpama River (*Figure 7*).
- The relevant field-verified biodiversity values are present on the offset properties.
- The property management objectives align with the offset management objectives, as the properties were purchased for the purpose of providing offsets for the action.
- There is potential for the future location of other offsets on the same properties for other projects, thus creating larger areas of biodiversity offsets and achieving a better environmental outcome.

Figure 5: Greenridge location map

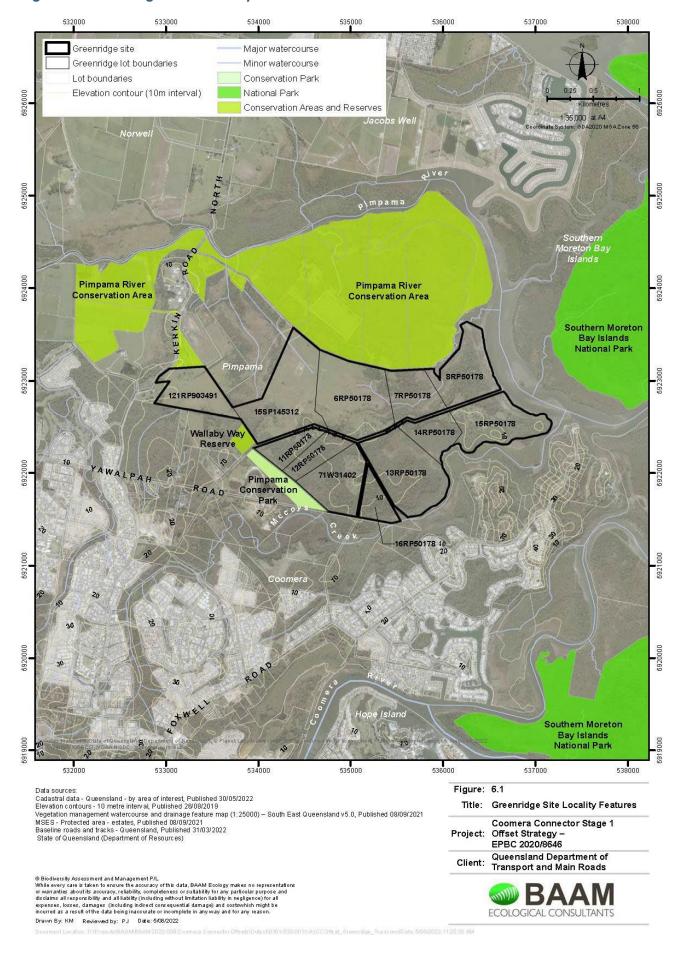
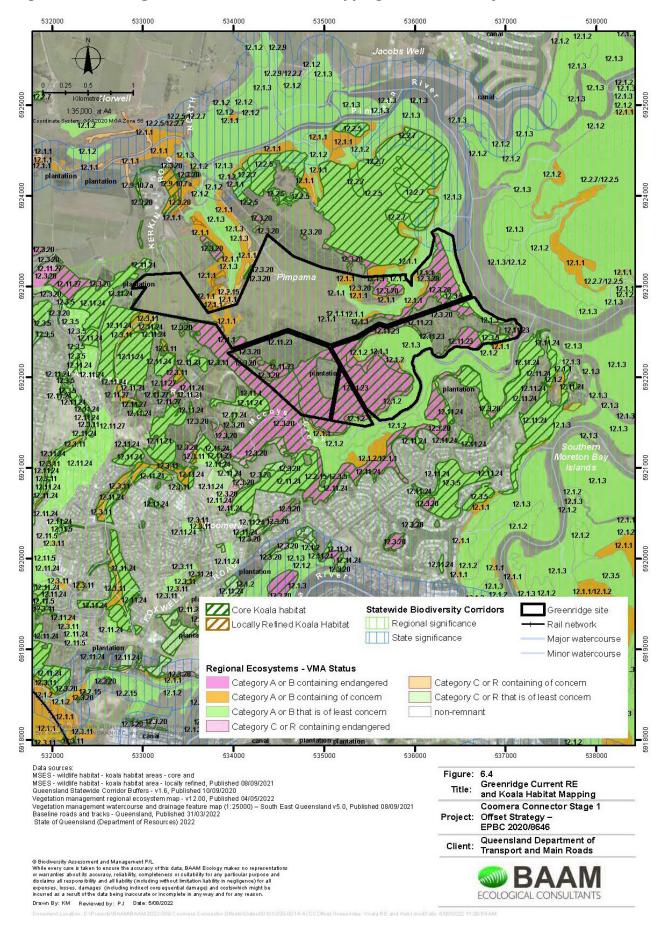
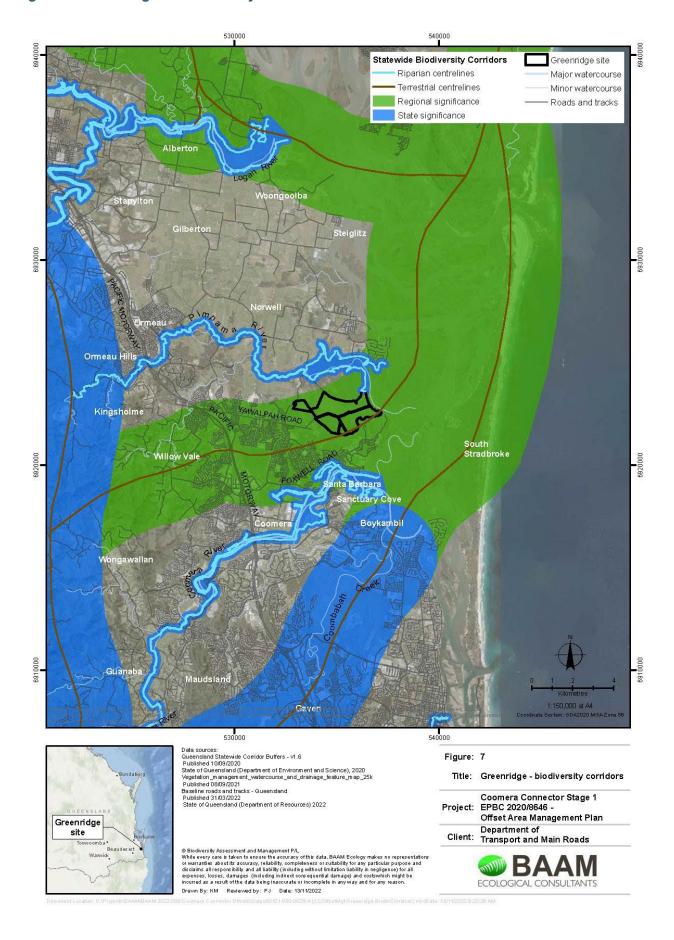




Figure 6: Greenridge – RE and Koala habitat mapping and biodiversity corridors

28 June 2024

Figure 7: Greenridge - biodiversity corridors

28 June 2024

3.3 Coastal swamp oak TEC – offset requirements and attributes

3.3.1 Coastal swamp oak TEC - habitat requirements

In Queensland, the Coastal Swamp Oak TEC coincides with 2 REs:

- RE 12.1.1 (Casuarina glauca woodland on margins of marine clay plains).
- Areas within RE 12.3.20 (*Melaleuca quinquenervia*, *Casuarina glauca* +/- *Eucalyptus tereticornis*, *E. siderophloia* open forest on low coastal alluvial plains) where the canopy is dominated by *Casuarina glauca*.

The TEC occurs in coastal catchments at elevations up to 50m above sea level (**ASL**), typically less than 20m ASL, on coastal flats, floodplains, drainage lines, lake margins, wetlands and estuarine fringes where soils are at least occasionally saturated, water-logged or inundated. There are also minor occurrences on coastal dune swales or flats, particularly deflated dunes and dune soaks. It occurs on soils derived from unconsolidated sediments (including alluvium), typically hydrosols (grey-black clay-loam and/or sandy loam soils) and sometimes organosols (peaty soils). It may occur in transitional soils where shallow unconsolidated sediments border lithic substrates.

For an offset for the coastal swamp oak TEC to be successful, there are a number of habitat features and requirements to consider.⁹ These considerations include:

- Patch size larger areas are more resilient to edge effect disturbance such as weed invasion and the impacts of human activities
- Proximity to other remnant vegetation areas of mosaic native vegetation provide a wider range of habitats that benefit diversity of flora and fauna
- Whether the patch is at the natural edge of its range, where there may be a reduction or absence of some threats, or may contain flora and fauna that have largely declined across the broader ecological community
- Whether the patch contains, or is capable of developing, good faunal habitat indicated by containing diversity of landscape, diversity of plant species and vegetation structure, diversity of age class, presence of movement corridors, mature trees (particularly those with hollows), logs, watercourses, etc.
- The presence of nationally or state-listed threatened species, and species richness
- Whether the patch contains relatively low levels of weeds and feral animals, or where these can be managed efficiently.

Threats to the coastal swamp oak TEC are detailed in *Table 5* in *Section 2.2* of this document. In summary, the principal threats to the TEC are:

- Clearing and fragmentation
- Weeds

Invasive fauna

- Agricultural activities, in particular, grazing
- Inappropriate fire regimes.

-

⁹ Coastal Swamp Oak Forest NSW and SEQ_ Approved Conservation Advice. Available at https://www.environment.gov.au/biodiversity/threatened/communities/pubs/141-conservation-advice.pdf

The management actions for the coastal swamp oak TEC offset area have been developed to specifically deal with these threats and are detailed in *Section 5*.

3.3.2 Field survey methodology for coastal swamp TEC offset areas

To assess the suitability of Greenridge for coastal swamp oak TEC offsets, habitat assessment was undertaken by BAAM Ecological Consultants in 2022. The assessment was undertaken by applying the methods of the *Guide to Determining Terrestrial Habitat Quality – Version 1.3* (Queensland Government 2020) in line with the habitat assessments undertaken at the Coomera Connector Stage 1 impact area for coastal swamp oak TEC (Planit, 2022, see *Appendix E*).

Greenridge was mapped into like Assessment Units (**AU**s), differentiated based on RE type and vegetation condition (remnant, advanced regrowth, young regrowth or cleared). Ground-truthing of a number of polygons of the RE types supporting *Casuarina glauca* was undertaken through applying the quaternary survey method of Neldner et al. (2017). Field observations and the use of historical aerial photography contributed to delineation of the regrowth vegetation.

Additional data were collected during field surveys to inform habitat quality scoring parameters for MNES not captured using the standard BioCondition method. These included the levels of *Casuarina glauca* canopy cover. This was also recorded to assist in identifying patches of coastal swamp oak that would qualify as the TEC.

3.3.3 Field survey results for coastal swamp TEC offset areas

The survey results describe each AU, as listed below:

- **AU1 REMNANT RE 12.1.1:** 14.2 ha. Remnant *Casuarina glauca* open forest. Wholly analogous with the coastal swamp oak TEC.
- AU2 REGROWTH RE 12.1.1: 5.16 ha. Regrowth Casuarina glauca open forest.
- AU3 NON-REMNANT RE 12.1.1: 22.03 ha. Non-remnant *Casuarina glauca* open forest (presently grassland).
- AU4 REMNANT RE 12.3.20: 28.22 ha. Remnant Casuarina glauca, Eucalyptus tereticornis and Melaleuca quinquenervia open forest. Where dominated by Casuarina glauca the community is analogous with the Coastal Swamp Oak TEC.
- AU5 REGROWTH RE 12.3.20: 4.74 ha. Regrowth Casuarina glauca, Eucalyptus tereticornis and Melaleuca quinquenervia open forest.
- AU6 NON-REMNANT RE1 2.3.20: 12.48 ha. Non-remnant Casuarina glauca, Eucalyptus tereticornis and Melaleuca quinquenervia open forest (presently grassland).

Five occurrences of remnant RE 12.3.20 (AU4) at Greenridge are proposed as part of the offset for this MNES (see *Table 6*). Field assessment has determined that each of these areas represents differing proportions of TEC (ranging from 50 to 100%). The represented proportions have been applied to the total nominated area of remnant RE 12.3.20 (28.22ha), reducing the total area available for the offset within the nominated remnant RE 12.3.20 patches to 22.78ha.

Three occurrences of regrowth RE 12.3.20 (AU5) at Greenridge are proposed to offset the TEC, and all have been ground-truthed. Two were assessed as 100% representative of the TEC and one was 10% representative of the TEC. The represented proportions have been applied to the total nominated area of regrowth 12.3.20 (4.74ha), maintaining the total area available for the offset within the nominated regrowth RE 12.3.20 patches at 4.74ha.

For the non-remnant areas of RE 12.3.20 proposed for offsetting the TEC, all have been ground-truthed at 90-100% TEC. These proportions have been applied to the total area of non-remnant RE 12.3.20, reducing the total area to be considered to provide the TEC offset to 12.48ha.

Table 6: Coastal swamp oak TEC at the offset site

Property	RE	Assessment unit	Type of vegetation	Area of offset (ha)
	12.1.1	AU1	Remnant	14.20
	12.1.1	AU2	Regrowth	5.16
Croopridge	12.1.1	AU3	Non-remnant (cleared)	22.03
Greenridge	12.3.20	AU4	Remnant	28.22
	12.3.20	AU5	Regrowth	4.74
	12.3.20	AU6	Non-remnant	12.48
			Total:	86.83

The quality scores for each of these AUs is shown in *Table 16*.

The full set of raw BioCondition survey data for Greenridge is provided in *Appendix I*. The HQS tables for each AU within the coastal swamp oak TEC offset areas are provided in *Appendix J*.

3.3.4 Ecological benefits of the proposed coastal swamp oak TEC offsets

At Greenridge the most significant impacts on ecosystem health are the result of feral pig damage and weed invasion, along with maintenance of cleared and weed-infested paddocks adjacent to remnant and regrowth vegetation. The current level of feral pig activity would not be managed without the offset, which will be detrimental to the survival of canopy species within the coastal swamp oak TEC – as well as suppressing shrub regrowth and ground species cover.

Removal and ongoing control of feral pigs at Greenridge will allow recovery of the ground surface within the TEC, contributing to the health and growth of existing trees that have been subject to significant root disturbance through pig digging, and allow ground cover, shrub layer and natural Ecologically Dominant Layer (EDL) recruitment to occur unhindered. The nominated non-remnant (cleared) patches of RE 12.1.1 at Greenridge will be planted with *Casuarina glauca*, which has a moderate-high growth rate. The species is commonly used overseas to stabilise soil and create windbreaks. A study by Goel and Behl (2005) recorded average height of plants in an 8-yr-old trial of *Casuarina glauca* of 1033.3 ± 270cm, which is 83% of the benchmark height for RE 12.1.1.

Given the planting at Greenridge will be in ideal conditions for the species, growth rates are likely to be considerably higher as evidenced by the success of replanting *Casuarina glauca* in the adjacent Pimpama River Conservation Area. The revegetation plan is provided at *Appendix C*.

Management of Greenridge for agricultural uses has introduced a range of non-native species, also present in the surrounding landscape, which will continue to infiltrate natural areas, impacting a range of habitat quality measures without management under the offset. Without fire management to benefit ecosystems, fire exclusion may affect the health of coastal swamp oak communities which need disturbance to maintain structure whereas the risk of severe wildfire increases as litter builds. Non-remnant areas will be rehabilitated to reflect the pre-clear REs and are predicted to reach benchmark RE status and TEC status for coastal swamp oak in 20 years under appropriate planning and management.

The proximity of the offset areas to nearby areas of remnant vegetation (including the Pimpama Conservation Park and the Pimpama River Conservation Area) is of benefit to the likelihood of success of the offset. The offset property itself will form a large part of a buffer area between the highly developed residential areas to the south and these conservation areas. This is further enhanced by the large size of the offset property itself, which in total is approximately the same area as the Pimpama River Conservation Area. Additionally, access restrictions that will apply to the property, along with the comprehensive proposed management actions to control weeds and feral animals will enable the offset to meet the habitat requirements.

The offset area is shown in Figure 8.

3.3.5 OAG inputs for coastal swamp oak TEC

Inputs for DCCEEW's Offset Assessment Guide (**OAG**) were derived from the survey results described above.

The risk of loss was derived from Appendix One of the document titled *Guidance for deriving* 'Risk of Loss' estimates when evaluating biodiversity offset proposals under the EPBC Act.¹⁰

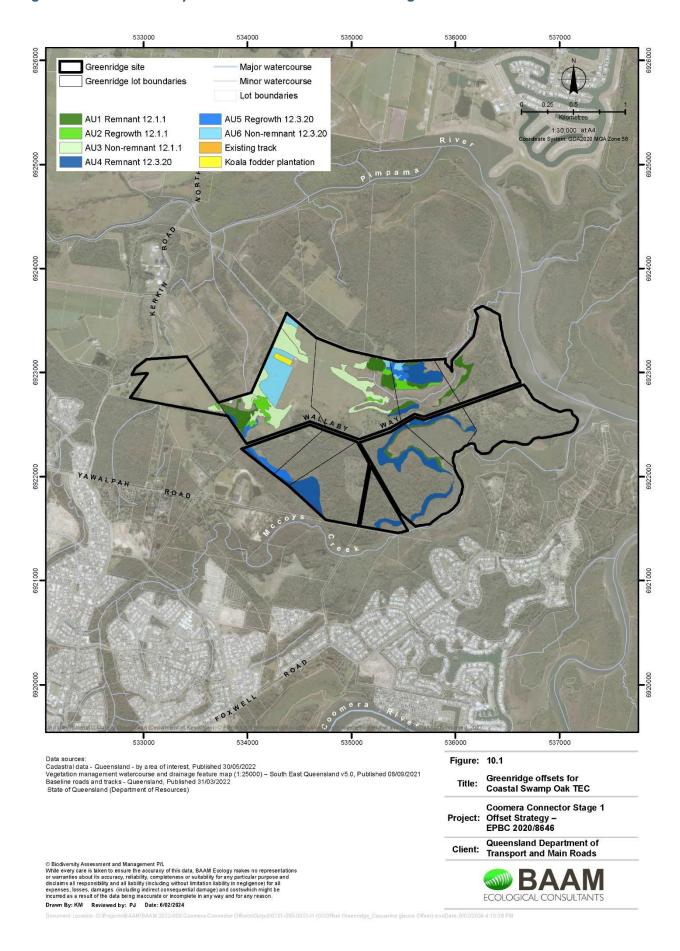
The Offsets Assessment Guide requires an estimation of the projected improvements in habitat quality that can be achieved over 20 years through management, along with an indication of the level of confidence in these projections. The time to ecological benefit is set at 10 years for remnant and advanced regrowth communities and 20 years for other regrowth and non-remnant communities, with 85% confidence that the goals for offset area habitat quality will be achieved. Periods of 10 years for remnant and 20 years for regrowth and non-remnant communities are required to realise the results of management actions that will improve habitat quality – of these actions, removal of invasive weeds and implementation of controlled burning to prevent damaging wildfire, encourage EDL recruitment and improve ground cover quality are predicted to raise the quality of the remnant and advanced regrowth ecosystems close to benchmark levels.

At present, the quality of habitats at the Greenridge property are impacted by weeds. Of the 36 introduced plants recorded from within the habitat quality survey plots at the Greenridge property), 2 are weeds of national significance (*Lantana camara* and *Asparagus aethiopicus*) and 19 were identified by Batianoff and Butler (2002) as among the 200 most invasive naturalised plants in South East Queensland, selected from 1060 naturalised taxa. Within the survey plots at Greenridge there was an average of 29.25% non-native cover.

Nationally exotic species account for about 15% of flora (Department of Agriculture, Fisheries and Forestry, 2024). Weeds are known to compete with native species for space, light, water and nutrients, and also suppress and out-compete mid-storey and canopy trees (Department of the Environment, 2011), affecting the structure and function of land-based and aquatic ecosystems, and impacting negatively on native fauna and flora. Nineteen of 20 studies on weed impact in Australia reviewed by Adair and Groves (1998) demonstrated a decline in either species richness, canopy cover or frequency of native species. One of the reviewed studies (Hester & Hobbs. 1992) found weed presence reduced percent cover of natives and reduced seed production in shrublands and woodlands, with removal of weeds resulting in a 3-fold increase in native cover.

¹⁰ Centre of Biodiversity and Conservation Science, School of Earth and Environmental Science, The University of Queensland, Brisbane. (2017) https://www.nespthreatenedspecies.edu.au/media/zpyajjq1/5-1-guidance-for-deriving-risk-of-loss-report 2017 low-res.pdf

¹¹ Jones, P, pers. comms, (2024)


Weeds can also increase the biomass of ecosystems leading to more intense bushfires, changing the composition and structure of native vegetation (Invasive Plants and Animal Committee, 2016).

Greenridge is subject to invasion by exotic grasses. At Greenridge, South African pigeon grass (*Setaria sphacelata*) is a dominant species of open spaces. The species is regarded as an environmental weed in Queensland, New South Wales and Western Australia. It can form dense stands preventing natural plant regeneration and can transform infested areas into open badlands, with potential to invade wetland areas, reducing access for endangered birds (Brisbane City Council, 2024).

Control and removal of lantana and invasive introduced grasses will result in long term positive ecosystem change – by increasing species richness, abundance and recruitment (for lantana, see Gooden et al.,2009) and significantly reducing the risk of intense wildfire. Under these conditions there is high (85%) confidence that the quality of existing ecosystems will be raised to benchmark levels. An additional benefit of the intended weed management is the reestablishment of habitat connectivity for flora and fauna that are impeded by invasive species (Godfree et al. 2017).

The OAG outputs are provided in *Appendix M*.

Figure 8: Coastal Swamp Oak TEC offset area - Greenridge

3.4 Koala habitat – offset requirements and attributes

3.4.1 Koala habitat requirements

Koalas are tree-dwelling, obligate folivores (leaf eaters) with a highly specialised diet. The koala's diet is defined by the availability and palatability of a limited variety of *Eucalyptus*, *Corymbia* and *Angophora* species. Koalas are nocturnal and spend significant periods of time moving across the ground between food and shelter trees. Movement increases in the breeding season (typically September to February) (Melzer & Tucker 2011). Koalas are reported to utilise more than 400 different species of tree for their food and habitat requirements with different tree species varying by habitat type and location across their range. The natural range of the koala is determined by specialist food, habitat and environmental requirements. Typically, this includes forests and woodlands dominated by *Eucalyptus* species (Melzer et al. 2000). The koala's home range (the area an individual needs to survive) is highly variable and dependant on life history stage, soil fertility, habitat quality and nutritional requirements.

Biophysical habitat attributes for the koala include places that contain the resources necessary for individual foraging, survival (including predator avoidance), growth, reproduction and movement. The total amount of resources (including habitat attributes) and how they are arranged in the landscape influence the viability of metapopulations and processes.

Threats to the koala are detailed in *Table 5* in *Section 2.2* of this document. In summary, the principal threats to the species are:

- Climate change driven processes, including loss of climatically suitable habitat, and increased frequency and intensity of heatwaves and droughts
- Human related activities such as clearing and fragmentation of habitat, and mortality associated with vehicles and dogs
- Disease, in particular, koala retrovirus.

The management actions for the koala offset areas have been developed to promote the desired habitat attributes described above, and specifically deal with the threats to the species. These management actions are detailed in *Section 5*.

3.4.2 Field survey methodology for koala offset areas

Tabooba – flora surveys

To assess the suitability of Tabooba for koala offsets, habitat assessment and BioCondition surveys were undertaken in May 2022 to compare with the habitat quality identified in the proposed action corridor. This applied the methods of the *Guide to Determining Terrestrial Habitat Quality – Version 1.3* (Queensland Government 2020) in line with the habitat assessments undertaken in the proposed action corridor for koala (Planit 2022; see Appendix F), as well as per *BioCondition: A Condition Assessment Framework for Terrestrial Biodiversity in Queensland* (Eyre et al., 2015); and *Method for the establishment and survey of reference sites for BioCondition, Version 2.0* (Eyre, et al. 2011) using the most recent Queensland Herbarium Biocondition Benchmarks.

The site vegetation mapping was ground-truthed, compared to satellite imagery and then adjusted accordingly. Due to the different ages of regrowth on the property, regrowth vegetation was divided into the following categories:

 Advanced regrowth: areas supporting a continuous canopy in aerial imagery that was indistinguishable from areas mapped as remnant; and • Young regrowth: areas supporting a broken canopy with scattered taller trees, but generally dominated by scattered smaller trees as evident in satellite imagery.

This information was also used to determine the number of transects in each AU (which is the vegetation type and condition) to fulfill the recommendations provided in the BioCondition Framework.

Tabooba - fauna surveys

Koala were surveyed at Tabooba in both March and May 2022 by Spot Assessment Technique (SAT; as per Phillips and Callaghan, 2011) to determine localised levels of habitat use by koala, and thermal-imaging drone surveys to gather baseline koala density data in areas that were difficult and/or impossible to survey by foot.

Koala SAT surveys, including searching for individuals in trees and scats within 1m of the base of suitable forage trees, were undertaken in accessible locations on the property on 17 March 2022 and 6-7 May 2022. The nine SAT surveys encompassed 279 koala food trees of *Angophora leiocarpa, Eucalyptus crebra, E. tereticornis, E. melliodora, Lophostemon confertus, Corymbia intermedia* and *C. tessellaris*. These surveys were undertaken predominantly within advanced and young regrowth vegetation, as remnant vegetation on the steeper slopes was relatively inaccessible due to very wet conditions and with dense lantana and/or too steep to survey safely. There was only one site where a SAT survey could be undertaken in riparian vegetation as the channel was relatively shallow and erosion had reduced the amount of weed cover.

Thermal koala surveys utilising a drone over Tabooba were undertaken in March 2022 and May 2022. The area was divided into discrete search polygons and each area was systematically searched using a thermal camera. In the March survey, the drone covered an area of approximately 200 ha and detected 2 koalas. The area droned was limited by the need to keep line of sight of the drone and more importantly, the inability to access areas due to the very wet conditions. In the May survey, the drone was able to be operated from further inside the property, reaching higher into the range and covering an area of approximately 107 ha of habitat.

Greenridge - flora surveys

Utilising the same approach as had been used at Tabooba, the site vegetation mapping for Greenridge was ground-truthed, compared to satellite imagery and then adjusted accordingly. Greenridge was then mapped into like AUs, differentiated based on RE type; and vegetation condition (remnant, advanced regrowth, young regrowth or cleared). Standard BioCondition surveys record canopy cover by measuring the vertical projection of canopy intercepting a 100m transect line (Eyre et al. 2015). To capture the proportion of the canopy comprised of koala food trees, these species were distinguished separately from other canopy species when recording canopy cover over the 100m transect. Distances of the koala tree canopies over the 100m transect were summed and then calculated as a proportion of the total canopy cover (koala tree cover plus non-koala tree cover, less any overlaps).

Greenridge - fauna surveys

SAT surveys and strip transects in general accordance with Dique et al. (2003) were undertaken to measure localised levels of habitat use by koalas to gather baseline koala density data. Seven SAT surveys and 8 strip transect surveys were carried out on Greenridge on 30 June, 1 July, 27 July and 3 August 2022. The results of two of each survey type, undertaken on 27 July and 3 August, are reported as these were the only sites relevant to a proposed koala offset AU4 (remnant RE 12.3.20).

Thermal-imaging drone surveys of the Pimpama River Conservation Area and Greenridge were conducted by EVE over 13 nights from 2 December 2021 to 10 February 2022, with 6 of those nights focused on Greenridge. All areas of koala habitat were surveyed, except for 2 small areas on Greenridge (approximately 9.5 ha in total) where site terrain made it difficult to maintain visual line of sight of the drone (a Civil Aviation Safety Authority requirement). The area was divided into 6 discrete search polygons and each area was systematically searched in an 'up-and-back' lawn-mower pattern, using a dual optical and thermal camera. Thermal heat signatures suggestive of koalas were investigated to positively identify the origin of the heat source.

3.4.3 Field survey results for koala offset areas

Tabooba

The field flora surveys resulted in AUs described as:

- **AU1 REMNANT RE 12.8.16:** 49.84 ha. Remnant *Eucalyptus crebra*, *E tereticornis* +/- *Angophora subvelutina* open forest.
- AU2 ADVANCED REGROWTH RE 12.8.16: 145.02ha. Advanced regrowth of open forest dominated by Eucalyptus tereticornis subsp. basaltica, E. crebra +/- Corymbia tessellaris, C. intermedia. Occasional relictual trees present.
- AU3 YOUNG REGROWTH RE 12.8.16: 48.10 ha. Young regrowth open forest with occasional emergent relictual trees. Dominant species include *Eucalyptus crebra*, *E. tereticornis* and *C. tessellaris*.
- AU4 REMNANT RE 12.8.14: 50.62 ha. Remnant open forest dominated by *Eucalyptus melliodora, Eucalyptus tereticornis* subsp. *basaltica, E. eugeniodes, Angophora subvelutina* and *C. intermedia*.
- AU5 ADVANCED REGROWTH RE 12.8.14: 19.81 ha. Advanced regrowth of *Eucalyptus eugeniodes, E. tereticornis* subsp *basaltica, Eucalyptus melanophloia* open forest.

These AUs, together with the koala offset AUs from Greenridge, are summarised in *Table 7* in *Section 3.4.4*.

Koala SAT survey results indicated that the surveyed habitat is categorised as 'low-use', with <22.52% scat evidence. However, the results are likely to be a significant underestimation of the koala activity level on the property, due to the challenges with applying this survey method in such steep and complex terrain. Phillips and Callaghan (2011) suggest that low koala activity is expected in the west of the species' East Coast range in areas receiving less than 600 mm annual rainfall. The local area receives over 900 mm annual rainfall and should therefore fall into the Phillips and Callaghan (2011) category of East Coast medium-high Koala activity.

The thermal imaging koala surveys via drone resulted in 2 individuals being detected in the March survey. One individual was recorded just outside of the property boundary in the north-west within mapped remnant RE 12.8.16, and the other in the north-western quarter of the property within AU2 (RE 12.8.16 advanced regrowth). Allowing for a detection probability of 90%, EVE (2022a) estimated the property probably supports four or five koalas (a density of 0.01-0.013 koalas/ha).

For the May survey, the drone was able to be operated from further inside the property, reaching higher into the range and covering an area of approximately 107 ha of habitat. Eight koalas were detected, mostly on the mid-upper slopes of the range in the following AUs:

- 2 koalas in AU1 RE12.8.16 remnant
- 2 koalas in AU2 RE12.8.16 advanced regrowth
- 3 koalas in AU4 RE12.8.14 remnant

one koala in AU5 RE12.8.14 advanced regrowth.

Allowing for a detection probability of 90%, EVE (2022b) calculated a population density of 0.08 koalas/ha based on the May survey event. EVE (2022b) noted that the presence of such an abundance of koalas on the mid-upper slopes of the ridge was somewhat unexpected given that more nutrient-rich geology undoubtedly occurs on the lower slopes and flats. However, the lower slopes and flats are largely cleared and are managed for beef cattle production.

The full set of raw BioCondition survey data for Tabooba is provided in *Appendix H*. The HQS tables for each AU within the koala offset areas are provided in *Appendix K*.

Greenridge

Existing RE mapping for Greenridge indicates the presence of remnant REs 12.11.23, 12.3.20, and 12.3.5. Core koala habitat is mapped over these REs on Greenridge, which adjoins other areas of core koala habitat external to the Greenridge boundary to the north and south west.

RE 12.11.23 is described as *Eucalyptus pilularis* open forest on coastal metamorphics and interbedded volcanics. Other canopy species include *E. microcorys, Corymbia intermedia, Angophora woodsiana, E. tindaliae* and *E. carnea*. Consideration of the dominant canopy species indicates the RE has high value for koala (DES 2021).

RE 12.3.20 is described as *Melaleuca quinquenervia*, *Casuarina glauca* +/- *Eucalyptus tereticornis*, *E. siderophloia*, *M. styphelioides* open forest on low coastal alluvial plains. Consideration of the dominant canopy species indicates the RE has medium value for koala (DES 2021).

RE 12.3.5 is described as *Melaleuca quinquenervia* open forest on coastal alluvium. Other tree species that may be present as scattered individuals or clumps include *Lophostemon suaveolens*, *Eucalyptus robusta*, *E. tereticornis*, *E. bancroftii*, *E. latisinensis*, *Corymbia intermedia*, *Melaleuca salicina*, *Livistona australis*, *Casuarina glauca*, and *Endiandra sieberi*. Consideration of the dominant canopy species indicates the RE has medium value for koala (DES 2021).

No koala scats were recorded from the 3 SAT surveys undertaken within AU4 and no koalas were recorded from the 3 strip transects undertaken within AU4.

The thermal camera surveys detected the presence of 14 koalas within the remnant, regrowth and non-remnant RE 12.3.20 areas on Greenridge.

The full set of raw BioCondition survey data for Greenridge is provided in *Appendix I*. The HQS tables for each AU within the koala offset areas are provided in *Appendix K*.

3.4.4 Ecological benefits of the proposed koala offsets

Tabooba

Tabooba is well located to provide valuable koala habitat on the ranges, lower slopes and the wetter and more fertile lower slopes and flood zones of the creeks, which are currently cleared and are similarly cleared in the surrounding landscape where beef cattle production dominates land use. Riparian habitats provide important refuge for koalas during times of drought (Reed and Lunney 1990), facilitate local movement (Davies et al. 2013), and are important for long distance dispersal (McAlpine et al. 2006a and b; Norman et al. 2019), with koala persistence within riparian areas supported by the presence of intact non-riparian habitat (Smith et al. 2013).

Restoring and maintaining koala habitat connectivity between the riparian and ridgeline habitats of Tabooba would have significant benefits by enabling koalas to safely inhabit and move between the range of altitudinal habitats for feeding and breeding purposes and to seek refuge during periods of climatic extremes.

The Scenic Rim Regional Council Biodiversity Strategy 2015-2025 shows the location of Tabooba in relation to existing habitats and landscape linkages. Tabooba lies within an area mapped as a 'core node', taking in much of the vegetation of the Jinbroken Range and connecting to the south with core habitat termed by Scenic Rim Regional Council as the 'Lamington Core'.

The remnant REs 12.8.16 and 12.8.14 are located on the high ridges and slopes within and adjacent to Tabooba. RE 12.8.16 is regarded as high value for koala (DES 2021) and RE 12.8.14 is regarded as medium value for koala (DES 2021). Tabooba is bordered to the east and south by habitat mapped by the Queensland Government as core koala habitat over the REs mapped as 12.8.16/12.8.14/12.8.4/12.8.3. REs 12.8.4 and 12.8.3 are both notophyll vine forest REs and these habitats are not considered to represent important koala habitat.

Greenridge

The ecological values of portions of Greenridge are recognised in the Gold Coast City Plan, where the eastern half of Greenridge is zoned for conservation values and forms part of a broader conservation node. The eventual inclusion of an additional 150 ha of currently 'Rural' zoned land on Greenridge into this conservation node in the form of offsets for koalas and other matters would increase available habitat for koalas. For the entire site, including those locations currently supporting remnant and regrowth vegetation, management as offset habitat would implement long-term measures to reduce threats to koalas, such as controlling European foxes and wild dogs and managing lantana where it is a barrier to koala movement and a risk for uncontrolled bushfire.

Movement of koalas between Greenridge and the adjacent state-mapped core koala habitat in the 355 ha Pimpama River Conservation Area (**PRCA**) to the north is known anecdotally from previous camera trap surveys. A tributary of the Pimpama River which separates vegetated eastern and central portions of Greenridge from the PRCA, confines koala movement between these areas to the terrestrial habitats in the western portion of Greenridge. At present, the cleared paddocks in the western portion are mostly treeless and support long pasture grasses and dense *Setaria sphacelate*, which may discourage koala movement though these areas and expose koalas to high risk of predation. The western boundary of Greenridge is adjacent to the 14 ha Pimpama Conservation Park, the 5ha Wallaby Way Reserve, partly treed land zoned for rural uses and a local government sewerage treatment facility, which are ultimately connected to the PRCA and likely form the predominant passage between Greenridge and the PRCA for koalas.

Future restoration of koala habitat in cleared portions of Greenridge would significantly improve connectivity between exiting remnant habitat and the PRCA.

The AUs comprising the offset areas for koala on Tabooba and Greenridge are shown in *Table 7*, and the offset areas at the 2 properties are shown in *Figure 9* and *Figure 10*.

Table 7: Koala habitat at the offset sites

Property	RE	Assessment unit	Type of vegetation	Area of offset (ha)
		AU1	Remnant	49.84
	12.8.16	AU2	Advanced regrowth	145.02
Tabooba		AU3	Young regrowth	48.10
	12.8.14	AU4	Remnant	50.62
	12.0.14	AU5	Advanced regrowth	19.80
		AU4	Remnant	28.22
Greenridge	12.3.20	AU5	Regrowth	4.74
		AU6	Non-remnant	12.48
			Total:	358.82

3.4.5 OAG inputs for koala offsets

Inputs for DCCEEW's OAG were derived from the survey results described above.

The risk of loss was derived from Appendix One of the document titled *Guidance for deriving* 'Risk of Loss' estimates when evaluating biodiversity offset proposals under the EPBC Act.¹²

The Offsets Assessment Guide requires an estimation of the projected improvements in habitat quality that can be achieved over 20 years through management, along with an indication of the level of confidence in these projections. The time to ecological benefit is set at 10 years for remnant and advanced regrowth communities and 20 years for other regrowth and non-remnant communities, with 85% confidence that the goals for offset area habitat quality will be achieved. Periods of 10 years for remnant and 20 years for regrowth and non-remnant communities are required to realise the results of management actions that will improve habitat quality – of these actions, removal of invasive weeds and implementation of controlled burning to prevent damaging wildfire, encourage EDL recruitment and improve ground cover quality are predicted to raise the quality of the remnant and advanced regrowth ecosystems close to benchmark levels.

At present, the quality of habitats at the Greenridge and Tabooba properties are impacted by weeds. Of the 36 introduced plants recorded from within the habitat quality survey plots at the Greenridge property, 2 are weeds of national significance (*Lantana camara* and *Asparagus aethiopicus*) and 19 were identified by Batianoff and Butler (2002) as among the 200 most invasive naturalised plants in South East Queensland, selected from 1060 naturalised taxa. Within the survey plots at Greenridge there was an average of 29.25% non-native cover. Of the 43 introduced plants recorded from within the habitat quality survey plots at the Tabooba property, one is a weed of national significance (*Lantana camara*) and 17 were identified by Batianoff and Butler (2002) as among the 200 most invasive naturalised plants in South East Queensland. Within the survey plots at Tabooba there was an average of 20.5% non-native cover.

Nationally exotic species account for about 15% of flora (Department of Agriculture, Fisheries and Forestry, 2024). Weeds are known to compete with native species for space, light, water and

¹² Centre of Biodiversity and Conservation Science, School of Earth and Environmental Science, The University of Queensland, Brisbane. (2017) https://www.nespthreatenedspecies.edu.au/media/zpyajjq1/5-1-guidance-for-deriving-risk-of-loss-report 2017 <a href="https://www.nespthreatenedspecies.edu.au/media/zpyajjq1/5-1-guidance-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report

nutrients, and also suppress and out-compete mid-storey and canopy trees (Department of the Environment, 2011), affecting the structure and function of land-based and aquatic ecosystems, and impacting negatively on native fauna and flora. Nineteen of 20 studies on weed impact in Australia reviewed by Adair and Groves (1998) demonstrated a decline in either species richness, canopy cover or frequency of native species. One of the reviewed studies (Hester & Hobbs. 1992) found weed presence reduced percent cover of natives and reduced seed production in shrublands and woodlands, with removal of weeds resulting in a 3-fold increase in native cover.

Weeds can also increase the biomass of ecosystems leading to more intense bushfires, changing the composition and structure of native vegetation (Invasive Plants and Animal Committee, 2016).

Both properties are subject to invasion by exotic grasses. At Greenridge South African pigeon grass (*Setaria sphacelata*) is a dominant species of open spaces. The species is regarded as an environmental weed in Queensland, New South Wales and Western Australia. It can form dense stands preventing natural plant regeneration and can transform infested areas into open badlands, with potential to invade wetland areas, reducing access for endangered birds (Brisbane City Council, 2024).

Lantana is present on both properties. This is a weed of national significance and was the number one ranked invasive weed in South East Queensland (Batianoff and Butler, 2002). Lantana forms dense thickets that can smother and destroy native vegetation and impede animal movement. Its presence can also create hotter bushfires, altering native vegetation communities (Department of Agriculture and Fisheries, 2023).

Control and removal of lantana and invasive introduced grasses will result in long term positive ecosystem change – by increasing species richness, abundance and recruitment (for lantana, see Gooden et al.,2009) and significantly reducing the risk of intense wildfire. Under these conditions there is high (85%) confidence that the quality of existing ecosystems will be raised to benchmark levels. An additional benefit of the intended weed management is the reestablishment of habitat connectivity for flora and fauna that are impeded by invasive species (Godfree et al. 2017).

The OAG outputs are provided in *Appendix N*.

Figure 9: Tabooba - Koala and grey-headed flying-fox offset area

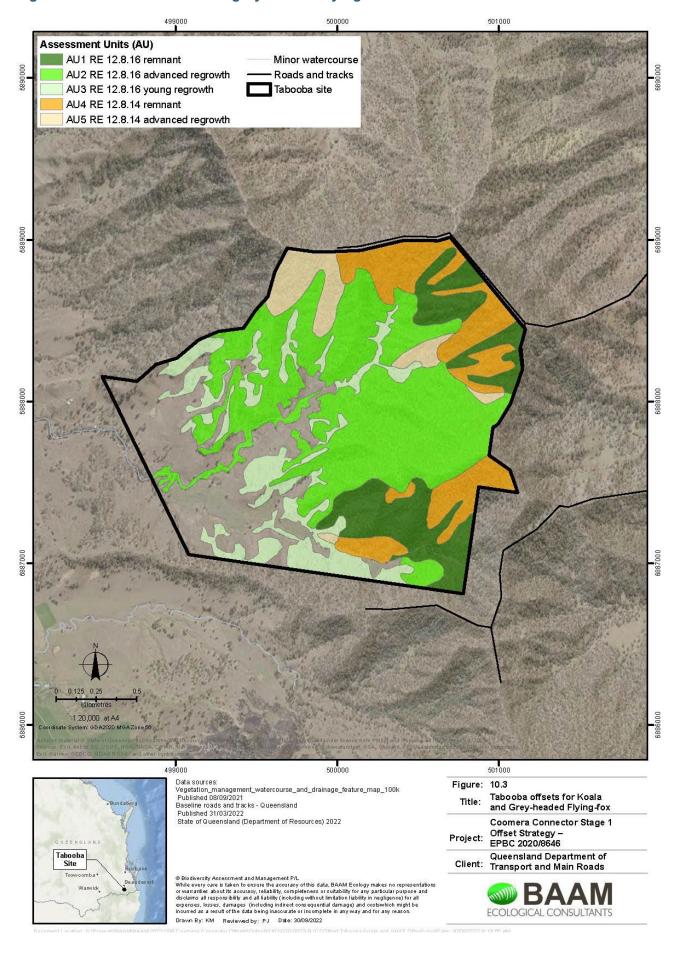
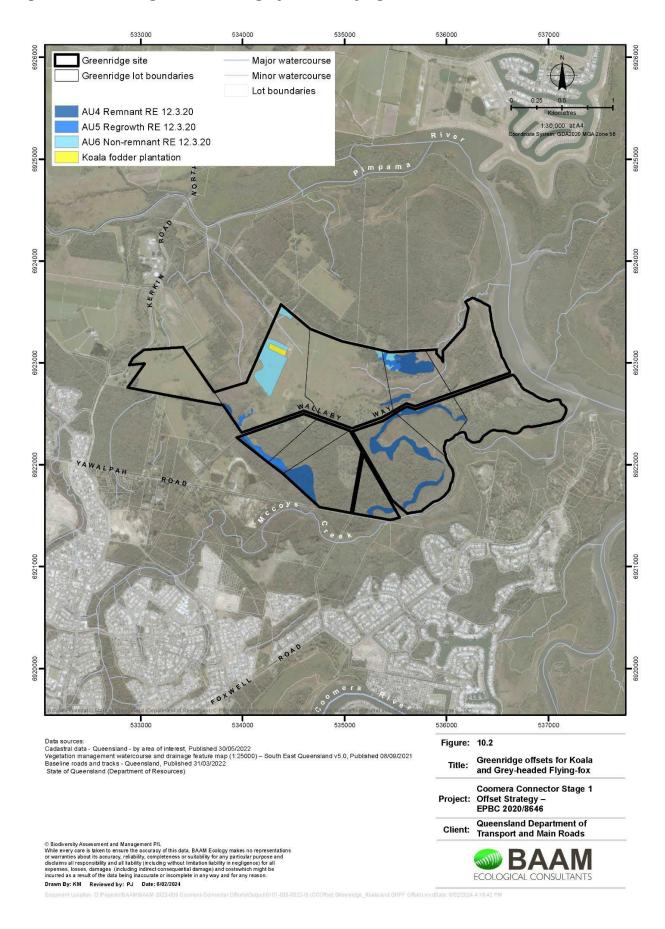



Figure 10: Greenridge - Koala and grey-headed flying-fox offset area

3.5 Grey-headed flying-fox - offset site requirements and attributes

3.5.1 Grey-headed flying fox habitat requirements

The grey-headed flying-fox has historically occupied forests and woodlands in the coastal lowlands, tablelands and slopes of eastern Australia, from Bundaberg in Queensland to Geelong in Victoria, with some isolated camps and rare sightings outside this range. More recently, camps have established in South Australia, the Australian Capital Territory and inland areas of central and southern New South Wales and Victoria and sightings have increased in Tasmania (*National Recovery Plan for the grey-headed flying fox* Pteropus poliocephalus. DAWE, (2021)) (**GHFF Recovery Plan**).

Flying-foxes are thought to have a maximum natural longevity of 15-20 years. This, combined with slow sexual maturation and a low reproductive rate, is indicative of a species with a low natural mortality rate. Since European settlement, flying-foxes have faced a greatly increased mortality due to habitat loss, persecution and culling. Due to their low reproductive rate, GHFF also have a low population growth rate, even under optimal conditions. This, combined with increased mortality, means the species has limited capacity for recovery from frequent or persistent threats.

The species feeds on over 100 species of flowering trees and fleshy-fruited trees and lianas. In doing so they interact with numerous plant communities and assist seed and pollen dispersal of its food plants that occur within these communities.

Habitat critical to the survival of the grey-headed flying-fox may also be vegetation communities which:

- contain native species that are known to be productive as foraging habitat during the final weeks of gestation, and during the weeks of birth, lactation and conception (August to May)
- contain native species used for foraging and occur within 20 km of a nationally important camp as identified on DCEEW's interactive flying-fox web viewer, or
- contain native and or exotic species used for roosting at the site of a nationally important camp.

Key threats to the species are detailed in *Table 5* in *Section 2.2* of this document. In summary, the principal threats to the species are:

- Habitat loss through land use activities that involve clearing
- Disturbance to camps
- Heat stress, which is expected to increase under climate change
- Entanglement in netting and barbed wire fencing
- Bushfires and inappropriate fire regimes.

The management actions for the GHFF offset areas have been developed to specifically deal with these threats and are detailed in *Section 5*.

3.5.2 Field survey methodology for GHFF offset areas

Tabooba - flora surveys

To assess the suitability of Tabooba for GHFF offsets, habitat assessment and BioCondition surveys were undertaken in May 2022 to compare with the habitat quality identified in the

proposed action corridor. This applied the methods of the *Guide to Determining Terrestrial Habitat Quality – Version 1.3* (Queensland Government 2020) in line with the habitat assessments undertaken in the proposed action corridor for GHFF (Planit 2021b), as well as in line with Eyre et al. (2015); and Eyre, et al. (2011) using the most recent Queensland Herbarium BioCondition benchmarks.

For GHFF, suitable habitat for both properties was considered to be:

- REs with >50% dominant or subdominant vegetation species that are listed in Ranking the feeding habitats of GHFF for conservation management (Eby and Law, 2008) as significant flowering or fruiting species; or
- REs with >50% dominant or subdominant vegetation species that are listed in the GHFF Recovery Plan as important winter and spring food trees.

The site vegetation mapping was ground-truthed, compared to satellite imagery and then adjusted accordingly. Due to the different ages of regrowth on the property, regrowth vegetation was divided into the following categories:

- Advanced regrowth: areas supporting a continuous canopy in aerial imagery that was indistinguishable from areas mapped as remnant; and
- Young regrowth: areas supporting a broken canopy with scattered taller trees, but generally dominated by scattered smaller trees as evident in satellite imagery.

Tabooba – fauna surveys

Additional assessment was undertaken for GHFF, and the results have been applied in accordance with *How to use the offsets assessment guide* (DSEWPaC, 2012), taking into account site condition, site context and species stocking rate to contribute to the calculation of habitat quality using the EPBC Act Offsets assessment guide.

No surveys targeting GHFF were conducted at Tabooba as there were no flowering events at the time of surveys. However, the property is dominated by preferred forage species of GHFF, including the winter-flowering *Eucalyptus tereticornis* and *E. crebra*, which are critical resources for the species (GHFF Recovery Plan)

Greenridge - flora surveys

Utilising the same approach as had been used at Tabooba, the site vegetation mapping for Greenridge was ground-truthed, compared to satellite imagery and then adjusted accordingly. Greenridge was then mapped into like AUs, differentiated based on RE type; and vegetation condition (remnant, advanced regrowth, young regrowth or cleared). Standard BioCondition surveys record canopy cover by measuring the vertical projection of canopy intercepting a 100m transect line (Eyre et al. 2015).

Greenridge – fauna surveys

No flying-fox camps were recorded on site, and none have been known from Greenridge previously. GHFF surveys were not undertaken on Greenridge as the REs present are known to be of high value to the species. Greenridge is within 20km of 20 flying-fox camps used by GHFF.

3.5.3 Field survey results for GHFF offset areas

Tabooba

The AUs for vegetation on Tabooba are detailed in *Section 3.4.3* above. The offset area for GHFF is the same area and size as the koala offset area.

Both REs present on Tabooba rank as high-moderate value foraging habitat for GHFF. The GHFF Recovery Plan describes vegetation communities containing (amongst other species) *Eucalyptus crebra*, *E. tereticornis* and *E. melliodora* as important resources for GHFF on coastal lowlands of Southern Queensland as they flower reliably over the winter and spring period. While the property is not located within the coastal lowlands of southern Queensland, Eby and Law (2008) state that productive areas for winter flowering are concentrated in South East Queensland and northern New South Wales where flowering occurs in small remnants in coastal floodplains, coastal dunes and inland slopes, and during spring the extent of productive habitat increases in northern regions, expanding from the coastal lowlands into the coastal ranges and valleys.

The presence of critical forage species and distance to a nationally important flying-fox camp (within 20km) indicates Tabooba supports habitat critical to the survival of GHFF. Protection of existing habitats from clearing, restoration of cleared habitats, weed management to improve canopy recruitment in remnant and advanced regrowth, and improved fire management to reduce the risk of wildfire would ensure available habitat within the property is increased and habitat condition is improved.

The full set of raw BioCondition survey data for Tabooba is provided in *Appendix H*. The HQS tables for each AU within the GHFF offset areas are provided in *Appendix L*.

Greenridge

The AUs for vegetation on Greenridge are detailed in *Section 3.4.3* above. The offset area for GHFF is the same area and size as the koala offset area. A portion of the offset for coastal swamp oak TEC at Greenridge is also high-quality habitat for GHFF.

Greenridge is within 20km of 20 flying-fox camps used by GHFF and the species has been recorded from Greenridge previously, foraging on *Melaleuca quinquenervia* and *Eucalyptus tereticornis* (ddwfauna 2006). During koala surveys in 2022, the EVE koala survey team noted heavy flying-fox use of flowering eucalypts on site. ¹³ GHFF is expected to forage on site regularly during *Eucalyptus* and *Melaleuca* flowering events.

The full set of raw BioCondition survey data for Greenridge is provided in *Appendix I*. The HQS tables for each AU within the GHFF offset areas are provided in *Appendix L*.

3.5.4 Ecological benefits of the proposed GHFF offsets

Tabooba

As discussed in *Section 3.1.1*, the offset will add to and strengthen the linkages to biodiversity corridors in the area. Additionally, restoration of the vegetation communities to benchmark condition for each RE over a 20-year period will improve the presence and abundance of foraging resources for the GHFF in an area that is within the known distribution and range of the species.

_

¹³ Pers comms, D. de Villiers, cited in BAAM 2022.

The offset will also provide a strengthened level of connectivity to the eastern side of the property where it adjoins habitat classed as 'core habitat" by the Scenic Rim Regional Council. The improved connectivity offered by placing the offsets on Tabooba is discussed further in *Section* 3.1.1.

Greenridge

As discussed in *Section 3.3.4*, the most significant impacts on ecosystem health at Greenridge are the result of feral pig damage and weed invasion, along with maintenance of cleared and weed-infested paddocks adjacent to remnant and regrowth vegetation. The current level of feral pig activity would not be managed without the offset, which will be detrimental to the survival of canopy species that provide foraging resources for the GHFF.

As discussed in Section 3.3.4, the location of the offset areas in relation to nearby areas of remnant vegetation (including the Pimpama Conservation Park and the Pimpama River Conservation Area) is of benefit to the likelihood of success of the offset. The offset property itself will form a large part of a buffer area between the highly developed residential areas to the south and these conservation areas.

The AUs comprising the GHFF offset areas on both properties are shown in

Table 8. These offset areas are the same areas as the koala offsets and are shown in *Figure* 9.and *Figure 10* above.

Table 8: Grey-headed flying-fox habitat at the offset sites

Property	RE	Assessment unit	Type of vegetation	Area of offset (ha)
		AU1	Remnant	49.84
Tabooba	12.8.16	AU2	Advanced regrowth	145.02
		AU3	Young regrowth	48.10
Tabooba	12.8.14	AU4	Remnant	50.62
Тароора	12.0.14	AU5	Advanced regrowth	19.80
		AU4	Remnant	28.22
Greenridge	12.3.20	AU5	Regrowth	4.74
		AU6	Non-remnant	12.48
			Total:	358.82

3.5.5 OAG inputs for GHFF offsets

Inputs for DCCEEW's OAG were derived from the survey results described above.

The risk of loss was derived from Appendix One of the document titled *Guidance for deriving* 'Risk of Loss' estimates when evaluating biodiversity offset proposals under the EPBC Act.¹⁴

The Offsets Assessment Guide requires an estimation of the projected improvements in habitat quality that can be achieved over 20 years through management, along with an indication of the level of confidence in these projections. The time to ecological benefit is set at 10 years for remnant and advanced regrowth communities and 20 years for other regrowth and non-remnant

28 June 2024

¹⁴ Centre of Biodiversity and Conservation Science, School of Earth and Environmental Science, The University of Queensland, Brisbane. (2017) https://www.nespthreatenedspecies.edu.au/media/zpyajjq1/5-1-guidance-for-deriving-risk-of-loss-report 2017 <a href="https://www.nespthreatenedspecies.edu.au/media/zpyajjq1/5-1-guidance-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report-for-deriving-risk-of-loss-report

communities, with 85% confidence that the goals for offset area habitat quality will be achieved. Periods of 10 years for remnant and 20 years for regrowth and non-remnant communities are required to realise the results of management actions that will improve habitat quality – of these actions, removal of invasive weeds and implementation of controlled burning to prevent damaging wildfire, encourage EDL recruitment and improve ground cover quality are predicted to raise the quality of the remnant and advanced regrowth ecosystems close to benchmark levels.

At present, the quality of habitats at the Greenridge and Tabooba properties are impacted by weeds. Of the 36 introduced plants recorded from within the habitat quality survey plots at the Greenridge property, 2 are weeds of national significance (*Lantana camara* and *Asparagus aethiopicus*) and 19 were identified by Batianoff and Butler (2002) as among the 200 most invasive naturalised plants in South East Queensland, selected from 1060 naturalised taxa. Within the survey plots at Greenridge there was an average of 29.25% non-native cover. Of the 43 introduced plants recorded from within the habitat quality survey plots at the Tabooba property, one is a weed of national significance (*Lantana camara*) and 17 were identified by Batianoff and Butler (2002) as among the 200 most invasive naturalised plants in South East Queensland. Within the survey plots at Tabooba there was an average of 20.5% non-native cover.

Nationally exotic species account for about 15% of flora (Department of Agriculture, Fisheries and Forestry, 2024). Weeds are known to compete with native species for space, light, water and nutrients, and also suppress and out-compete mid-storey and canopy trees (Department of the Environment, 2011), affecting the structure and function of land-based and aquatic ecosystems, and impacting negatively on native fauna and flora. Nineteen of 20 studies on weed impact in Australia reviewed by Adair and Groves (1998) demonstrated a decline in either species richness, canopy cover or frequency of native species. One of the reviewed studies (Hester & Hobbs. 1992) found weed presence reduced percent cover of natives and reduced seed production in shrublands and woodlands, with removal of weeds resulting in a 3-fold increase in native cover.

Weeds can also increase the biomass of ecosystems leading to more intense bushfires, changing the composition and structure of native vegetation (Invasive Plants and Animal Committee, 2016).

Both properties are subject to invasion by exotic grasses. At Greenridge South African pigeon grass (*Setaria sphacelata*) is a dominant species of open spaces. The species is regarded as an environmental weed in Queensland, New South Wales and Western Australia. It can form dense stands preventing natural plant regeneration and can transform infested areas into open badlands, with potential to invade wetland areas, reducing access for endangered birds (Brisbane City Council, 2024).

Lantana is present on both properties. This is a weed of national significance and was the number one ranked invasive weed in South East Queensland (Batianoff and Butler, 2002). Lantana forms dense thickets that can smother and destroy native vegetation and impede animal movement. Its presence can also create hotter bushfires, altering native vegetation communities (Department of Agriculture and Fisheries, 2023).

Control and removal of lantana and invasive introduced grasses will result in long term positive ecosystem change – by increasing species richness, abundance and recruitment (for lantana, see Gooden et al.,2009) and significantly reducing the risk of intense wildfire. Under these conditions there is high (85%) confidence that the quality of existing ecosystems will be raised to benchmark levels. An additional benefit of the intended weed management is the reestablishment of habitat connectivity for flora and fauna that are impeded by invasive species (Godfree et al. 2017).

4 Analysis of risks to achieving management objectives and offset completion criteria

Potential risks to achieving the management objectives and outcomes have been considered in this plan, as shown in *Table 10* for the Tabooba property and in *Table 11* for Greenridge. These risks include those that have been derived from an assessment of the threats to each of the impacted matters that are discussed in the relevant DCEEW listing advice, conservation advice, threat abatement plans and recovery plans, as detailed in *Table 5*. They have been assessed against the risk matrix (*Table 9*) supplied by DCCEEW. The risk matrix has been used to assess the risk that the plan's objectives will not be met and identify the sources of those risks and strategies for managing them.

The risk assessment:

- a) identified threats that will, may, or are likely to impact the attainment of the completion criteria
- assesses the likelihood and consequences of those threats, and characterises residual risk levels, taking into consideration the mitigation of the risk by implementing the management actions
- c) identifies the level of uncertainty in mitigating the risk with the management actions and trigger criteria and corrective actions until the risk is reduced to an acceptable level.

The management actions and corrective actions are described in full detail in Section 5.

Table 9: Risk matrix

RISK MATRIX	C								
	easure of likelihood (how likely is it that this event/circumstances will occur after activities are implemented)								
Highly likely	Is expected to occur in most circumstances								
Likely	Will probably occur during the life of the project								
Possible	Might occur during the life of the project								
Unlikely	Could occur but considered unlikely or doubtful								
Rare	May occur in exceptional circumstances								
Qualitative m	Qualitative measure of consequences (what will be the consequence/result if the issue does								
Minor	Minor incident of environmental damage that can be reversed (e.g. short-term delays to achieving plan objectives, implementing low-cost, well-characterised corrective actions)								
Isolated but substantial instances of environmental damage that could be reversed with intensive efforts (e.g. short-term delays to achieving plan objectives, implementing well-characterised, high-cost/effort corrective actions)									
High	Substantial instances of environmental damage that could be reversed with intensive efforts (e.g. medium-long term delays to achieving objectives, implementing uncertain, high-cost/effort corrective actions)								

Major	Major loss of environmental amenity and real danger of continuing (e.g. plan objectives are unlikely to be achieved, with significant legislative, technical, ecological and/or administrative barriers to attainment that have no evidenced mitigation strategies)														
Critica	ı	damage	despread loss of environmental amenity and irrecoverable environmental objectives are unable to be achieved, with no evidenced mitigation strategies)												
			Consequence	ce											
			Minor	Moderate	High	Major	Critical								
bo	Highly	/ likely	Medium	High	High	Severe	Severe								
Likelihood	Likely		Low	Medium	High	High	Severe								
k e	Possil	ole	Low	Medium	Medium	High	Severe								
	Unlike	ely	Low	Low	Medium	High	High								

Low

Low

Rare

High

Medium

Low

Table 10: Risk assessment for the terrestrial offset sites at Tabooba

Note: The risk ranking codes relate to the risk matrix as follows: L = Likelihood C = Consequence R = Risk

Risk	Threats		itial ri		Management measures	Management measures/actions		idual ankin	
		L	С	R			L	С	R
				F	orce majeure eve	nts			
Drought	The threat posed by an extreme weather event, in the form of drought, causes habitat degradation and mortality of vegetation within the restoration area during the establishment period	Likely	High	High	Offset area management	Exclude livestock from the offset area during periods of declared drought. Maintain firebreaks for wildfire response readiness. Commence any necessary woodland rehabilitation/restoration actions in locations where there is greatest spring-fed water availability (e.g. creek flood zones and lower slopes), building outwards from these areas to take advantage of improved microclimatic conditions (reduced solar radiation and wind, increased humidity) from increased tree cover.	Likely	Moderate	Medium
Cyclones/ severe tropical lows/ flooding	The most significant threat from tropical cyclones or tropical lows is flooding and high winds causing habitat degradation.	Likely	Moderate	Medium	Offset area management	Understand on-site flood areas ensure habitat restoration is suited to these areas. Improve all-weather access if flooding could potentially restrict management access. Provide drainage (culverts) on access tracks where they are intersected by flows from spring water.	Likely	Minor	Low
Severe fire event	Catastrophic bushfire causes habitat degradation and loss of habitat for Koala and GHFF	Likely	Critical	Severe	Fire management	Fire breaks re-formed every 2 years and slashed every 2 months in winter and every month in summer. Develop a wildfire response procedure. Undertake planned burns in remnant and regrowth Koala and GHFF habitat in accordance with relevant RE fire management guidelines.	Possible	Major	High
	D	egrad	ation	of koa	ala and grey-head	led flying-fox habitat			
Degradation of Koala and GHFF habitat	The degradation of Koala and GHFF habitat due to the lack of environmental management of the offset area including appropriate invasive plant control, pest animal control, fire management, and/or infrastructure maintenance.	Possible	High	Medium	Offset area management	Implementation of the management invasive plant control, pest animal control and fire management actions to best practice standards and adaptive management framework as outlined in this OAMP (<i>Table 12</i>)	Unlikely	Minor	Low
		Hal	bitat o	r vege	etation loss throu	gh land clearing			
Unplanned clearing and illegal access causing habitat degradation (i.e., Illegal timber harvesting/ collection, Illegal access by the public causes habitat degradation and increases fire risk)	The offset site occurs near semi-rural and urban areas. It is possible for unplanned / illegal clearing for agriculture activities but considered improbable as the offset site will be mapped as Category A on the property map of assessable vegetation (PMAV). Clearing may however occur by vehicles traversing the area off designated roads/tracks and/or illegal camping.	Unlikely	Major	High	Offset area management Site access control	Clearing of native vegetation in the offset area is only permitted under the OAMP where it would result in a benefit for Koala and GHFF habitat. Within 12 months of the approval (17 March 2024), register a declared area over the offset site, ensuring it is shown as Category A vegetation on the PMAV. All monitoring (rapid and detailed) will report on any evidence of clearing.	Rare	Major	Medium
,			Degi	radati	on of habitat by o	overgrazing			
Unauthorised or inappropriate grazing in offset area	High density grazing over an extended period destroys shrubs and native grass cover and slows the regeneration of habitat.	Possible	High	Medium	Grazing management	Fences are in working order and allow for exclusion of livestock from the offset area. Livestock to be excluded from the Koala and GHFF offset areas during periods of drought and/or if dry matter yield (DMY) is <1400kg/ha (January) (see <i>Appendix D</i>). Livestock to be managed in the offsets area in accordance with management measures as outlined in this OAMP (<i>Table 12</i>)	Unlikely	Minor	Low

Risk	Threats Threats		itial ri: ankin		Management measures	Management measures/actions	Residı ran		
		L	С	R			L	С	R
	Invasive plants: introduction, establishment and sp	read o	f non-	nativ	e weeds includin	g restricted invasive plants listed under the Biosecurity Act 2014 (Qld)			
New infestations of invasive and environmental weed species in the offset area.	If a weed infestation is unchecked, it may cause a significant deterioration in the offset site.	Possible	Major	High	Invasive plants and environmental weeds management listed under the Biosecurity Act 2014 (Qld)	All vehicles accessing the offset area are required to have undergone a weed inspection and vehicle hygiene check, confirming that they are weed free, before accessing the site. If a new weed infestation is identified, consult with local NRM Catchment Group, Healthy Land and Water, Council and Queensland Department of Agriculture and Fisheries to determine the invasiveness of the weed and tested/recommended control measures. Control the spread of new infestation/s.	Unlikely	Minor	NO.
						Treat new infestation/s promptly to reduce the extent and spread of the infestation.			
Expansion of existing infestations of declared weed species in the offset area	The extent of existing infestations of invasive plants and environmental weed species expands, or the species become more abundant within the area.	Highly likely	High	High	Invasive plants and environmental weed management listed under the Biosecurity Act 2014 (Qld)	All vehicles accessing the offset area are required to have undergone a weed inspection and vehicle hygiene check, confirming that they are weed free, before accessing the site. Map invasive plant and environmental weeds as part of baseline and ongoing environmental monitoring. Chemical and/or mechanical control of all invasive plants and environmental weeds in accordance with the control measures outlined in the Biosecurity Queensland Fact Sheets or other sources of information.	Unlikely	Minor	Low
			Pes	st/fera	al animals in the o				
Increased population of wild and feral animals in the offset area.	Feral cat, feral pig and wild dog populations are extensive and highly transient, and therefore the scale of impact is potentially large (anecdotal data suggests up to seven wild dogs on property). Major damage to the environment/habitat occurs when large numbers of animals congregate in the area. Feral deer have not been recorded on the offset site but are known in the area and could become established, causing environmental impacts (especially to regrowth).	Highly likely	High	High	Pest animal management Feral pig management Feral deer incursion	The land manager will cooperate with and participate in any and all best practice pest control programs on adjoining properties. Pest animal control program to be implemented according to industry best practice standards via appropriately qualified person/s. Controlling feral pigs, and wild dogs by implementing a coordinated multiple pronged management program. Additionally, if the land manager, during quarterly inspections of the offset area notes an incursion of feral deer, feral pig or wild dog activity, an additional coordinated multiple pronged management program is to be instigated until the increased activity has ceased and/or the deer, feral pigs and wild dogs are removed.	Possible	Minor	Low
	Fire: the impact from uncontrolle	d wild	fire or	inap	propriate fire regi	mes cause degradation in offset area habitat quality			
Unplanned or uncontrolled fire in offset area.	The impact from uncontrolled wildfire or inappropriate fire regimes cause degradation in offset area habitat quality.	Likely	Moderate	Medium	Fire management	Fire breaks re-formed every 2 years and slashed every 2 months in winter and every month in summer. Wildfire response procedure developed.	Possible	Minor	l ow
Inappropriate fire regimes	The impact from uncontrolled wildfire or inappropriate fire regimes cause degradation in offset area habitat quality.	Possible	High	Medium	Fire management	Undertake planned burns in remnant and regrowth Koala and GHFF habitat in accordance with relevant RE fire management guidelines (<i>Table 14</i> and <i>Table 14</i>) and/or weed control works. Livestock will be used to reduce fuel loads, when required.	Unlikely	Minor	WO

Risk	Threats	lnit ra			Management measures	Management measures/actions		idual ı ankinç	
		L	С	R			L	С	R
Offset fails to achieve the interim performance targets and/or completion criteria within the anticipated 5, 10-, 15- and 20-year timeframes, respectively.		Possible	High	Medium	Offset area management	Implement the management actions of this OAMP. Monitor and report on attainment of interim environmental performance targets and completion criteria.	Unlikely	High	Medium

Table 11: Risk assessment for the terrestrial offset sites at Greenridge

Note: The risk ranking codes relate to the risk matrix as follows: L = Likelihood C = Consequence R = Risk

Risk	Threats		itial ris		Management measures	Management measures/actions		sidual ı ankinç	
		L	С	R			L	С	R
					Force maj	eure events			
Drought	The threat posed by extreme weather events, in the form of drought, causes habitat degradation and mortality of vegetation within the restoration area during the establishment period.	Likely	High	High	Offset area management	Consider seasonal forecasts and areas of water availability (e.g. in/adjacent to the freshwater wetlands) prior to commencing any necessary replanting activities. Monitor onsite water availability to ensure an adequate supply is available for use if required. Monitor restoration plantings for mortality. Undertake replanting as required.	Likely	Moderate	Medium
Cyclones/severe tropical lows/flooding	The most significant threat from tropical cyclones or tropical lows is flooding and high winds causing habitat degradation.	Likely	Moderate	Medium	Offset area management	Understand on-site flood areas ensure habitat restoration is suited to these areas. Improve all-weather access if flooding could potentially restrict management access. Monitor restoration plantings for mortality. Undertake replanting as required.	Likely	Minor	Low
Severe fire event	Catastrophic bushfire causes habitat degradation and loss of habitat for Coastal Swamp Oak TEC, Koala and GHFF.	Likely	Critical	Severe	Fire management	Fire breaks reformed every 2 years and slashed every 2 months in winter and every 2 weeks in summer. Undertake planned burns in remnant and regrowth Coastal Swamp Oak TEC, Koala and GHFF habitat in accordance with relevant RE fire management guidelines.	Possible	Major	High
				De	gradation of hab	oitat swamp oak TEC			
Degradation of Coastal Swamp Oak TEC	Failure to rehabilitate 21.84 ha (AU3) of Coastal Swamp Oak TEC.	Possible	High	Medium	Coastal Swamp Oak TEC rehabilitation and enhancement plan	Implementation of the Coastal Swamp Oak TEC rehabilitation and enhancement plan (refer to Appendix C).	Unlikely	Minor	Low
Degradation of Coastal Swamp Oak TEC	The degradation of Coastal Swamp Oak TEC due to the lack of environmental management of the offsets area including appropriate invasive plant control, pest animal control, fire management, and/or infrastructure maintenance.	Possible	High	Medium	Offset area management	Implementation of the management invasive plant control, pest animal control (especially feral pigs) and fire management actions and adaptive management framework as outlined in this OAMP (Table 13).	Unlikely	Minor	Low
		L	Degrad	lation	of habitat for ko	ala and grey-headed flying-fox			

Risk	Threats		itial ris anking		Management measures	Management measures/actions		idual ı ankinç	
		L	С	R			L	С	R
Degradation of Koala and GHFF habitat	The degradation of Koala and GHFF habitat due to the lack of environmental management of the offsets area including appropriate invasive plant control, pest animal control, fire management, and/or infrastructure maintenance.	Possible	High	Medium	Offset area management	Implementation of the management invasive plant control, pest animal control and fire management actions and adaptive management framework as outlined in this OAMP (<i>Table 13</i> and <i>Table 15</i>).	Unlikely	Minor	WO
			Н	abitat	or vegetation lo	ss through land clearing			
Unplanned clearing and illegal access causing habitat degradation (e.g., illegal timber harvesting/ collection, illegal access by the public causes habitat degradation and increases fire risk)	The offset site occurs near semi-rural and urban areas. It is possible for unplanned/illegal clearing for agriculture activities but considered improbable as the offset site will be mapped as Category A on the property map of assessable vegetation (PMAV). Clearing may however occur by vehicles traversing the area off designated roads/tracks and/or illegal camping.	Unlikely	Major	High	Offset area management Site access control	Clearing of native vegetation in the offset area is only permitted under the OAMP where it would result in a benefit for Coastal Swamp Oak TEC, Koala and GHFF. Complete the installation of signage at all vehicle accesses identifying the areas as an environmental offset, within six months of the approval of this OAMP. Suitable fencing and/or signage of property to prevent access (where possible) from unauthorised personnel, within twelve months of the approval of this OAMP. Within 12 months of the approval date (17 March 2024), register a declared area over the offset site, ensuring it is shown as Category A vegetation on the PMAV. All monitoring (rapid and detailed) will report on any evidence of clearing.	Rare	Major	Medium
				De	egradation of hal	bitat by overgrazing			
Unauthorised or inappropriate grazing in offset area	High density grazing over an extended period destroys shrubs and native grass cover and slows the regeneration of habitat.	Possible	High	Medium	Grazing management	Domestic grazing livestock to be excluded from the offset areas. Fences are in working order and allow for exclusion of domestic livestock from the property. Signage will be installed on all major access gates to ensure the environmental offset area is well signposted.	Unlikely	Minor	Low
	Invasive plants: introduction, establishmen	nt and	spread	d of no	on-native weeds	including restricted invasive plants listed under the Biosecurity Act 2014 (Qld)			
New infestations of invasive and environmental weed species in the offset area.	The offset site is in close proximity to urban areas and the risk of new invasive plants and/or environmental weeds is considered high. If a weed infestation is unchecked, it may cause a significant deterioration in the offset site.	Possible	Major	High	Invasive plants and environmental weeds management listed under the Biosecurity Act 2014 (Qld)	All vehicles accessing the offset area are required to have undergone a weed inspection and vehicle hygiene check, confirming that they are weed free, before accessing the site. If a new weed infestation is identified, consult with local NRM Catchment Group, Healthy Land and Water, Council and Queensland Department of Agriculture and Fisheries to determine the invasiveness of the weed and tested/ recommended control measures Control the spread of new infestation/s. Treat new infestation/s promptly to reduce the extent and spread of the infestation.	Unlikely	Minor	Low
Expansion of existing infestations of declared weed species in the offset area	The extent of existing infestations of invasive plants and environmental weed species expands, or the species become more abundant within the area.	Highly likely	High	High	Invasive plants and environmental weed management listed under the Biosecurity Act 2014 (Qld)	All vehicles accessing the offset area are required to have undergone a weed inspection and vehicle hygiene check, confirming that they are weed free, before accessing the site. Map invasive plant and environmental weeds as part of baseline and ongoing environmental monitoring. Chemical and/or mechanical control of all invasive plants and environmental weeds in accordance with the control measures outlined in the Biosecurity Queensland Fact Sheets or other sources of information.	Unlikely	Minor	Low

Risk	Threats		itial ri ankin		Management measures	Management measures/actions		idual anking	
		L	С	R			L	С	R
Increased population of feral animals in the offset area.	Feral cat, feral pig and wild dog populations are extensive and highly transient, and therefore the scale of impact is potentially large. Major damage to the environment/habitat occurs when large numbers of animals congregate in the area. Feral deer have not been recorded on the offset but are known in the area and could become established, causing environmental impacts (especially to regrowth)	Highly likely	High	High	Pest animal management Feral pig management Feral deer incursion response	Pest animal control program to be implemented vis appropriately qualified person/s. Control feral pigs, wild dogs and European foxes via a coordinated multiple pronged management program. Additionally, if the land manager, during quarterly inspections of the offset area notes an incursion of feral deer, feral pig or wild dog activity, an additional coordinated multiple pronged management program is to be instigated until the increased activity has ceased and/or the deer, feral pigs and wild dogs are removed	Possible	Minor	Low
Increased population of fire ants	Potential further spreading of fire ants into the offset areas.	Highly likely	High	High	Fire ant control program	TMR will coordinate this program with the Department of Agriculture and Fisheries who have carriage of fire ant control programs. ¹⁵	Possible	Minor	Low
	Fire: the impact from un	contro	lled w	ildfire	or inappropriate	fire regimes cause degradation in offset area habitat quality			
Unplanned or uncontrolled fire in offset area.	The impact from uncontrolled wildfire or inappropriate fire regimes cause degradation in offset area habitat quality	Likely	Moderate	Medium	Fire management	Fire breaks reformed every 2 years and slashed every 2 months in winter and every 2 weeks in summer. Wildfire response procedure developed.	Possible	Minor	Low
Inappropriate fire regimes	The impact from uncontrolled wildfire or inappropriate fire regimes cause degradation in offset area habitat quality	Possible	High	Medium	Fire management	Undertake low-intensity planned burns in remnant and regrowth Coastal Swamp Oak TEC, Koala and GHFF habitats in accordance with relevant RE fire management guidelines (<i>Table 15</i> and <i>Table 15</i>) and/or weed control works and/or Coastal Swamp Oak TEC rehabilitation and enhancement plan.	Unlikely	Minor	Low
	Offset fails to achieve	the int	erim p	perfori	mance targets ar	nd/or completion criteria within the anticipated timeframes			
Offset fails to achieve the interim performance targets and/or completion criteria within the anticipated 5, 10-, 15- and 20-year timeframes, respectively	Failure to achieve and maintain offset completion criteria	Possible	High	Medium	Offset area management	Implement the management actions of this OAMP. Monitor and report on attainment of interim environmental performance targets and completion criteria.	Unlikely	High	Medium

 $^{^{15} \ \ \}textbf{See} \ \ \underline{\textbf{https://www.daf.qld.gov.au/business-priorities/biosecurity/invasive-plants-animals/ants/fire-ants}$

5 Offset management measures

The offset area management measures include, but are not limited to, management actions required on the offset site to abate those threats identified to the Coastal Swamp Oak TEC, Koala and GHFF. These identified threats to each species align with the relevant listing advice, conservation advice and threat abatement plan and recovery plan for each matter, and have been detailed in *Table 5* and are also summarised in *Section 3.3.1* (coastal swamp oak TEC), *Section 3.4.1* (koala habitat), and *Section 3.5.1* (GHFF habitat). A full assessment of the risks that these threats present is presented in *Section 4*.

The offset area management measures provide for the management, reporting, and the monitoring program (*Table 18*) that will be undertaken for the period of EPBC Act approval. Protection of the offset area will be maintained under the *Vegetation Management Act 1999* (Qld) (**VM Act**) as a Category A area of vegetation (vegetation subject to a restoration order or an offset).

The management actions include:

- Limiting vegetation clearing to only those areas required for maintaining fencing and fire control lines
- Prohibiting alternate land use and activities during the period of the declared area (e.g. timber harvesting, cropping)
- Restricting unauthorised access
- Excluding all domestic livestock from Greenridge
- Limit domestic livestock to specific areas at Tabooba
- Controlling pest animals
- Managing fire
- Controlling invasive plants
- Thinning of thickened areas

The management schedules describe the actions to be undertaken on the offset sites at Tabooba (*Table 12*) and at Greenridge (*Table 13*).

A separate fire management strategy has been developed specifically for each of the two offset properties which implements the recommended fire strategy for the relevant REs in the Tabooba offset areas (*Table 14*) and in the Greenridge offset areas (*Table 15*).

Additionally, a Coastal Swamp Oak TEC rehabilitation and revegetation plan has been developed for AU3 at Greenridge (refer to *Appendix C*). this revegetation plan will be implemented over a 5-year period to reduce the risk of seasonal variations affecting plant establishment.

The risk assessment undertaken for the offset areas identified the impact of pest animals as one of the most significant risks to the success of the offsets, for all of Coastal Swamp Oak TEC, Koala and GHFF. Accordingly, detailed pest animal management strategies have been developed for each property and are detailed further in the sections below.

Regular offset area reports will be prepared by TMR as listed in *Table 18* and *Table 19* (refer to *Section 8*). These will report against each of the management actions shown in *Table 12* and *Table 13*. These management actions enable the offset site to improve to achieve the scores in *Table 16*, thus attaining and maintaining the completion criteria required of the offset. The reports will provide transparency regarding how the site management actions are being implemented,

and where relevant, identify any force majeure events impacting the offset site, and any non-compliance with the management plan.

Reducing the impact of pest animals on Tabooba

Wild dogs and European foxes are present on Tabooba and reducing their impacts on native animals will be critical to improving and sustaining the habitat quality.

Although 1080 baiting is considered to be the most effective and efficient control technique currently available to reduce wild dog and European fox impacts; other secondary control tools may be required if target animals show bait aversion or as indicated as a corrective action measure. These techniques include foot hold trapping and canid pest ejectors (see *Appendix B*).

Although feral pigs and feral deer have not been recorded on the site at this time, these pest animals have formed populations in the area and it is very likely that these pests are either already present at low densities or will be observed on the site over the life of this OAMP. As such, feral pig and feral deer management actions are planned for (and outlined in *Table 12*).

Feral pig control will be carried out upon the detection of feral pig activity and may involve baiting simultaneously at 3 or 4 sites across the property. Adjoining landholders may also be involved. The primary feral pig control technique should be baiting (either 1080 grain or sodium nitrate (Hoggone®) is suitable). Feral pig baiting will be carried out by trained operators in accordance with the product label and or 1080 standards (see above). The relevant SOP must be followed (especially in relation to free feeding requirements) (see *Appendix B*). Feral pig trapping is not as efficient as baiting at removing large proportions of the population; however, may be used as a secondary control tool where baiting is not suitable or permitted. Feral pig trapping will be carried out in accordance with the SOP in *Appendix B*.

Feral deer, both rusa deer (*Cervus timorensis*) and red deer (*Cervus elaphus*), have been recorded throughout the region and are known to be spreading rapidly across South East Queensland (**SEQ**). Even low-density feral deer populations can have severe and lasting impacts on native vegetation (particularly young trees). Any observed feral deer will trigger a rapid response to initiate a ground shooting operation. This program (and actions) will be set out in an approved shooting plan and be in compliance with the relevant SOP in *Appendix B*.

Reducing the impact of pest animals on Greenridge

Feral pigs and European foxes have been recorded on Greenridge. Uncontrolled feral pig populations will have detrimental impacts on the habitat condition of this offset, especially the Coastal Swamp Oak TEC vegetation community. Effective feral pig control on Greenridge will require ongoing best practice control. Feral pig control will aim to reduce populations by at least 70% in the first year with follow-up control activities conducted within the feral pig gestation period (four months).

As Greenridge is close to urban developments, but does have restricted access, pest animal management would be particularly suited to trapping and shooting.

Feral pig trapping can be utilised as part of this plan but should only be attempted where baiting is not allowed or suitable. Feral pig trapping (especially free feeding) will be carried out in accordance with the SOP in *Appendix B*.

Wild dogs, albeit rare and European foxes are present on Greenridge and adjacent properties and reducing their impacts on native animals will be critical to improving and sustaining the health of the offset. Control tools may include shooting and/or foot hold trapping and canid pest ejectors (see *Appendix B*).

Although thought to be absent from the site at this time, feral deer, being rusa deer (Cervus timorensis), red deer (Cervus elaphus) and fallow deer (Dama dama) have been recorded throughout the region and are known to be spreading rapidly across SEQ. Even low-density feral deer populations can have severe and lasting impacts on native vegetation (particularly young trees). Any observed feral deer will trigger a rapid response to initiate a ground shooting operation. This program (and actions) will be set out in an approved shooting plan and be in compliance with the relevant SOP in Appendix B.

Table 12: Tabooba offsets - management actions, triggers and corrective actions

The management actions shown in this table are consistent with the risks identified in the listing advice, conservation advice, and threat abatement plans relevant to each matter.

Threat to offset values	Management activity	Performance objectives	Management actions (where, when and how the activity will be carried out).	Who will be carrying out the activity	Monitoring and reporting	Trigger for adaptive management and corrective action(s)	Corrective action and timing
Degradation of Koala and GHFF habitat	Koala and GHFF management	Increase the habitat quality scores for remnant and regrowth Koala and GHFF habitat (AU4) based on the results of baseline and subsequent monitoring events to achieve the interim targets and completion criteria targets as listed in <i>Table 16</i> .	Implement pest animal control management actions Implement invasive plants and environmental weed control management actions. Undertake livestock grazing in accordance with livestock grazing management actions. Undertake planned burns in remnant and regrowth Koala and GHFF habitat in accordance with relevant RE fire management guidelines (<i>Table 14</i>). Undertake strategic ecological thinning in regrowth and remnant areas (e.g., noneucalypt and non GHFF habitat trees) if recommended by appropriate qualified ecologist.	TMR and associated contractors	Monitoring of offset value habitat quality scores will be undertaken in accordance with Section 8. The results of monitoring events will be compared against the habitat quality scores and completion criteria to determine the progress of the offset area and recorded as part of reporting (see Section 8).	Koala and GHFF habitat quality scores, performance targets and completion criteria (<i>Table 16</i>) are not on track to being achieved by Year 10 or Year 20.	 Step 1: Investigate cause of trigger: Within one month after detection of the trigger, complete an investigation into the reasons why the interim performance targets or the completion criteria were not achieved within the specified timeframes. Within two months after detection of the trigger, complete a re-evaluation of the suitability of the relevant management measures in the OAMP. The re-evaluation must identify appropriate corrective actions. Step 2: Implementation of corrective action/s The appropriate corrective actions identified under Step 1 will be implemented as soon as practicable, and in any case within six months after detection of the trigger.
Habitat or vegetation loss through land clearing	Maintain the extent of offset value habitat within the offset area	No unapproved and/or intentional clearing of vegetation of Koala and GHFF habitat offset area, except for clearing that is required for fencing, access, firebreaks, ecological restoration and public safety.	Protection of the offset area via a declared area under Section 19E and 19F of the VM Act, as described in <i>Section 9</i> to be registered within six months of the approval of this OAMP.	TMR and associated contractors	Advise DCCEEW within 5 business days when the approved declared area over the offset has been registered by the Queensland Department of Resources. Reporting to the Australian Government consistent with any and all EPBC Act approval(s).	Any activities in contravention of the declared area management plan.	Step 1: Investigate cause of trigger (e.g. unauthorised access) As soon as practicable, and in any case within one month of detection of the trigger, identify appropriate corrective actions. Step 2: Implementation of corrective action/s As soon as practicable, and in any case within two months of detection of the trigger, the appropriate corrective actions must be implemented. These may include (though are not limited to) additional fencing and/or signage and security for the offset area.
			Construction and maintenance of access tracks, fencing and firebreaks will be undertaken in accordance with the requirements of <i>Table 10</i> . If vegetation clearing is required for fencing, access (e.g., weed control), firebreaks or public safety it must be undertaken in accordance with best practice management methods and any applicable legislative requirements. Any clearing and/or ecological thinning in accordance with the advice of an appropriately qualified ecologist.	TMR and associated contractors	Quarterly inspections will monitor and document if any unapproved and/or intentional clearing of vegetation within the offset area Quarterly inspections will monitor and document vegetation clearing that has occurred for fire break, access road or fence line maintenance.	Any unapproved and/or intentional clearing within the offset area	
Degradation of habitat by overgrazing	Grazing management	Livestock to be excluded from the offset area at specific times. When the habitat has become more established	Fences are maintained in a stockproof condition and allow for exclusion of livestock from the offset area. Any new or replacement fencing will be wildlife-friendly including the use of a plain top wire.	Land manager, TMR	Quarterly inspections will monitor and document if presence or evidence of livestock are present in offset area.	Detection and/or evidence of livestock in offset area outside of specified timeframes and/or if DMY is <1,400kg/ha.	Upon being notified or becoming aware of prohibited livestock grazing in the offset area, TMR (or their successors or assigns) is to remove the livestock from the area (if present) and assess the adequacy of fencing within 10 days. The land manager is to undertake fence

Threat to offset values	Management activity	Performance objectives	Management actions (where, when and how the activity will be carried out).	Who will be carrying out the activity	Monitoring and reporting	Trigger for adaptive management and corrective action(s)	Corrective action and timing
		and better quality, livestock may be progressively removed from the offset area.	Cattle to be excluded from the Koala and GHFF offset areas during periods of drought and/or if DMY is <1,400kg/ha (see <i>Appendix D</i>) Cattle to be introduced in offsets area if DMY is >3,000kg/ha between April – September and the soil is dry. Cattle to be removed from the offsets area at commencement of the wet season >25mm October – March and/or if DMY is <1400kg/ha January.		When the habitat has become more established and better quality, the DMY can be expected to reduce as the canopy and shrub layer recovers. The need to utilise grazing to reduce fuel load (DMY) should reduce over time.		maintenance and repairs to resecure the offset area within 10 days.
Introduction, establishment and spread of non-native weeds including restricted invasive plants listed under the Biosecurity Act 2014 (Qld)	Invasive plants and environmental weed management listed under the Biosecurity Act 2014 (Qld)	Invasive plants and environmental weed cover must not exceed 10% cover of the offset area by Year 20. No new restricted invasive plants listed under the Biosecurity Act 2014 (Qld) are identified at any monitoring site (based on subsequent monitoring events).	All vehicles accessing the offset area are required to have undergone a weed inspection and vehicle hygiene check, confirming that they are weed free, before accessing the site. Chemical and/or mechanical control of all invasive plants and environmental weeds in accordance with the control measures outlined in the Biosecurity Queensland Fact Sheets or other sources of information. If a new weed infestation is identified, consult with local NRM Catchment Group, Healthy Land and Water, Council and Queensland Department of Agriculture and Fisheries to determine the invasiveness of the weed and tested/ recommended control measures. Control the spread of new infestation/s. Treat new infestation/s promptly to reduce the extent and spread of the infestation.	and associated contractors	Map invasive plant and environmental weeds as part of baseline and ongoing habitat quality monitoring. Quarterly inspections will observe and record the presence of weeds and success of previously applied weed control measures. The inspection will include before and after photos of the weed control area.	Pest plants dominate isolated area and or occur in an area greater than 10% of the offset area. An invasive weed species is identified at one or more monitoring sites, or opportunistically during any site inspection or other monitoring.	Step 1: Investigate cause of trigger Step 2: Implementation of corrective action(s) Upon being notified or becoming aware of pest plants dominating isolated areas and or occupying greater than 10% of the offset area, TMR will implement pest control measures within one month. These measures may include, and are not limited to: • foliar spraying • basal bark spraying • stem injection • cut stump • cut and swab • stem scraper • wick applicators • physical removal.
Increased population of feral animals in the offset area. Degradation of habitat by feral pigs	Pest animal management Feral pig management	Reduction in the abundance of wild dog, feral cat and other feral animals from the first year of management. Reduction in observed feral pig abundance from the first year of management. With pigs, the gestation period is 3 months, so if control actions are undertaken 3 months apart, the population can be heavily impacted.	Participate fully in, and cooperate with, any and all regional pest control programs, unless those would otherwise contravene a part of this OAMP. Pest animal control program to be implemented to best practice standards via appropriately qualified person/s. Control feral pigs, European foxes and wild dogs via a coordinated multiple pronged management program. Pest control will be undertaken twice within a 3-month period. Additionally, if the land manager, during quarterly inspections of the offset area notes an incursion of feral deer, feral pig or wild dog activity, an additional coordinated multiple pronged management program is to be instigated until the increased activity has ceased and/or the deer, feral pigs and wild dogs are removed.	Land manager, TMR and associated contractors	Monitoring of this management action will be undertaken by an appropriately qualified person appointed by TMR at least four times annually. Quarterly inspections will involve traversing the offset area with streams, low lying areas and vehicle access tracks being noted to record the presence of wallow holes, tracks and visual incidents in the offset area. If detected, these areas will be GPS-recorded and photographed and rechecked at the next quarterly inspection.	Any observed evidence of feral animal presence and/or habitat damage in the offsets area An increase in mean feral pig abundance from first year and subsequent monitoring events.	 Upon being notified or becoming aware of pest animal populations exceeding the threshold, the land manager is to implement all necessary or appropriate control measures needed to reduce pest animal populations to below trigger thresholds. The land manager is to have completed implementation of all necessary or appropriate pest control measures within one month. The land manager may approach neighbouring landowners to discuss the increased pest animal presence and an integrated control program may be developed. If an integrated control program is considered appropriate, the land manager will make best endeavours to reach agreement with neighbouring landowners to implement such a program. If impacts from the pest animal populations have not naturally remediated within six months of completion of implementation of the control measures, the land manager is to undertake and complete all works required to remediate those impacts.

Threat to offset values	Management activity	Performance objectives	Management actions (where, when and how the activity will be carried out).	Who will be carrying out the activity	Monitoring and reporting	Trigger for adaptive management and corrective action(s)	Corrective action and timing
Fire: the impact from uncontrolled wildfire or inappropriate fire regimes cause degradation in offset area habitat quality	Fire management	Uncontrolled fire does not occur in the offset area. Planned burns undertaken in remnant and regrowth Koala and GHFF in accordance with relevant RE fire management guidelines (<i>Table 14</i>).	Implement fire management in accordance with requirements in this OAMP, including: • Fire breaks reformed every 2 years and slashed as required to enable access and maintain fuel loads below 3,000 tonnes of dry matter yield/ha. • Wildfire response procedure developed • Undertake planned burns in remnant and regrowth Koala and GHFF habitat in accordance with relevant regional ecosystem fire management guidelines (<i>Table 14</i>) and/or weed control works. • Planned burns target mosaic burning resulting in patches of unburnt vegetation providing variation in the stages of response from fire and diversity of habitat. A mosaic is achieved with generally 40–80 per cent burnt within the target communities (refer Southeast Queensland Bioregion Planned Burn Guidelines, Qld Government 2013) • Controlled grazing for fuel reduction purposes.	Land manager, TMR and associated contractors	Quarterly inspections will monitor and document if there is evidence of wildfire, prohibited burning or force majeure events. Quarterly inspections will monitor and document if a prescribed low-intensity ecological burn has occurred, and recorded in the Annual report with the written advice from an ecologist or other suitably qualified person (e.g. Fire Warden)		 Within one month of detection of the trigger, complete an investigation into the reasons why the fire management measures have resulted in a decrease in habitat quality scores. That investigation must review adherence to the fire management measures and must identify appropriate corrective actions. Step 2: Implementation of corrective action/s Corrective action: upon being notified or becoming aware of a prohibited fire in the offset area, the landholder is to reassess and implement new access protocols for any lessees etc., signage and general access within one fortnight. Corrective action: subsequent to any occurrence of fire in the offset area, the land manager suitable qualified person appointed by the Landholder will: inspect and repair, and widen if necessary, all firebreaks; and reassess fuel load reduction practices; and exclude grazing until the DMY is >3,000 kg/ha.
Offset fails to achieve the performance targets and completion criteria within the 10- or 20-year timeframe.	Achieve the performance targets and completion scores in Section 6 at Year 10 or Year 20.	The performance targets and completion criteria are achieved by Year 10 or Year 20.	All management actions outlined in in this OAMP will be implemented to ensure that the performance targets and completion criteria are achieved.	TMR and associated contractors	Monitoring of the offset area will be undertaken in accordance with Section 8. The results of monitoring events will be compared against the performance targets and completion criteria to determine the progress of the offset area and recorded as part of reporting.	The performance targets and completion criteria are not achieved by Year 10 or Year 20.	 Within one month of detection of the trigger, complete an investigation into the reasons why the interim performance targets or the completion criteria were not achieved within the specified timeframes. This investigation must re-evaluate the suitability of the relevant management measures in the OAMP and must identify appropriate corrective actions. Step 2: Implementation of corrective action/s As soon as practicable, and in any case within eight months of detection of the trigger, complete implementation of the corrective actions identified under Step 1. These may include (though are not limited to): Increasing the frequency and intensity of pest animal and weed control measures or revising the type of measures to be implemented. Modifying the fire management measures, to better support enhancement of offset values. If the investigation under Step 1 recommends changes to the management regime, then as soon as possible, and in any case within six months of detection of the trigger, implement a revised OAMP incorporating those recommended changes.

Threat to offset values	Management activity	Performance objectives	Management actions (where, when and how the activity will be carried out).	Who will be carrying out the activity	Monitoring and reporting	Trigger for adaptive management and corrective action(s)	Corrective action and timing
Site access	Unauthorised persons, vehicles, and/or stock are prevented from accessing the site, and authorised stock are prevented from incurring during exclusion times	Public access to the offset area is prohibited. Access is restricted to those authorised persons required to undertake actions described in this management plan, including the landholder, and approval holder staff and their contractors and assigns. The offset area is not to be utilised for any purpose including recreational activities, or any other activities that deter from achieving the outcomes of this plan. No evidence of unauthorised persons, vehicles, and/or stock is detected on site at any point. Fences and signage are erected at all necessary points and kept in good repair throughout the life of the EPBC Act approval.	Fences will be maintained to prevent unauthorised access and to control stock presence. Signs will be erected at all entrances and potential access points to the site stating that access to the site is forbidden. Security cameras are to be installed at the 2 access points to the property. All signs and any new planned fences will be erected within six months of the approval of this OAMP. Any new or replacement fencing will be wildlife-friendly including the use of a plain top wire.	Land manager, TMR and associated contractors	Monitoring of this management action will be undertaken by the land manager or suitable qualified person within 3 months of the offset area being legally secured and during quarterly inspections. Quarterly inspections will monitor and document evidence of unauthorised access to the offset area. Quarterly inspections will monitor and document if signage is fit for purpose	Evidence of unauthorised persons, vehicles, and/or stock is detected at any point. Evidence of stock is detected at any point during exclusion times. Damage is detected to any fence or sign.	 For evidence of unauthorised persons, vehicles, and/or stock; or evidence of stock in an exclusion area: Step 1: determine access method Upon being notified or becoming aware of prohibited access to the offset area, the Landholder is to reassess access protocols for any lessees etc., signage and general access within one fortnight. Damage to signage will be repaired within one fortnight of noting the damage. If there are areas that have been negatively impacted, the regeneration of those areas will be added to the monitoring sites at <i>Table 20</i> and monitored during the quarterly inspections. Signage will be repaired and maintained as required by the Pastoral Manager, Landholder or suitable qualified person appointed by the approval holder.

Table 13: Greenridge offsets - management actions, triggers and corrective actions

The management actions shown in this table are consistent with the risks identified in the listing advice, conservation advice, and threat abatement plans relevant to each matter.

Threat to offset values	Management activity	Performance objectives	Management actions (where, when and how the activity will be carried out).	Who will be carrying out the activity	Monitoring and reporting	Trigger for adaptive management and corrective action(s)	Corrective action and timing
Degradation of Coastal Swamp Oak TEC	Coastal Swamp Oak TEC rehabilitation and enhancement plan Coastal Rehabilitate 22.03 ha (AU3) of Coastal Swamp Oak TEC to achieve the interim targets and completion criteria targets as listed in Table 16.		Implementation of the Coastal Swamp Oak TEC rehabilitation and enhancement plan upon approval of this OAMP (refer <i>Appendix C</i>). Implementation of this rehabilitation plan will be undertaken over a 5-year period to minimise the impact of seasonal variability on tubestock survival. First planting will be scheduled for spring 2024 with timing dependent on seasonal conditions.	TMR and associated contractors	Monitoring of offset value habitat quality scores will be undertaken in accordance with Section 8. The results of monitoring events will be compared against the habitat quality scores in the interim performance targets and completion criteria to determine the progress of the offset area and recorded as part of reporting (see Section 8).	Coastal Swamp Oak TEC habitat quality scores, performance targets and completion criteria (<i>Table 16</i>) are not on track to being achieved by Year 10 or Year 20.	 Step 1: Investigate cause of trigger: Within one month after detection of the trigger, complete an investigation into the reasons why the interim performance targets or the completion criteria were not achieved within the specified timeframes. Within two months after detection of the trigger, complete a re-evaluation of the suitability of the relevant management measures in the OAMP. The re-evaluation must identify appropriate corrective actions. Step 2: Implementation of corrective action/s The appropriate corrective actions identified under Step 1 will be implemented as soon as practicable, and in any case within six months after detection of the trigger. Lessons learnt from earlier plantings will inform processes and guide continual improvement and innovation in the establishment of the TEC.
	Coastal Swamp Oak TEC management	Increase the habitat quality scores for remnant and regrowth Coastal Swamp Oak TEC (AU1, AU2, AU4) based on the results of baseline and subsequent monitoring events to achieve the interim targets and completion criteria targets as listed in <i>Table 16</i> .	Pest animal control management actions in Coastal Swamp Oak TEC Invasive plants and environmental weed control management actions in Coastal Swamp Oak TEC. Undertake planned burns in remnant and regrowth Coastal Swamp Oak TEC in accordance with relevant regional ecosystem fire management guidelines (see <i>Table 15</i>). Strategic ecological thinning in regrowth and remnant areas if recommended by appropriate qualified ecologist.	TMR and associated contractors	Monitoring of offset value habitat quality scores will be undertaken in accordance with Section 8. The results of monitoring events will be compared against the habitat quality scores in the interim performance targets and completion criteria to determine the progress of the offset area and recorded as part of reporting (see Section 8).	Coastal Swamp Oak TEC habitat quality scores, performance targets and completion criteria (<i>Table 16</i>) are not on track to being achieved by Year 10 or Year 20.	 Within one month after detection of the trigger, complete an investigation into the reasons why the interim performance targets or the completion criteria were not achieved within the specified timeframes. Within two months after detection of the trigger, complete a re-evaluation of the suitability of the relevant management measures in the OAMP. The re-evaluation must identify appropriate corrective actions. Step 2: Implementation of corrective action/s The appropriate corrective actions identified under Step 1 will be implemented as soon as practicable, and in any case within six months after detection of the trigger.
Degradation of habitat Koala and GHFF	Koala and GHFF management	Increase the habitat quality scores for remnant and regrowth Koala and GHFF habitat (AU4) based on the results of baseline and subsequent monitoring events to achieve the interim targets and completion criteria targets as listed in <i>Table 16</i> .	Pest animal control management actions in Koala and GHFF habitat Invasive plants and environmental weed control management actions in swamp oak TEC. Undertake planned burns in remnant and regrowth Koala and GHFF habitat in accordance with relevant regional ecosystem fire management guidelines (<i>Table 15</i>). Strategic ecological thinning in regrowth and remnant areas (e.g., non-eucalypt and non-	TMR and associated contractors	Monitoring of offset value habitat quality scores will be undertaken in accordance with Section 8. The results of monitoring events will be compared against the habitat quality scores in the interim performance targets and completion criteria to determine the progress of	Koala and GHFF habitat quality scores, performance targets and completion criteria (<i>Table 16</i>) are not on track to being achieved by Year 10 or Year 20.	 Within one month after detection of the trigger, complete an investigation into the reasons why the interim performance targets or the completion criteria were not achieved within the specified timeframes. Within two months after detection of the trigger, complete a re-evaluation of the suitability of the relevant management measures in the OAMP. The re-evaluation must identify appropriate corrective actions.

Threat to offset values	Management activity	Performance objectives	Management actions (where, when and how the activity will be carried out).	Who will be carrying out the activity	Monitoring and reporting	Trigger for adaptive management and corrective action(s)	Corrective action and timing
			GHFF habitat trees) if recommended by an appropriate qualified ecologist.		the offset area and recorded as part of reporting (see <i>Section 8</i>).		Step 2: Implementation of corrective action/s The appropriate corrective actions identified under Step 1 will be implemented as soon as practicable, and in any case within six months after detection of the trigger.
Habitat or vegetation loss through land clearing	Maintain the extent of offset value habitat within the offset area	No unapproved and/or intentional clearing of vegetation within the Coastal Swamp Oak TEC, Koala and/or GHFF offset area, except for clearing that is required for fencing, access, firebreaks, ecological restoration and public safety.	Protection of the offset area via a declared area under Section 19E and 19F of the VM Act, as described in <i>Section</i> 9 to be registered within 12 months of the date of the approval (17 March 2024).	TMR and associated contractors	Updated OAMP with approved declaration of the area for Coastal Swamp Oak TEC, Koala and/or GHFF offset. Reporting to the Australian Government consistent with any and all EPBC Act approval(s).	Any activities in contravention of the declared area management plan.	Step 1: Investigate cause of trigger (e.g. unauthorised access) As soon as practicable, and in any case within one month of detection of the trigger, identify appropriate corrective actions. Step 2: Implementation of corrective action/s As soon as practicable, and in any case within two months of detection of the trigger, the appropriate corrective actions must be implemented. These may
			Construction and maintenance of access tracks, fencing and firebreaks will be undertaken in accordance with the requirements of <i>Table 11</i> . If vegetation clearing is required for fencing, access (i.e. weed control), firebreaks or public safety, it must be undertaken in accordance with best practice management methods and any applicable legislative requirements. Any clearing and/or ecological thinning will be in accordance with the advice of an appropriately qualified ecologist.	TMR and associated contractors	Quarterly inspections will monitor and document if any unapproved and/or intentional clearing of vegetation within the Coastal Swamp Oak TEC, Koala and/or GHFF offset area Quarterly inspections will monitor and document vegetation clearing that has occurred for fire break, access road or fence line maintenance.	Any unapproved and/or intentional clearing of vegetation within the Coastal Swamp Oak TEC, Koala and/or GHFF offset area	include (though are not limited to) additional fencing and/or signage and security for the offset area.
Degradation of habitat by overgrazing	Grazing management	Domestic livestock to be excluded from offset areas	Ensure suitable fencing to exclude livestock from offset areas	Land manager	Quarterly inspections will monitor and document if presence or evidence of livestock are present on the property	Detection and/or evidence of livestock on the property	Upon being notified or becoming aware of prohibited livestock grazing on the property, the land manager is to remove the livestock from the area (if present) and assess the adequacy of fencing within 10 days. The land manager is to undertake fence maintenance and repairs to resecure the offset area within 10 days.
Entanglement of GHFF in barbed wire fencing	Fencing	All new and replacement fencing to be wildlife-friendly	Any new or replacement fencing will be wildlife-friendly including the use of a plain top wire.	Land manager, TMR	Quarterly inspections	When fencing is being replaced or new fencing is planned/constructed.	Any new or replacement fencing will be wildlife-friendly including the use of a plain top wire.
Introduction, establishment and spread of non-native weeds including restricted invasive plants listed under the Biosecurity Act 2014 (Qld)	Invasive plants and environmental weed management listed under the Biosecurity Act 2014 (Qld)	Weed cover must not exceed 10% cover of the offset area by Year 20. No new restricted invasive plants listed under the Biosecurity Act 2014 (Qld) are identified at any monitoring site (based on subsequent monitoring events).	All vehicles accessing the offset area are required to have undergone a weed inspection and vehicle hygiene check, confirming that they are weed free, before accessing the site. Chemical and/or mechanical control of all invasive plants and environmental weeds in accordance with the control measures outlined in the Biosecurity Queensland Fact Sheets or other sources of information. If a new weed infestation is identified, consult with local NRM Catchment Group, Healthy	and associated contractors	Map invasive plant and environmental weeds as part of baseline and ongoing habitat quality monitoring. Quarterly inspections will observe and record the presence of weeds and success of previously applied weed control measures. The inspection will include before and	Pest plants dominate isolated area and or occur in an area greater than 10% of the offset area. A pest weed species is identified at one or more monitoring sites, or opportunistically during any site	Step 1: Investigate cause of trigger Step 2: Implementation of corrective action(s) Upon being notified or becoming aware of pest plants dominating isolated areas and or occupying greater than 10% of the offset area, TMR is to implement pest control measures within one month. These measures may include, and are not limited to: • foliar spraying • basal bark spraying • stem injection

Threat to offset values	Management activity	Performance objectives	Management actions (where, when and how the activity will be carried out).	Who will be carrying out the activity	Monitoring and reporting	Trigger for adaptive management and corrective action(s)	Corrective action and timing
			Land and Water, Council and Queensland Department of Agriculture and Fisheries to determine the invasiveness of the weed and tested/ recommended control measures Control the spread of new infestation/s. Treat new infestation/s promptly to reduce the extent and spread of the infestation.		after photos of the weed control area.	inspection or other monitoring.	 cut stump cut and swab stem scraper wick applicators mechanical removal.
Increased impacts of feral animals in the offset area. Degradation of habitat by feral pigs	Pest animal management Feral pig management	Reduction in the observed abundance of wild dog, European foxes and other feral animals from the first year of management. Reduction in mean feral pig relative abundance from the first year of management. With pigs, the gestation period is 3 months, so if control actions are undertaken 3 months apart, the population can be heavily impacted.	Participate fully in, and cooperate with, any and all regional pest control programs, unless those would otherwise contravene a part of this OAMP. Implementation of fire ant control baiting program. TMR will coordinate this program with the Department of Agriculture and Fisheries who have carriage of fire ant control programs. Pest animal control program to be implemented via appropriately qualified person/s. Control feral pigs, European foxes and wild dogs via a coordinated multiple pronged management program. Pest control will be undertaken twice within a 3-month period. Additionally, if the land manager, during quarterly inspections of the offset area notes an incursion of feral deer, feral pig or wild dog activity, an additional coordinated multiple pronged management program is to be instigated until the increased activity has ceased and/or the deer, feral pigs and wild dogs are removed.	Land manager, TMR and associated contractors	Monitoring of this management action will be undertaken by an appropriately qualified person appointed by TMR at least four times annually. Quarterly inspections will involve traversing the offset area with streams, low lying areas and vehicle access tracks being noted to record the presence of wallow holes, tracks and visual incidents in the offset area. If detected, these areas will be GPS-recorded and photographed and rechecked at the next quarterly inspection.	Any observed evidence of feral animal presence and/or habitat damage in the offsets area Detection of any fire ant nests, which will be reported to the Department of Agriculture and Fisheries. An increase in mean feral pig abundance from first year and subsequent monitoring events.	 Upon being notified or becoming aware of pest animal populations exceeding the threshold, the land manager is to implement all necessary or appropriate control measures needed to reduce pest animal populations to below trigger thresholds. The land manager is to have completed implementation of all necessary or appropriate pest control measures within one month. The land manager may approach neighbouring landowners to discuss the increased pest animal presence and an integrated control program may be developed. If an integrated control program is considered appropriate, the land manager will make best endeavours to reach agreement with neighbouring landowners to implement such a program. If impacts from the pest animal populations have not naturally remediated within six months of completion of implementation of the control measures, the land manager is to undertake and complete all works required to remediate those impacts.
Fire: the impact from uncontrolled wildfire or inappropriate fire regimes cause degradation in offset area habitat quality	Fire management	Uncontrolled fire does not occur in the offset area. Planned burns undertaken in remnant and regrowth Coastal Swamp Oak TEC, Koala and GHFF habitat in accordance with relevant RE fire management guidelines (<i>Table 15</i>).	Implement fire management in accordance with requirements in this OAMP, including: • Fire breaks reformed every 2 years and slashed as required to enable access and maintain fuel loads below 3,000 tonnes of dry matter yield/ha. • Wildfire response procedure developed • Undertake planned burns in remnant and regrowth Coastal Swamp Oak TEC, Koala and GHFF habitat in accordance with relevant RE fire management guidelines (<i>Table 15</i>) and/or weed control works and/or Coastal Swamp Oak TEC rehabilitation and enhancement plan. • Planned burns target mosaic burning resulting in patches of unburnt vegetation providing variation in the stages of response from fire and	Land manager, TMR and associated contractors	Quarterly inspections will monitor and document if there is evidence of wildfire, prohibited burning or force majeure events. Quarterly inspections will monitor and document if a prescribed low-intensity ecological burn has occurred, and recorded in the Annual report with the written advice from an ecologist or other suitably qualified person (e.g. Fire Warden) Weed cover is to be monitored by the same methodology and at the same time		 Within one month of detection of the trigger, complete an investigation into the reasons why the fire management measures have resulted in a decrease in habitat quality scores. That investigation must review adherence to the fire management measures and must identify appropriate corrective actions. Step 2: Implementation of corrective action/s Corrective action: upon being notified or becoming aware of a prohibited fire in the offset area, the landholder is to reassess and implement new access protocols for any lessees etc., signage and general access within one fortnight. Corrective action: subsequent to any occurrence of fire in the offset area, the land manager suitable qualified person appointed by the Landholder will: inspect and repair, and widen if necessary, all firebreaks; and

Threat to offset values	Management activity	Performance objectives	Management actions (where, when and how the activity will be carried out).	Who will be carrying out the activity	Monitoring and reporting	Trigger for adaptive management and corrective action(s)	Corrective action and timing
			diversity of habitat. A mosaic is achieved with generally 40–80 per cent burnt within the target communities (refer Southeast Queensland Bioregion Planned Burn Guidelines, Qld Government 2013)				reassess fuel load reduction practices.
Offset fails to achieve the performance targets and completion criteria within the 10- or 20-year timeframe	Achieve the performance targets and completion scores in Section 6 at Year 10 or Year 20.	The performance targets and completion criteria are achieved by Year 10 or Year 20.	All management actions outlined in in this OAMP will be implemented to ensure that the interim performance targets and completion criteria are achieved.	TMR and associated contractors	Monitoring of the offset area will be undertaken in accordance with Section 8. The results of monitoring events will be compared against the performance targets and completion criteria to determine the progress of the offset area and recorded as part of reporting.	The performance targets and completion criteria are not achieved by Year 10 or Year 20.	 Within one month of detection of the trigger, complete an investigation into the reasons why the interim performance targets or the completion criteria were not achieved within the specified timeframes. This investigation must re-evaluate the suitability of the relevant management measures in the OAMP and must identify appropriate corrective actions. Step 2: Implementation of corrective action/s As soon as practicable, and in any case within eight months of detection of the trigger, complete implementation of the corrective actions identified under Step 1. These may include (though are not limited to): Increasing the frequency and intensity of pest animal and weed control measures or revising the type of measures to be implemented. Modifying the fire management measures, to better support enhancement of offset values. If the investigation under Step 1 recommends changes to the management regime, then as soon as possible, and in any case within six months of detection of the trigger, implement a revised OAMP incorporating those recommended changes.
Site access	Unauthorised persons, vehicles, and/or stock are prevented from accessing the site	Public access to the offset area is prohibited. Access is restricted to those authorised persons required to undertake actions described in this management plan, including the landholder, and approval holder staff and their contractors and assigns. The offset area is not to be utilised for any purpose including recreational activities, or any other activities that deter from achieving the outcomes of this plan. No evidence of unauthorised persons, vehicles, and/or stock is detected on site at any point.	Fences will be maintained to prevent unauthorised access and to control stock presence. Signs will be erected at all entrances and potential access points to the site stating that access to the site is forbidden. All signs and any new planned fences will be erected within six months of the approval of this OAMP.	Land manager, TMR and associated contractors	Monitoring of this management action will be undertaken by the land manager or suitable qualified person within 3 months of the offset area being legally secured and during quarterly inspections. Quarterly inspections will monitor and document evidence of unauthorised access to the offset area. Quarterly inspections will monitor and document if signage is fit for purpose	Evidence of unauthorised persons, vehicles, and/or stock is detected at any point. Evidence of stock is detected at any time. Damage is detected to any fence or sign.	 For evidence of unauthorised persons, vehicles, and/or stock; or evidence of stock in an exclusion area: Step 1: determine access method Upon being notified or becoming aware of prohibited access to the offset area, the Landholder is to reassess access protocols for any lessees etc., signage and general access within one fortnight. Damage to signage will be repaired within one fortnight of noting the damage. If there are areas that have been negatively impacted, the regeneration of those areas will be added to the monitoring sites at <i>Table 20</i> and monitored during the quarterly inspections. Signage will be repaired and maintained as required by the land manager, TMR or suitable qualified person appointed by the approval holder.

Threat to offset values	Management activity	Performance objectives	Management actions (where, when and how the activity will be carried out).	Who will be carrying out the activity	Monitoring and reporting	Trigger for adaptive management and corrective action(s)	Corrective action and timing
		Fences and signage are erected at all necessary points and kept in good repair throughout the life of the EPBC Act approval.					

Table 14: Tabooba offsets fire management strategy

Offset area	Assess- ment unit	(ha)	Corresponding regional ecosystem	Regional ecosystem recommended fire strategy	Recommendations from the <i>Planned Burn Guidelines</i> South East Queensland Bioregion (Queensland Government 2013)		
Koala and GHFF	AU1	49.84	12.8.16 remnant	SEASON: Summer to late autumn. INTENSITY: Low. INTERVAL: 3-6 years. STRATEGY: Aim to burn 40-60% of any given area. Spot ignition in cooler or moister periods encourages mosaics. ISSUES: Control of weeds is a major focus of planned burning in most areas. Maintain ground litter and fallen timber habitats by burning only with sufficient soil moisture. Burning should aim to produce fine scale mosaics of unburnt areas.	Key indicators of a healthy open forest or woodland (refer to the photos below): • Healthy open forest has a grass; sedge; or shrubdominated understorey (or various mixtures); with a few canopy species of variable sizes (to eventually replace the canopy) and a healthy canopy. • Lower and mid stratum trees are scattered (e.g.		
	AU2	regrowth	eucalypts, wattles and she-oaks), but are not having any noticeable shading effects on ground stratum				
	AU4	50.62	12.8.14 remnant	SEASON: Summer to winter. INTENSITY: Plan for low to moderate. Unplanned occasional high intensity wildfire will occur. a: Low to moderate. INTERVAL: 4-8 years maintains a healthy grassy system. 8-20 years for shrubby elements of understorey. STRATEGY: Aim for 40-60% mosaic burn. Needs disturbance to maintain RE structure (eucalypt overstorey with open understorey of predominantly non-rainforest species). a: Aim for 40-60% mosaic burn. Burn with soil moisture and with a spot ignition strategy so that a patchwork of burnt/unburnt country is achieved. ISSUES: Typically lower rainfall than other moist RE types, but prefers sheltered slopes and gullies where it maintains moist environment. Frequent fire is needed to maintain understorey integrity, keeping more mesic species low in the profile of the understorey so that other species can compete. It is essential that wildfires are not the sole source of fire in this ecosystem.	 Pallen logs and hollow bearing trees may be present. In shrubby open forest, shrub layer is dominated by sclerophyllous (hard-leaved) species (e.g. grass trees, banksia, pea-flowers) with healthy foliage. In grassy or mixed open forest, grass clumps and/or sedges are well formed. Grassy open forest is easy to walk through or see through. Generally few weeds present. 		
	AU5	19.8	12.8.14 advanced regrowth	Follow guidelines for AU1 (12.8.14) with minimum interval of 8 years between fires until remnant status is achieved.			

Table 15: Greenridge offsets fire management strategy

Offset area	Assess- ment unit	Area (ha)	Corresponding regional ecosystem	Regional ecosystem recommended fire strategy	Recommendations from the <i>Planned Burn Guidelines South East Queensland Bioregion</i> (Queensland Government 2013)
Coastal	AU1	14.20	12.1.1 remnant	SEASON: Early winter or storm burning seasons.	Fringing Coastal Swamp Oak TEC are fire-adapted communities which should be
Swamp Oak TEC	AU2		12.1.1 regrowth	INTENSITY: Low to moderate. INTERVAL: Aim for a 6-7 year minimum threshold at a broad scale planning level. STRATEGY: Aim to retain at least 25-50% unburnt in any given year. This RE needs disturbance to maintain structure. Use fire to reduce opportunistic native (<i>Allocasuarina</i> spp.) or weed species dominance. Active fire management is required to reduce the accumulation of a significant dry fuel layer. Burns planned in surrounding REs should account for the disturbance requirements of this fringing vegetation. ISSUES: The fire ecology of this TEC is poorly known. Monitoring the impact of fire and recovery of the TEC is highly desirable. A long fire interval could increase fire intensity when fire occurs, thus detrimentally affecting the tree layer. Recovery should be relatively quick (approximately 10 years to a woodland/open forest community). A 'grassy' ecosystem might be lost if fire is excluded or too frequent (<2 years). Signs of problems in this community might include the regeneration of 'whipstick' communities and/or the presence of weeds (such as lantana). Fire exclusion and buffering from fire is not necessary. Where obligate seeding allocasuarinas are present in the under- and mid-storeys, fires causing 100% leaf scorch will kill these trees; therefore, fires of this intensity should be avoided. A seven-year minimum fire interval is required for obligate seeding allocasuarinas and casuarinas.	 burnt in association with surrounding fire-adapted communities. Key indicators of health in fringing swamp she-oak forest: Open to dense canopy of swamp she-oaks Melaleuca and/or mangroves may be intermingled on the margins. The ground stratum may be present as a sparse cover of salt-tolerant plants (e.g. marine couch); a cover of fallen 'leaves' (cladodes) and devoid of ground plants or with reeds, sedges and/or ferns. Few or no weeds e.g. groundsel are present. These areas may be subject to tidal inundation. Signs of where fire management is required in fringing swamp she-oak forest: It is difficult to see through or walk into the forest Increasing infestation of weeds, particularly groundsel Accumulation of dead material in sedge/fern understorey where present Build up of fine fuels such as dead grass material, leaf litter, suspended leaf litter, bark and twigs. Accumulation of elevated fuels is high or above.
	AU3	22.03	RE12.1.1 non- remnant (cleared)	Fire exclusion. Manage as per AU1 and AU2 when vegetation meets high value regrowth and or RE 12.1.1 remnant status.	Fire exclusion. Manage as per AU1 and AU2 when vegetation meets high value regrowth and or RE 12.1.1 remnant status.
	AU4	22.78	12.3.20 remnant	SEASON: Late summer to mid-winter (after rain).	Key indicators of a healthy <i>Melaleuca</i> community
Koala GHFF	AU4 AU5 AU6 AU4 AU5 AU6	28.22 4.74 12.48 28.22 4.74 12.48	12.3.20 remnant 12.3.20 regrowth 12.3.20 non- remnant (cleared) 12.3.20 remnant 12.3.20 regrowth 12.3.20 non- remnant (cleared)	INTENSITY: Planned and occasional unplanned burns (typically of higher intensity) influence the ecology of <i>Melaleuca</i> ecosystems. INTERVAL: Heath 8-12 years, Sedge 12-20 years, Mixed grass/shrub 6-20 years. STRATEGY: Aim for a 25-70% burn mosaic (in association with surrounding ecosystems, as <i>Melaleuca</i> ecosystems often occur in patches or along natural drainage lines). Fires may, depending on the conditions and type of vegetation, burn areas larger than just the <i>Melaleuca</i> ecosystem. Ensure secure boundaries from non-fire-regime-adapted ecosystems. Consider the needs of <i>Melaleuca</i> ecosystems based on understorey (i.e., heath dominated, sedge dominated or mixed grass/shrub) when planning burns. High soil moisture (or presence of water on the ground) is required, as avoidance of peat-type fires must be maintained. ISSUES: Fire regimes for <i>Melaleuca</i> ecosystems require further fire research. <i>Melaleuca</i> forests are fire-adapted, but too high an intensity or frequent fire will slow or prevent regeneration and lead to lower species richness (since these communities contain numerous obligate seed regenerating species that require sufficient fire intervals to produce seed). High intensity fires may	 Understorey may contain a sparse to dense ground layer of grasses, sedges, forbs, ferns, orchids, shrubs, or any mix of these in the understorey, with <i>Melaleuca</i> species of variable sizes and a healthy canopy. Cabbage tree palms may be present in the mid stratum or sub-canopy of some coastal communities Permanent or seasonal standing water may be present. Some of the following may indicate that fire is required to maintain a <i>Melaleuca</i> community: There is a dense accumulation of dead material (grasses/sedges/ferns) and grasses are beginning to collapse (no longer erect) Increasing density of monkey vine (<i>Parsonsia</i> spp.) in the mid stratum Surface and near-surface fine fuels such as leaf litter, bark and twigs have accumulated to High hazard (using the Overall Fuel Hazard Assessment
				kill trees and lead to whipstick regeneration. Too frequent fire may result in a net loss of nutrients over time from an already nutrient poor system. Fire associations are significantly influenced by understorey composition. <i>Melaleuca</i> communities with a heath understorey should burn in a similar way to coastal heath (8-12 years). Sedge understorey communities will burn in association with the surrounding ecosystems (so will often burn with them but sometimes not, such that these communities have a slightly less fire frequency). Mixed understorey communities burn in a similar way to dry sclerophyll, in association with the surrounding dry sclerophyll, though somewhat less frequently due to the additional maisture present in <i>Melaleuca</i> communities.	 Guide). There has been a mass germination of <i>Melaleuca</i> in amongst or just above the ground layer There has been a flush of pine wildlings or groundsel which have grown up and begun to shade out ground layer. Sometimes these form a whipstick stand of many closely spaced narrow trees.

frequently due to the additional moisture present in *Melaleuca* communities.

Offset area	Assess- ment unit	Corresponding regional ecosystem	Regional ecosystem recommended fire strategy	Recommendations from the <i>Planned Burn Guidelines South East Queensland Bioregion</i> (Queensland Government 2013)
Saltmarsh		RE 12.1.2	STRATEGY: Do not burn deliberately. No fire management required. Largely non-flammable vegetation.	Limit fire encroachment into mangroves and saltmarsh Mangroves do not require fire and generally do not burn. Sometimes mangroves can be scorched in nearby planned burning operations or wildfire, but it is rare that any lasting damage is done. Care needs to be taken when burning around saltmarsh however, as it is potentially flammable. The main strategy is to burn with high tides or recent rain with groundwater seepage protecting saltmarsh vegetation. Although saltmarsh may occasionally burn, do not intentionally introduce fire. In most instances fire management should aim to limit fire encroachment into mangroves and saltmarsh areas maintaining mosaic burning in surrounding fire-adapted vegetation communities.

5.1 Responsible parties

As the approval holder, TMR is accountable for implementing the OAMP, and commits to doing so. Completing the actions listed in the OAMP will be ensured through the annual reporting requirements (*Section 8*). TMR will coordinate reporting, reviewing, inspections, auditing and any adaptive management changes to the plan. A person within TMR (e.g. Environment Manager or equivalent) will be assigned the responsibility of managing offset requirements for TMR.

TMR will maintain accurate records substantiating all activities related to the management of the offset area, and the monitoring of the offset site, as described in *Section 8*. These records will be made available to the Department on request.

TMR, its subcontractors or assigns, will undertake the offset management actions and day to day management of the site, including fencing, managing fire breaks, weed management, feral animal management and grazing management. TMR, its subcontractors or assigns, will also undertake the landholder reporting as per *Table 19*.

TMR will engage suitably qualified persons to undertake the biocondition assessments, ecological studies and surveys, prepare reports and undertake inspections, as required in *Table 18* and *Table 19*.

5.2 Emergency procedures

Incidents identified at any of the offset sites will be reported by the lessee to TMR. The level of severity will dictate the necessary actions through TMR's formal incident management system. General incidents, for example, wild dog incursion, will be managed by TMR and responses to incidents adversely impacting habitat quality on the offset site, or MNES directly, will be coordinated by TMR, to ensure remediation or enhanced management measures (*Table 12* and *Table 13*) are implemented to address the incident as soon as reasonably possible.

TMR will notify the Department (within the timeframe stipulated by the action approval conditions) after becoming aware of any incident, non-compliance with conditions, or non-compliance with any of the commitments made in this OAMP (see also *Section 10*).

6 Offset completion criteria and performance targets

Offset completion criteria have been determined for each MNES based on an understanding of the specific habitat, connectivity and other ecological values for Coastal Swamp Oak TEC, Koala, and GHFF. These criteria were initially derived from detailed ecology survey information of both the impact and offset sites, as detailed in the OS.

The targeted habitat quality meets guidelines published by ANZMEC (2000),¹⁶ stating completion criteria should be:

- 1. Specific enough to reflect the unique set of environmental, social and economic circumstances.
- 2. Flexible enough to adapt to changing circumstances without compromising objectives.

-

¹⁶ Strategic Framework for Mine Closure. (2000). Australian and New Zealand Minerals and Energy Council and Minerals Council of Australia. Canberra, ACT.

- 3. Include environmental indicators suitable for demonstrating that rehabilitation trends are heading in the right direction.
- 4. Undergo periodic review resulting in modification if required due to changed circumstances or improved knowledge.
- 5. Based on targeted research which results in more informed decisions.

The completion criteria and the 'with offset' non-native species attribute (provided in *Appendix J*, *Appendix K* and *Appendix L*) establishes the acceptable limits to non-native species in the offset area. These will be achieved as a requirement of this OAMP.

Over the course of the management period, a set number of interim completion criteria have been proposed for each MNES to track the trajectory of habitat quality improvement towards the desired final completion criteria (*Table 16*). The timing for these interim targets corresponds with the 5 yearly targeted species surveys and detailed ecological condition monitoring in Years 5, 10, 15 and 20.

Interim targets were derived for each MNES by identifying the attributes expected to increase over the period of the approval. The values were determined by differentiating between specific attributes, of which the majority were longer term targets (e.g. species richness, tree canopy cover, number of large trees) and those where an initial benefit could be realised early (e.g. recruitment of woody species, non-native plant cover).

The completion of management actions identified in *Table 12* and *Table 13* will enable the offset sites to improve and achieve the scores required, thus meeting and maintaining the completion criteria required of the offset. The annual reports (see *Section 8*) will provide transparency regarding how the site management actions are being implemented, and where relevant, identify any force majeure events impacting the offset site, and any non-compliance with the OAMP.

Table 16: Interim targets and completion criteria

MNES	EPBC status	Stage 1 impact area (ha)	Impact site quality (- /10)	Offset property	Offset Area	Habitat start quality score (- /10)	Habitat quality score Year 5 (-/10)	Habitat quality score Year 10 (- /10)	quality score	Habitat quality score Year 20 (- /10)
				Greenridge	Remnant RE 12.1.1 AU1: 14.2 ha	8.0	8.0-8.5	9.0		
				Greenridge	Regrowth RE 12.1.1 AU2: 5.16 ha	7.0	7.0-7.5	7.5-8.0	8.0-8.5	9.0
Coastal Swamp Oak	END	15.9*	8	Greenridge	Non-remnant (cleared) RE 12.1.1 AU3: 22.03 ha	3.0	3.5-4.0	4.0-4.5	5.0-5.5	6.0
TEC Cak	LIND	13.9	0	Greenridge	Remnant RE 12.3.20 AU4: 28.22 ha	8.0	8.0-8.5	9.0		
				Greenridge	Regrowth RE 12.3.20 AU5: 4.74 ha	7.0	7.0-7.5	7.5-8.0	8.0-8.5	9.0
				Greenridge	Non-remnant RE 12.3.20 AU6: 12.48 ha	2.0	3.0	4.0-6.0	6.0-8.0	9.0
				Tabooba	Remnant RE 12.8.16 AU1: 49.84 ha	8.0	8.0-8.5	9.0		
				Tabooba	Advanced regrowth RE 12.8.16 AU2: 145.02 ha	6.0	7.0-7.5	8.0		
				Tabooba	Young regrowth RE 12.8.16 AU3: 48.10 ha	4.0	4.0-4.5	5.0-5.5	6.0-6.5	7.0
Phascolarctos		70.04	_	Tabooba	Remnant RE 12.8.14 AU4: 50.62 ha	8.0	8.0	8.0		
cinereus Koala	VUL	73.81	7	Tabooba	Advanced regrowth AU5: 19.80 ha	7.0	7-7.5	8.0		
				Greenridge	Remnant RE 12.3.20 AU4: 28.22 ha	8.0	8.0	8.0		
				Greenridge	Regrowth RE 12.3.20 AU5: 4.74 ha	7.0	7.0-7.5	7.5-8.0	8.0-8.5	9.0
				Greenridge	Non-remnant RE 12.3.20 AU6: 12.48 ha	4.0	4.0-4.5	5.0-5.5	6.0-6.5	7.0
				Tabooba	Remnant RE 12.8.16 AU1: 49.84 ha	6.0	6.0	6.0		
				Tabooba	Advanced regrowth 12.8.16 AU2: 145.02 ha	5.0	5.5-6.5	7.0		
				Tabooba	Young regrowth RE 12.8.16 AU3: 48.10 ha	5.0	5.0-5.5	5.5	5.5-6	6.0
Pteropus	\"	00.70	_	Tabooba	Remnant RE 12.8.14 AU4: 50.62 ha	6.0	6.0-6.5	7.0		
poliocephalus GHFF	VUL	68.76	7	Tabooba	Advanced regrowth RE 12.8.14 AU5: 19.80 ha	5.0	5.0-5.5	6.0		
				Greenridge	Remnant RE 12.3.20 AU4: 28.22 ha	6.0	6.0-6.5	7.0		
				Greenridge	Regrowth RE 12.3.20 AU5: 4.74 ha	6.0	6.0	6.0	6.0	6.0
				Greenridge	Non-remnant RE 12.3.20 AU6: 12.48 ha	2.0	2.5-3.0	3.0-4.0	5.0-6.0	7.0

7 Offset site management and protection additional to those that currently exist

Securing the offset area will add additional protection for biodiversity values from clearing¹⁷ and provide additional management of weeds and pest animals that are additional to the general requirements for biosecurity.

The offset areas are currently not protected from timber harvesting, the inappropriate use of hot fires or the under-sowing of exotic pasture species by either the VM Act or the EPBC Act due to exemptions within the legislative frameworks for the continuing use of the land. Remnant vegetation areas are protected from broadscale clearing under the VM Act; however, the clearing of regrowth is permitted (see the offsets maps at *Figure 8* to *Figure 10*). Maintaining the existing condition of regulated vegetation and land for habitat values is not addressed under the VM Act.

The *Biosecurity Act 2014* (Qld) (the **Biosecurity Act**) imposes a 'general biosecurity obligation' on all Queenslanders to manage biosecurity risks that are under their control and that they know about or could reasonably be expected to know about.¹⁸ In practical terms, this means that:

- If you are a livestock owner, you are expected to stay informed about pests and diseases that could affect or be carried by your animals, as well as weeds and pest animals that could be on your property. You are also expected to manage them appropriately.
- If you are a landowner, you are expected to stay informed about the weeds and pest animals (such as wild dogs) that could be on your property. You are also expected to manage them appropriately.

The Biosecurity Act assigns the pests identified in the offset areas as Restricted Matters in Categories 1-7 and requires the following management as shown below in *Table 17*.

Table 17: Biosecurity Act 2014 (Qld) obligations

Category	What is required	Examples
1	Must advise an authorised officer within 24 hours of becoming aware	Electric ant/ Little Fire ant, Red imported fire ant
2	Must advise an authorised officer within 24 hours of becoming aware	Noxious fish, including alligator gar and black pacu
3	Must not distribute, be traded or released into the environment	Most invasive weeds, pest animals, noxious fish
4	Must not move	Certain weeds, pest animals, noxious fish such as feral pigs, feral deer, rabbits, Hudson pear and jumping cholla cactus
5	Must not possess or keep	Rabbits, carp, bunny ears cactus
6	Must not feed (except if undertaking a control program)	Feral deer, wild dogs, rabbits, foxes, noxious fish
7	Must, as soon as practicable, kill the restricted matter	Noxious fish, including tilapia, gambusia, carp

¹⁷ Vegetation Management Act 1999 (Schedule definitions)

¹⁸ See https://www.daf.qld.gov.au/business-priorities/biosecurity/policy-legislation-regulation/biosecurity-act-2014/qeneral-biosecurity-obligation

The obligations in the OAMP are additional to these general obligations, in that control is required once thresholds as detailed in *Table 12* and *Table 13* are met, which initiates the respective controlling actions. For example, there is a requirement to control feral pigs if numbers in excess of 12 are observed in any one property inspection; this is above and beyond the requirements of the Biosecurity Act, as is the reduction of weed species to 10% of the offset area over the life of the management plan.

Tabooba is located within the Scenic Rim Regional Council LGA. The council has implemented a Scenic Rim Biosecurity Plan and is committed to the control of declared pest plants within the region. Council states only that 'landowners have a general biosecurity obligation to control declared pest plants on their land'. ¹⁹

Greenridge is located within the Gold Coast City Council LGA. In the council's *Gold Coast Biosecurity Management Plan 2019-2024* landholder's responsibilities are listed as: ²⁰

- management activities
- best management practice
- good neighbour policy
- general biosecurity obligation for biosecurity matters.

8 Monitoring and reporting

The offsets area monitoring methods are provided in *Table 18*. Habitat quality monitoring is to be undertaken in Years 1 (2025), 5, 10, 16 and 20 to assess comparative changes in habitat condition against baseline data collected on the offset site, as well as attainment and maintenance of the offset completion criteria (see *Section 6*). Further, the monitoring will measure changes resulting from the management actions and variability due to climatic conditions. This will inform the nature and frequency of management actions required and if trigger levels are breached, the use of corrective actions to bring the offset back into compliance.

Note that the methodologies listed, and the RE benchmarks used in the establishment of the baseline data, will be used consistently throughout the reporting period to enable the comparison of data.

The survey methods from the original survey work undertaken in 2022 is described in the OS (BAAM, 2022). A detailed description of these methods is also provided in *Appendix A* of this OAMP.

While undertaking monitoring activities, the responsible person will move between the permanent survey points in a random manner noting any substantial variation in the condition of the offset area between the permanent monitoring points. Any substantial variation is to be noted in the subsequent report.

TMR, its successors or assigns, will maintain accurate and complete compliance records, in keeping with approval condition 39. Additionally, and consistent with approval condition 40, if the

https://www.scenicrim.qld.gov.au/our-environment/biodiversity/pest-plants-and-weeds

²⁰ https://www.goldcoast.qld.gov.au/files/sharedassets/public/pdfs/policies-plans-amp-strategies/biosecurity-management-plan.pdf

Department makes a request in writing, the approval holder will provide electronic copies of compliance records to the Department within the specified timeframe.

TMR, its successors or assigns, will, as per the approval conditions of the action, provide a Compliance Report annually for each 12-month period following the date of the approval (17 March each year), for the period of the approval. Offset Area Reports describing the progress of the offset area over the relevant 12-month period will be part of those reports until the completion criteria are achieved or the end of the EPBC approval, whichever comes first. The monitoring methodology and schedule is outlined in *Table 18*. The reporting schedule is provided in *Table 19*. The location of the monitoring sites is shown at *Figure 11* and *Figure 12*. The coordinates of the existing baseline monitoring sites are shown in *Table 20*. There are three additional sites required to be established in year 1 to complete the required sampling density as per the *Guide to determining terrestrial habitat quality: A toolkit for assessing land-based offsets under the Queensland Environmental Offsets Policy Version 1.3 (2020).*

The Offset Area Reports will contain records substantiating all activities relevant to the implementation and management of the offsets.

TMR or a suitably qualified person appointed by TMR will undertake quarterly inspections of the offset area to observe and record dry matter, pest plants, accessibility (i.e. condition of fencing), evidence of fire and evidence of pest animal incursion. The inspection records will serve as the primary data source for the annual Offset Area Report.

Grass and weed cover measurement is to be undertaken as per the Level 1 methodology described in the *Land Manager's Monitoring Guide* (DERM, 2010).

Dry matter is to be assessed as per the South East Queensland pasture photo standards for pastures on basalt (see *Appendix D*).

Table 18: Monitoring schedule and methodology to be used

surveys Koala and GH area, including numbers and	d abundance of HFF in the offset	In May, in Year 1 (2025), 5, 10, 15 and 20 after the commencement of	EPBC Act referral guidelines for the vulnerable Koala (combined populations of Queensland, New South Wales and the Australian Capital Territory) (DoE 2014).	Across the Koala and
surveys Koala and GH area, including numbers and	HFF in the offset ng estimated	(2025), 5, 10, 15 and 20 after the commencement of	(combined populations of Queensland, New South Wales and	Koala and
Habitat quality assessments Landscape-sc		each Stage of the Project	Survey guidelines for Australia's threatened mammals (SEWPaC 2011).	GHFF offsets areas
Size of Contered Conner C	tributes r BioCondition tat attributes (Koala nly) ity and availability of and habitat required braging ity and availability of at required for er and breeding ity and availability of at required for	In May, in Year 1 (2025), 5 10, 15 and 20 after the commencement of each Stage of the Project	In accordance with the <i>Guide to determining terrestrial habitat quality: A toolkit for assessing land-based offsets under the Queensland Environmental Offsets Policy Version 1.3</i> For Koala and GHFF, details on habitat parameters relevant to threatened fauna species were evaluated as per the earlier guideline <i>Guide to determining terrestrial habitat quality: A toolkit for assessing land-based offsets under the Queensland Environmental Offsets Policy</i> (State of Queensland 2014). The methodology to be utilised for determining the species attributes to be collected are at <i>Appendix A</i> . The habitat data scores from the original surveys are provided in Section 5.2 and Appendix 2 (Tabooba) and Section 6.2 and Appendix 3 (Greenridge) of the OS (BAAM 2022). The OAG outputs are shown in Section 10 of the OS (BAAM 2022). Data collection and OAG calculation methods are to be consistent during the life of the OMP	At sites as shown in Table 20, Figure 11 and Figure 12

28 June 2024

Monitoring	Attributes monitored	Timing	Method	Location/s
BioCondition assessments	 Recruitment of woody perennial species in EDL Native plant species richness – trees Native plant species richness – shrubs Native plant species richness - grasses Native plant species richness – forbs Tree canopy height Tree canopy cover Shrub canopy cover Native perennial grass cover Organic litter Large trees Coarse woody debris Non-native plant cover Quality and availability of food and foraging habitat Quality and availability of shelter 	In May, in Year 1 (2025), 5 10, 15 and 20 after the commencement of the action	Field observations, vegetation assessment as per the <i>BioCondition: A Condition Assessment Framework for Terrestrial Biodiversity in Queensland Assessment Manual</i> (Eyre et al., 2015) Data for each of the ecological condition attributes monitored will be collected at each site (final site locations are to be established) and reported on and presented in a sequential manner (including previous data collected) to quantify change from the baseline condition. This will record the change in each attribute measured and hence the condition of the habitat, thus enabling a statistical comparison to previous years' data and tracking towards attainment of the offset interim and final completion criteria. Scoring is to be consistent with the <i>Guide to Determining Terrestrial Habitat Quality Version 1.3</i> (Department of Environment and Science, 2020).	At sites as shown in Table 20, Figure 11.and Figure 12.
Habitat quality scores for each matter including Coastal Swamp Oak TEC, Koala and GHFF	 Site condition Site context Species stocking rate 	In May, in Year 1 (2025), 5, 10, 15 and 20 after the commencement of the action	As per the document <i>How to use the offsets assessment guide</i> (DSEWPaC, 2012) and baseline methods for scoring Coastal Swamp Oak TEC, Koala and GHFF, as described in the OS (BAAM, 2022). Baseline habitat quality scores for each matter have been provided in Section 5.2 and Appendix 2 (Tabooba) and Section 6.2 and Appendix 3 (Greenridge) of the OS (BAAM 2022).	Per matter area

Note that the methodologies listed, and the RE benchmarks used in the establishment of the baseline data, will be used consistently throughout the reporting period to enable the comparison of data. Refer to Appendix A for a description of the methodology.

Monitoring	Attributes monitored	Timing	Method	Location/s
Quarterly landholder/appr	oval holder records and monitori	ng (report to approv	al holder – end of September, December, March and June e	ach year)
Forestry operations, native timber harvesting and general vegetation impacts	Any incidence of native plant destruction	Monitored quarterly and reported annually in Offset	Forestry operations, native timber harvesting and general vegetation impacts	Across the offset areas
Unauthorised impacts to vegetation from activities such as illegal access/ camping	Vegetation, woody debris, grass cover, weed cover, feral animal damage and presence	Area Reports until the offset completion criteria are achieved.	Landholder or person appointed by the Landholder will	
Grazing	Livestock stocking rates	Monitored monthly during grazing periods at Tabooba (dry season) and reported annually until the offset completion criteria are achieved.	undertake quarterly inspections of the offset area to observe and record grass cover levels, weeds, accessibility (e.g., condition of fencing), and evidence of fire, erosion, and feral animal incursion. The inspection records will be provided to the approval holder and serve as the primary data source for the Offset Area Report. Grass cover assessment is to be undertaken as per the DMY measurements in accordance with the SEQ pasture photo	
Unplanned fire	Occurrence, control measures implemented, timing and result of the control measures.	Monitored quarterly and reported annually in Offset	standards. ²¹ Weed cover is to be monitored by the same methodology and at the same time as the grass cover measurements. This is in addition to BioCondition assessments.	
Weeds	Occurrence, control measures implemented, timing and the result of the control measures.	Area Reports until the offset completion criteria are achieved.	addition to biocordition assessments.	
Pest animals	Occurrence, control measures implemented, timing, number and type of species and the result of the control measures.		Quarterly inspections will involve traversing the offset area along streams, low lying areas and vehicle access tracks, to record the presence of wallow holes, tracks and any visual incidents. If detected, GPS locations will be recorded and photographed and rechecked at the next quarterly inspection. Any evidence of predation on Koalas and/or GHFF must be	

²¹ Available at: https://futurebeef.com.au/wp-content/uploads/2012/02/Wide-Bay-and-South-East-Queensland.pdf

Monitoring	Attributes monitored	Timing	Method	Location/s
			reported immediately to the approval holder and corrective actions implemented.	

Table 19: Reporting schedule

Report Details to DCCEEW	Reporting period	Submission due date	
Annual Offset Area Report, which contributes to the Annual Compliance Report detailing photo points (including coordinates), implementation of management actions, any triggers for corrective actions and implementation of those corrective actions, if implemented, and offset condition	Annual Offset Area Report for each 12-month period following the date of the approval (17 March each year)		
outcomes, including habitat quality scores, condition of Koala habitat and results of Koala and GHFF surveys, achieved for preceding reporting period.	17 March annually until the offset completion criteria are achieved and then every 5 years until the end of the approval (30 June 2045).	Within 60 business days following the end of each 12-month period (as per approval condition 47).	
Compliance report detailing compliance with approval conditions under the EPBC Act, including compliance with the offset conditions, as detailed in the OAMP.	Compliance Report for each 12-month period following the date of the approval (17 March each year).		
Offset Habitat Quality Reporting including results of targeted fauna surveys, habitat quality and BioCondition monitoring and overall habitat quality scores. Including comparison on habitat quality scores to baseline scoring and provide recommendations for improving habitat quality.	Year 1 (2025), 5, 10, 15 and 20 after the commencement of the action	Contained within the Annual Offset Area Report.	

Table 20: Monitoring sites

Property	Assessment unit	Regional ecosystem	Survey site number *	Location - easting	Location - northing
Tabooba	AU1	12.8.16 remnant	472	153.005045	-28.141476
Tabooba	AU1	12.8.16 remnant	473	153.004708	-28.140876
Tabooba	AU1	12.8.16 remnant	474	153.005154	-28.139302
Tabooba	AU1	12.8.16 remnant	475	153.004355	-28.140064
Tabooba	AU2	12.8.16 advanced regrowth	470	153.005126	-28.134193
Tabooba	AU2	12.8.16 advanced regrowth	471	153.004300	-28.133600
Tabooba	AU2	12.8.16 advanced regrowth	683	152.998065	-28.137266
Tabooba	AU2	12.8.16 advanced regrowth	684	152.997289	-28.137748
Tabooba	AU2	12.8.16 advanced regrowth	734	152.996182	-28.130461
Tabooba	AU2	12.8.16 advanced regrowth	735	152.996157	-28.131244
Tabooba	AU3	12.8.16 young regrowth	685	152.996628	-28.137245
Tabooba	AU3	12.8.16 young regrowth	686	152.997474	-28.136818
Tabooba	AU3	12.8.16 young regrowth	687	153.001815	-28.142778
Tabooba	AU3	12.8.16 young regrowth	688	153.000801	-28.142683
Tabooba	AU3	12.8.16 young regrowth	756	152.996710	-28.139757
Tabooba	AU3	12.8.16 young regrowth	757	152.997221	-28.139040
Tabooba	AU4	12.8.14 remnant		to be determined	1
Tabooba	AU4	12.8.14 remnant	680	153.002959	-28.125691
Tabooba	AU4	12.8.14 remnant	681	153.002563	-28.125145
Tabooba	AU4	12.8.14 remnant	747	153.010908	-28.137587
Tabooba	AU4	12.8.14 remnant	748	153.011071	-28.138365
Tabooba	AU4	12.8.14 remnant	751	152.999902	-28.141270
Tabooba	AU4	12.8.14 remnant	752	152.999018	-28.141032
Tabooba	AU5	12.8.14 advanced regrowth	736	153.009347	-28.133732
Tabooba	AU5	12.8.14 advanced regrowth	737	153.010073	-28.133246
Tabooba	AU6	12.8.16 cleared		to be determined	d
Tabooba	AU6	12.8.16 cleared	745	152.987425	-28.134268
Tabooba	AU6	12.8.16 cleared	746	152.986440	-28.134469
Tabooba	AU6	12.8.16 cleared	754	152.995332	-28.139910
Tabooba	AU6	12.8.16 cleared	755	152.995951	-28.139194
Greenridge	AU1	12.1.1 remnant	836	153.366741	-27.816699
Greenridge	AU1	12.1.1 remnant	837	153.365796	-27.816436
Greenridge	AU1	12.1.1 remnant	840	153.360421	-27.819928
Greenridge	AU1	12.1.1 remnant	841	153.361317	-27.819704
Greenridge	AU1	12.1.1 remnant	962	153.356861	-27.816537

Property	Assessment unit	Regional ecosystem	Survey site number *	Location - easting	Location - northing
Greenridge	AU1	12.1.1 remnant	963	153.357854	-27.816388
Greenridge	AU2	12.1.1 regrowth	844a	153.360137	-27.818366
Greenridge	AU2	12.1.1 regrowth	844b	153.361060	-27.818382
Greenridge	AU2	12.1.1 regrowth	956	153.347132	-27.820104
Greenridge	AU2	12.1.1 regrowth	957	153.346685	-27.819429
Greenridge	AU3	12.1.1 non-remnant		to be determined	1
Greenridge	AU3	12.1.1 non-remnant	958	153.348034	-27.820474
Greenridge	AU3	12.1.1 non-remnant	959	153.348681	-27.821162
Greenridge	AU3	12.1.1 non-remnant	970	153.349211	-27.815311
Greenridge	AU3	12.1.1 non-remnant	971	153.348397	-27.814794
Greenridge	AU4	12.3.20 remnant	931	153.351146	-27.826806
Greenridge	AU4	12.3.20 remnant	932	153.350176	-27.826815
Greenridge	AU4	12.3.20 remnant	964	153.351871	-27.826742
Greenridge	AU4	12.3.20 remnant	965	153.351901	-27.827602
Greenridge	AU4	12.3.20 remnant	966	153.362203	-27.817387
Greenridge	AU4	12.3.20 remnant	967	153.363043	-27.817842
Greenridge	AU5	12.3.20 regrowth	923	153.345311	-27.821812
Greenridge	AU5	12.3.20 regrowth	924	153.344795	-27.822603
Greenridge	AU5	12.3.20 regrowth	974	153.348986	-27.826244
Greenridge	AU5	12.3.20 regrowth	975	153.348119	-27.825906
Greenridge	AU6	12.3.20 non-remnant	960	153.359976	-27.816328
Greenridge	AU6	12.3.20 non-remnant	961	153.359493	-27.816939
Greenridge	AU6	12.3.20 non-remnant	972	153.348947	-27.816178
Greenridge	AU6	12.3.20 non-remnant	973	153.348566	-27.816998

Coordinates system: WGS84

^{*} Survey site numbers are to be consistent with the baseline data collected for the duration of the OAMP

Figure 11: Monitoring sites -Tabooba

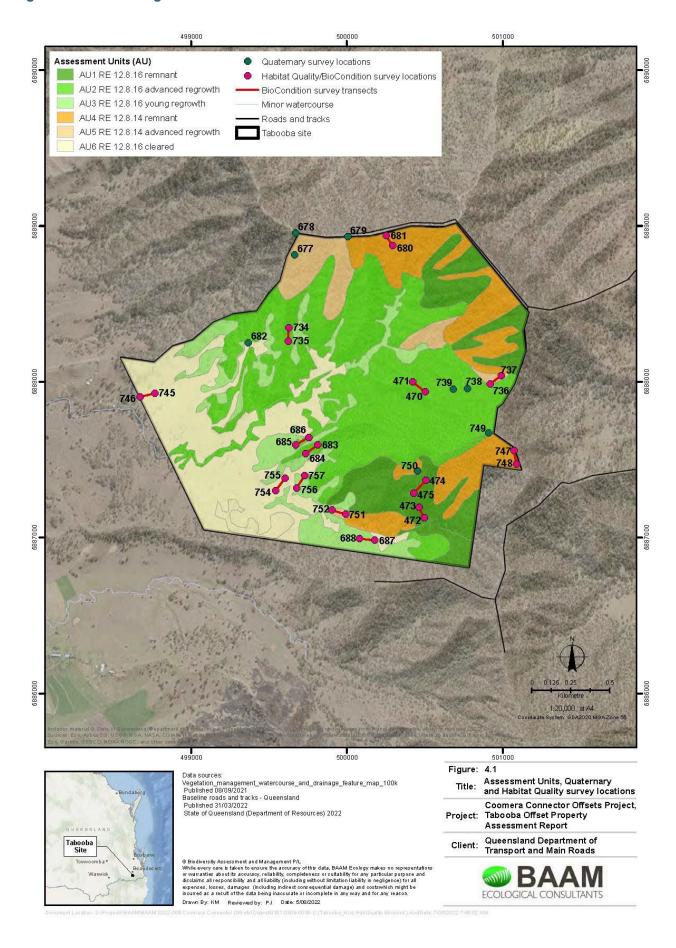
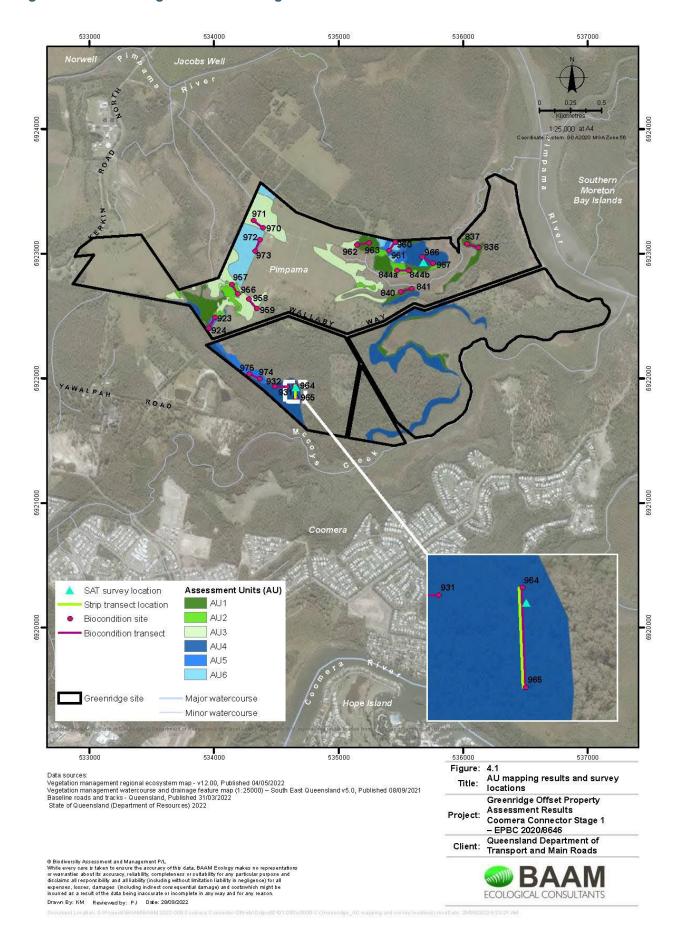



Figure 12: Monitoring sites - Greenridge

9 Legally binding mechanism

The offsets will be secured by being declared as an area of high conservation value under section 19F of the VM Act. Once this has been registered on the title, the offset areas will be mapped as a category A area on the property map of assessable vegetation (**PMAV**). An area mapped as category A on a PMAV is described as an 'area subject to compliance notices, offsets and voluntary declarations'.

To secure the declared area on the title of each property, the property owners will complete and submit a request for a declared area form, and a declared area management plan form. Both of these forms are requirements of the Queensland Department of Resources so that the legally binding mechanism may be lodged on the title of the property.

The approval holder will legally secure the environmental offset within 12 months of the date of issue of the approval conditions; i.e., the offsets will be legally secured by 17 March 2024. The approved OAMP will be attached to the legal mechanism used to legally secure the environmental offset. The approval holder will provide written evidence to the Department within 20 business days of the mechanism to legally secure the environmental offset having been registered.

Management and monitoring of the offset area will be undertaken in accordance with commitments in the approved OAMP.

The declared area will remain in place as the legally securing mechanism for the offset area. The declared area and approved OAMP will ensure the offset completion criteria are attained, and then maintained for the period of the EPBC Act approval. Statutory protection of the offset area is maintained under the VM Act, NC Act and EPBC Act (or subsequent legislation). This will ensure that the ecological benefits of the offset are maintained in perpetuity.

With respect to the property Tabooba, TMR may enter into an agreement with DES and/or SRRC to have the property established as a nature conservation area and/or be maintained under the Land for Wildlife program respectively. Brief informal discussions have already been had with SRRC's Land for Wildlife Program as to TMR and Council maintaining the property post approval. Decisions on the maintenance of the property would be made closer to the lapsing of the approval.

With respect to the property Greenridge, DES and GCCC have previously expressed interest in acquiring Greenridge. Given the interest by both DES and GCCC, TMR may enter into an agreement with either or both DES and GCCC to maintain the property particularly given its proximity to the Pimpama River Conservation Area. Decisions on the maintenance of the property would be made closer to the lapsing of the approval.

10 Adaptive management and plan review

This OAMP has been prepared to be implemented until the offset completion criteria have been achieved, or when the approval for the action ceases. Management measures will be reported in the Offset Area reports, and adapted, where required, if triggers are reached and corrective actions are implemented (see *Table 12* and *Table 13*). If management measures need substantial adjustment, TMR will review this plan in consultation with the Department.

TMR will notify the Department electronically within 2 business days of becoming aware of any incident and/or potential or actual non-compliance with the conditions or commitments made in this OAMP. The notification will specify the condition or commitment made in a plan which has been or may have been breached; provide a short description of the incident and/or potential non-compliance and/or actual non-compliance; and identify the location (including co-ordinates), date, and time of the incident and/or potential or actual non-compliance.

TMR will provide to the Department the details of any incident or non-compliance with the conditions or commitments made in this OAMP as soon as practical and no later than 2 business days after becoming aware of the incident or non-compliance, specifying:

- a) the condition that the approval holder has potentially breached
- b) the nature of the non-compliance
- c) when and how the approval holder became aware of the non-compliance
- d) how the non-compliance will affect the approved action
- e) how the non-compliance will affect the anticipated impacts of the approved action, in particular how the non-compliance will affect the impacts on the MNES
- f) the measures the approval holder will take to address the impacts of the non-compliance on the MNES and rectify the non-compliance
- g) the time by when the approval holder will rectify the non-compliance.

If TMR wishes to carry out any activity otherwise than in accordance with this OAMP, TMR will submit to the Department for the Minister's written approval, a revised version of the OAMP. The varied activity will not commence until the Minister has approved the varied OAMP in writing. If the Minister approves the revised OAMP, that OAMP will be implemented in place of the OAMP originally approved.

If the Minister requests that TMR make specified revisions to the OAMP, TMR will develop and submit the revised OAMP for the Minister's written approval. TMR will implement the revised OAMP. Unless the Minister has approved the revised OAMP, then TMR will continue to implement the OAMP originally approved.

This OAMP will be submitted electronically to the Department, and will be published on TMR's website within 15 business days of the Minister approving the OAMP in writing. The OAMP will remain on TMR's website until the expiry date of the approval (17 March 2053).

11 Conclusion

This OAMP has been prepared to address all the requirements of the EPBC Act. This OAMP will be published on TMRs website within 1 month of the OAMP being approved by the Minister. The OAMP will remain on the website and accessible to the public for the duration of the EPBC Act approval.

The offset sites will successfully deliver offsets for the Project's residual significant impacts to Coastal Swamp Oak TEC, habitat for the Koala and GHFF.

This offset for the action will be implemented consistent with the EPBC Act *Environmental Offset Policy* and the approval conditions for the action. The approval holder commits to the implementation of this OAMP until the expiry of the EPBC approval (17 March 2053).

The approval holder also commits to registering a legally binding conservation mechanism to provide long-term protection to the offset area within 12 months of the date of the EPBC approval (i.e., by 17 March 2024), and to providing DCCEEW with written evidence demonstrating that the offset areas at Tabooba and Greenridge have been legally secured within 20 business days after the offsets have been legally secured.

List of abbreviations

Abbreviation	Description	
ASL	above sea level	
AU	Assessment unit	
BAAM	Biodiversity Assessment and Management Pty Ltd	
DAWE	Department of Agriculture, Water and the Environment (former)	
DCCEEW	Department of Climate Change, Energy, the Environment and Water	
DES	Department of Environment and Science (Queensland)	
DEWHA	Department of the Environment, Water, Heritage and the Arts (Australian) (former)	
DMY	Dry matter yield	
DoE	Department of Environment (Australian) (former)	
DoEE	Department of the Environment and Energy (Australian) (former)	
DSEWPaC	Department of Sustainability, Environment, Water, Population and Communities (Australian) (former)	
EDL	Ecologically Dominant Layer	
EOP	Environmental Offsets Policy (October 2012) (EPBC Act)	
EPBC Act	Environment Protection & Biodiversity Conservation Act 1999 (Cth)	
EVNT	Endangered, vulnerable or near threatened (species)	
GCCC	Gold Coast City Council	
GHFF	Grey-headed Flying-fox	
ha	hectares	
HQS	Habitat quality scoring	
HVR	High-value regrowth	
km	kilometres	
LGA	local government area	
m	metres	
MNES	Matters of national environmental significance	
NC Act	Nature Conservation Act 1992 (Qld)	
OAG	Offset Assessment Guide (DCCEEW)	
OAMP	Offset Management Plan	
OS	Offset strategy	
PER	Public Environment Report	
PMAV	Property map of assessable vegetation	
PRCA	Pimpama River Conservation Area	
Project	Coomera Connector Project	
RE	Regional ecosystem	
SAT	Spot assessment technique (koala surveys)	
SRRC	Scenic Rim Regional Council	
TEC	Threatened ecological community	
THQ	Terrestrial habitat quality	
TMR	Queensland Department of Transport and Main Roads	
VM Act	Vegetation Management Act 1999 (Qld)	

Glossary

Term	Definition
Approval holder	The person to whom an EPBC Act approval is granted
Approved conservation advice/s	A conservation advice approved by the Minister under section 266B(2) of the EPBC Act.
Business day	A day that is not a Saturday, a Sunday or a public holiday in the state or territory of the action.
Category A vegetation	 Under Queensland vegetation management legislation, Category A vegetation is an area which is: a declared area an offset area, an exchange area, an area that has been subject to unlawful clearing or an enforcement notice, an area subject to clearing as a result of a clearing offence an area that the chief executive determines to be Category A. Category A areas are colour-coded red on the regulated vegetation management map. See Vegetation Management Act 1999 (Qld), s20AL.
Category X vegetation	Under Queensland vegetation management legislation, all areas other than Category A, B, C and R areas are Category X areas. Some Category X areas are also identified on a PMAV as 'locked in'. Category X areas are also known as 'exempt areas' because activity in Category X areas is not regulated by the Vegetation Management Act 1999.
	Category X areas are colour-coded white on the regulated vegetation management map (see <i>Vegetation Management Act 1999</i> (Qld) s20A.).
Compliance records	All documentation or other material in whatever form required to demonstrate compliance with the conditions of approval in the approval holder's possession, or that are within the approval holder's power to obtain lawfully.
Compliance report/s	A written report of compliance with, and fulfilment of, the conditions attached to the approval.
Department	The Australian Government Department administering the Environment Protection and Biodiversity Conservation Act 1999.
Habitat quality scores	A score out of ten, based on BioCondition assessment plus an assessment of habitat quality. A method of evaluating habitat quality within a particular community based on key indicators including site condition, site context and species habitat index (if necessary). The method produces a score out of 10, where the maximum score of 10 represents a fully intact system. Scores of 4, 5 and 6 may indicate good quality regrowth or medium value habitat.
Koala habitat	Areas of vegetation containing tree species known to be utilised for food or shelter.
Minister	The Minister administering the <i>Environment Protection and Biodiversity Conservation Act 1999</i> , including any delegate thereof.
Offset calculator	The Offset Assessment Guide spreadsheet tool as provided by DAWE
Plan/s	Any of the documents required to be submitted to the Department, implemented by the approval holder and/or published on its website in accordance with the approval conditions.

Term	Definition	
Property map of assessable vegetation	A map certified by the chief-executive as a PMAV for an area and showing the vegetation category areas for the area (e.g. Category C area, Category X area) See Vegetation Management Act 1999 (Qld), section 20AK.	
Regional ecosystem	Regional ecosystems are vegetation communities in a bioregion that are consistently associated with a particular combination of geology, landform and soil (Sattler and Williams 1999, <i>Vegetation Management Act 1999</i>).	
Regrowth vegetation	Vegetation that is not remnant vegetation.	
Regulated vegetation	 Vegetation that: is an endangered regional ecosystem, an of concern regional ecosystem, or a least concern regional ecosystem, and forms the predominant canopy of the vegetation covering more than 50% of the undisturbed predominant capacity; averaging more than 70% of the vegetation's undisturbed height; and composed of species characteristic of the vegetation's 	
Riparian zone	undisturbed predominant canopy. The area within a minimum of 100 metres of the defining bank of any	
Site habitat quality	watercourse (as defined under the Queensland <i>Water Act 2000</i>). A score on a scale of 0 to 10 representing a site's utility for each listed threatened species, where zero ('0') represents a site of no value to the species, and '10' represents ideal habitat. Unless agreed otherwise by the Department, site quality must be comprised of 3 points for site condition, 3 points for site context, and 4 points for species stocking rate. These scores must be derived in accordance with the Queensland <i>Guide to determining terrestrial habitat quality: A toolkit for assessing land-based offsets under the Queensland Environmental Offsets Policy</i> (Version 1.3, 2020), or subsequent published revision.	
Site specific assessment/s	A baseline investigation which explains the scientific basis on which the description and location of impact/s and associated users, performance indicators, trigger values and limits have been derived, or not derived.	
Suitably qualified ecologist	An individual with tertiary qualifications and/or a minimum of three years demonstrated experience relevant to the task in question and have expertise in the ecology of koalas.	
Suitably qualified person	A person who has professional qualifications, training, skills and/or experience related to the nominated subject matter and can give authoritative independent assessment, advice and analysis on performance relative to the subject matter using the relevant protocols, standards, methods and/or literature.	
Website	A set of related web pages located under a single domain name attributed to the approval holder and available to the public.	

Reference list

- Adair, R.J and Groves, R.H. (1998). *Impact of environmental weeds on biodiversity a review and development of a methodology*. Biodiversity Group, Environment Australia.
- Adams-Hosking, C, Grantham, HS, Rhodes, JR, McAlpine, C & Moss, PT (2011). Modelling climate-change-induced shifts in the distribution of the Koala, *Wildlife Research*, vol. 38, no. 2, pp. 122–130.
- Australian and New Zealand Minerals and Energy Council and Minerals Council of Australia *Strategic Framework for Mine Closure.* (2000). Canberra, ACT.
- BAAM, (2022). Coomera Connector Stage 1 Offset Strategy EPBC 2020/8646: Offsets for Coastal Swamp Oak TEC, Koala and Grey-headed Flying-fox). Brisbane
- Batianoff, G.N. and Butler, D.W. (2002). Assessment of invasive naturalised plants in south-east Queensland. *Plant Protection Quarterly* 17(1). https://www.daf.qld.gov.au/ data/assets/pdf_file/0008/64637/IPA-Assessment-Invasive-Plants.pdf">https://www.daf.qld.gov.au/ data/assets/pdf_file/0008/64637/IPA-Assessment-Invasive-Plants.pdf
- BoM (2021). Climate Change in Australia. Projections for Australia's NRM regions. Bureau of Meteorology.
- Brisbane City Council (2024). https://weeds.brisbane.qld.gov.au/weeds/south-african-pigeon-grass
- Climate-Council (2019). Climate Council Briefing Paper: *This is Not Normal: Climate change and escalating bushfire risk*. Available at: https://www.climatecouncil.org.au/wpcontent/uploads/2019/11/CC-nov-Bushfire-briefing-paper.pdf.
- Davies, N., Gramotnev, G., Seabrook, L., Bradley, A., Baxter, G., Rhodes, J., Lunney, D. and McAlpine, C. (2013). Movement patterns of an arboreal marsupial at the edge of its range: a case study of the Koala. *Movement Ecology* 1(1), 8.
- ddwfauna (2006). Koala Phascolarctos *cinereus survey and habitat assessment Green Meadows Rd, Pimpama, Gold Coast City.* Prepared for Titanium Enterprises Pty Ltd.
- DeGabriel, JL, Moore, BD, Foley, WJ & Johnson, CN (2009). The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammal, *Ecology, vol. 90, no. 3*, pp. 711–719.
- Department of Agriculture and Fisheries (2023). Lantana camara fact sheet. Queensland Government.
- Department of Agriculture, Water and the Environment (2021). *National Recovery Plan for the Greyheaded Flying-fox* 'Pteropus poliocephalus'. Canberra. Available at:

 http://www.environment.gov.au/biodiversity/threatened/publications/recovery/greyheaded-flying-fox
- Department of Agriculture, Water and the Environment (2022a). *National Recovery Plan for the Koala*Phascolarctos cinereus (combined populations of Queensland, New South Wales and the
 Australian Capital Territory. Canberra. Available at:
 http://www.awe.gov.au/environment/biodiversity/threatened/publications/recovery/koala-2022
- Department of Agriculture, Water and the Environment (2022b). Conservation Advice for Phascolarctos cinereus (Koala) combined populations of Queensland, New South Wales and the Australian Capital Territory. Canberra. Available at:

 http://www.environment.gov.au/biodiversity/threatened/species/pubs/85104-conservation-advice-12022022.pdf
- Department of Environment and Resource Management. (2010). Land Manager's Monitoring Guide: Ground cover indicator. Queensland Government. Brisbane. Available at https://gldgov.softlinkhosting.com.au/liberty/libraryHome.do
- Department of Environment and Science (2020). Guide to determining terrestrial habitat quality: Methods for assessing habitat quality under the Queensland Environmental Offsets Policy, Version 1.3. Department of Environment and Science, Brisbane, Queensland.
- Department of Environment and Science (2021). Spatial modelling for koalas in South East Queensland: Report version 2.0. Koala Habitat Areas (KHA) v2.0, Locally Refined Koala Habitat Areas (LRKHA) v2.0, Koala Priority Areas (KPA) v1.0, Koala Habitat Restoration Areas (KHRA) v1.0.

- Brisbane: Department of Environment and Science, Queensland Government. Available at: https://environment.des.qld.gov.au/ data/assets/pdf_file/0032/247766/spatial-modelling-koalasseq-ver-v2 0.pdf
- Department of Sustainability, Environment, Water, Population and Communities. (2012a). *EPBC Act Environmental Offsets Policy*. Available at https://www.environment.gov.au/system/files/resources/12630bb4-2c10-4c8e-815f-2d7862bf87e7/files/offsets-policy 2.pdf
- Department of Sustainability, Environment, Water, Population and Communities (2012b). Approved Conservation Advice for Phascolarctos cinereus (combined populations in Queensland, New South Wales and the Australian Capital Territory). Available at http://www.environment.gov.au/biodiversity/threatened/species/pubs/197-conservation-advice.pdf
- Department of Sustainability, Environment, Water, Population and Communities. (2011). Survey guidelines for Australia's threatened mammals: Guidelines for detecting mammals listed as threatened under the EPBC Act. Commonwealth of Australia. Available at https://www.environment.gov.au/epbc/publications/survey-guidelines-australias-threatened-mammals
- Department of Sustainability, Environment, Water, Population and Communities. (2012c). *How to use the offsets assessment guide*. Australian Government, Canberra, Australia. Available at: https://www.awe.gov.au/sites/default/files/documents/offsets-how-use.pdf
- Department of the Environment (2015). *Threat abatement plan for predation by feral cats*. Commonwealth of Australia. Available at https://www.environment.gov.au/system/files/resources/78f3dea5-c278-4273-8923-fa0de27aacfb/files/tap-predation-feral-cats-2015.pdf
- Department of the Environment (2011). Approved Conservation Advice for the Lowland Rainforest of Subtropical Australia.
- Department of the Environment, Water, Heritage and the Arts (DEWHA) (2008). Threat abatement plan for predation by the European red fox. DEWHA, Canberra. Available at https://www.environment.gov.au/system/files/resources/1846b741-4f68-4bda-a663-94418438d4e6/files/tap-fox-report.pdf
- Department of the Environment. (2014). EPBC Act Referral Guidelines for the vulnerable koala (combined populations of Queensland, New South Wales and the Australian Capital Territory), Commonwealth of Australia. Available at http://www.environment.gov.au/system/files/resources/dc2ae592-ff25-4e2c-ada3-843e4dea1dae/files/koala-referral-guidelines.pdf
- Dique, D.S., Thompson, J., Preece, H.J., de Villiers, D.L. and Carrick, F.N. (2003). Dispersal patterns in a regional koala population in south-east Queensland. *Wildlife Research 30(3)*, 281-290.
- Eby, P. and Law, B. (2008). Ranking the feeding habitats of Grey-headed Flying-foxes for conservation management. A report for the Department of Environment and Climate Change and Water (NSW) & the Australian Department of Environment, Water, Heritage and the Arts.
- Eby, P. 1995. *Biology and Management of Pteropus in New South Wales. Species Report*. NSW National Parks and Wildlife Service, Hurstville, NSW.
- Endeavour Veterinary Ecology (2022a). *Thermal koala survey: Farringdon Road Site 17-18 March 2022.*Brisbane.
- Endeavour Veterinary Ecology (2022b). *Thermal koala survey: Farringdon Road Site 19-20 May 2022.* Brisbane.
- Endeavour Veterinary Ecology (2022c). *Thermal koala survey: Greenridge Site Dec 2021-Jan 2022*. Brisbane.
- Eyre, TJ, Kelly, AL Neldner, VJ, Wilson, BA, Ferguson, DJ, Laidlaw, MJ and Franks, AJ (2015). BioCondition: A Condition Assessment Framework for Terrestrial Biodiversity in Queensland. Assessment Manual. Version 2.2. Queensland Herbarium, Department of Science, Information Technology, Innovation and Arts, Brisbane. Available at https://www.qld.gov.au/ data/assets/pdf file/0029/68726/biocondition-assessment-manual.pdf

- Eyre, T.J., Kelly, A.L. and Neldner, V.J. (2011). Method for the Establishment and Survey of Reference Sites for BioCondition. Version 2.0. Department of Environment and Resource Management (DERM), Biodiversity and Ecological Sciences Unit, Brisbane. Available at:

 https://www.qld.gov.au/ data/assets/pdf file/0027/68571/reference-sites-biocondition.pdf
- Godfree, R., Firn, J., Johnson, S., Kneer, N., Stol, J. and Doerr, V. (2017). Why non-native grasses pose a critical emerging threat to biodiversity conservation, habitat connectivity and agricultural production in multifunctional rural landscapes. *Landscape Ecology* 32, 1219–1242 (2017).
- Goel, V.L. and Behl, H.M. (2005). Growth and productivity assessment of *Casuarina glauca* Sie.Ex. Spreng on sodic soil sites. *Bioresource Technology*, *96(12)*, pp 1399-1404.
- Gooden, B., French, K. and Turner, P.J. (2009). Invasion and management of a woody plant, *Lantana camara L.*, alters vegetation diversity within wet sclerophyll forest in southeastern Australia. *Forest Ecology and Management*, 257 (3).
- Gonzalez-Astudillo, V, Henning, J, Valenza, L, Knott, L, McKinnon, A, Larkin, R & Allavena, R (2019). A necropsy study of disease and comorbidity trends in morbidity and mortality in the Koala (*Phascolarctos cinereus*) in SouthEast Queensland, Australia, *Scientific Reports, vol. 9, no. 1*, p. 17494.
- Hanger JJ (2000). An investigation of the role of retroviruses in leukaemia and related diseases in koalas. PhD Thesis. University of Queensland.
- Invasive Plants and Animals Committee (2016). *Australian Weeds Strategy 2017 to 2027*, Australian Government Department of Agriculture and Water Resources, Canberra.
- Keith DA and Scott J (2005). Native vegetation of coastal floodplains a diagnosis of the major plant communities in New South Wales. Biodiversity Conservation Science, NSW Department of Environment and Conservation. *Pacific Conservation Biology Vol. 11*: 81-84. Surrey Beatty and Sons, Sydney.
- Leavesley A, Wuters M & Thornton R (2020). *Prescribed burning in Australasia. The science, practice and politics of burning the bush.* Australasian Fire and Emergency Service Authorities Council Limited, Melbourne, Victoria.
- Lunney, D, Crowther, MS, Wallis, I, Foley, WJ, Lemon, J, Wheeler, R, Madani, G, Orscheg, C, Griffith, JE, Krockenberger, M, Retamales, M & Stalenberg, E (2012). Koalas and climate change: a case study on the Liverpool Plains, north-west New South Wales, in: D Lunney & P Hutchings (eds), *Wildlife and climate change: towards robust conservation strategies for Australian fauna*, Royal Zoological Society of New South Wales, Mosman, NSW, Australia, pp. 150–168,
- McAlpine, C.A., Bowen, M.E., Callaghan, J.G., Lunney, D., Rhodes, J.R., Mitchell, D.L., Pullar, D.V. and Possingham, H.P. (2006a). Testing alternative models for the conservation of Koalas in fragmented rural–urban landscapes. *Austral Ecology* 31(4), 529-544.
- McAlpine, CA, Rhodes, JR, Callaghan, JG, Bowen, ME, Lunney, D, Mitchell, DL, Pullar, DV & Possingham, HP (2006b). The importance of forest area and configuration relative to local habitat factors for conserving forest mammals: A case study of Koalas in Queensland, Australia, Biological Conservation, vol. 132, no. 2, pp. 153–165, DOI: 10.1016/j.biocon.2006.03.021
- Melzer, A, Carrick, F, Menkhorst, P, Lunney, D & John, BS 2000, Overview, critical assessment, and conservation implications of Koala distribution and abundance, *Conservation Biology (14)3*, pp. 619–628.
- Natural Resource Management Ministerial Council (2009). *National Koala Conservation and Management Strategy 2009–2014*. Available at http://www.environment.gov.au/system/files/resources/165139fc-3ab5-4c96-8b15-d11a1ad882ab/files/koala-strategy.pdf
- Neldner, VJ, Wilson, B, Dillewaard, HA, Butler DW, Ryan, TS. (2017) Methodology for Survey and Mapping of Regional Ecosystems and Vegetation Communities in Queensland. Version 4.0.
- Phillips, S. and Callaghan, J. (2011). The Spot Assessment Technique: a tool for determining localised levels of habitat use by Koalas *Phascolarctos cinereus*. *Australian Zoologist* 35(3), 774-780.
- Planit (2021a). *Impact Site Koala Habitat Assessment*. Appendix to EPBC 2020-8646 Public Environment Report Stage 1: Coomera Connector. Planit Consulting Pty Ltd. May 2021.

- Planit (2021b). *Impact Site Grey-headed Flying-fox Habitat Assessment*. Appendix to EPBC 2020-8646 Public Environment Report Stage 1: Coomera Connector. Planit Consulting Pty Ltd. July 2021.
- Polkinghorne, A, Hanger, J & Timms, P (2013). Recent advances in understanding the biology, epidemiology and control of chlamydial infections in Koalas, *Veterinary Microbiology, vol. 165, no. 3–4,* pp. 214–223.
- Queensland Herbarium (2016). *Regional Ecosystem Description Database (REDD)* Version 10.0. Queensland Department of Science, Information Technology and Innovation. Brisbane.
- Queensland Herbarium (2021). *BioCondition Benchmark Database*. Version 3.2 (December 2021). Queensland Department of Environment and Science, Brisbane. Available at: https://www.qld.gov.au/environment/plants-animals/biodiversity/benchmarks
- Queensland Parks and Wildlife Service (2012). *Planned Burn Guidelines South East Queensland Bioregion*. Brisbane
- Quigley BL, Ong VA, Hanger J, Timms P. (2018). Molecular Dynamics and Mode of Transmission of Koala Retrovirus as It Invades and Spreads through a Wild Queensland Koala Population. *J Virol*. 2018 Mar 1;92(5):e01871-17. doi: 10.1128/JVI.01871-17. Epub 2017 Dec 13.
- Reed, P & Lunney, D 1990, 'Habitat loss: the key problem for the long-term survival of Koalas in New South Wales', in D Lunney, C Urquart & P Reed (eds), *Koala Summit Managing Koalas in NSW*, National Parks and Wildlife Service, Hurstville, NSW.
- Scenic Rim Regional Council (2015). *Biodiversity Strategy 2015-2025: A Ten Year Strategy for the Conservation of Biodiversity in the Scenic Rim.*
- Simmons GS, Young PR, Hanger JJ, Jones K, Clarke D, McKee JJ, Meers J. Prevalence of koala retrovirus in geographically diverse populations in Australia. Aust Vet J. 2012;90:404–409. [PubMed] [Google Scholar]
- Smith, AG, McAlpine, CA, Rhodes, JR, Lunney, D, Seabrook, L & Baxter, G 2013, Out on a limb: habitat use of a specialist folivore, the Koala, at the edge of its range in a modified semi-arid landscape, *Landscape Ecology (28)* 3, pp. 415–426, DOI: 10.1007/s10980-013-9846-4
- Smith, M. 2002. Management of roost sites of the Grey-headed Flying-fox *Pteropus poliocephalus* on the north coast of NSW: a National Parks & Wildlife Service perspective. Pp. 202-214 in *Managing the Grey-headed Flying-fox as a Threatened Species in NSW*, edited by P. Eby and D. Lunney. Royal Zoological Society of NSW, Mosman, NSW.
- Tarlinton R, Meers J, Hanger J, Young P. Real-time reverse transcriptase PCR for the endogenous koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas. J Gen Virol. 2005;86:783–787. [PubMed] [Google Scholar]
- Tarlinton RE, Meers J, Young PR. Retroviral invasion of the koala genome. Nature. 2006;442:79–81. [PubMed] [Google Scholar]
- Threatened Species Scientific Committee (2012). *Listing advice for* Phascolarctos cinereus (*Koala*). Canberra: Department of the Environment. Available at http://www.environment.gov.au/biodiversity/threatened/species/pubs/197-listing-advice.pdf
- Threatened Species Scientific Committee (2018). Conservation advice (incorporating listing advice) for the Coastal Swamp Oak (Casuarina glauca) Forest of New South Wales and South East Queensland ecological community. Available at http://www.environment.gov.au/biodiversity/threatened/communities/pubs/141-conservation-advice.pdf
- Tidemann, C.R. 1999. Biology and management of the Grey-headed Flying-fox, *Pteropus poliocephalus*. *Acta Chiropterologica 1*: 151-164.
- Tozer MG, Turner K, Keith DA, Tindall D, Pennay C, Simpson C, Mackenzie B, Beukers P. and Cox S (2010). Native Vegetation of Southeast NSW: A revised classification and map for the coast and eastern tablelands. *Cunninghamia: A Journal of plant ecology for Eastern Australia, 11*, 359-406.
- White, N.A. (1999). Ecology of the Koala (Phascolarctos cinereus) in rural south-east Queensland, Australia. *Wildlife Research* 26(6), 731-744.
- Wilson, PR and Taylor, PM (2012). *Land Zones of Queensland*, Queensland Herbarium, State of Queensland, Department of Environment and Science, Brisbane
- Youngentob, K.N., Lindenmayer, D.B., Marsh, K.J., Krockenberger, K., and Foley, W.J. (2021). Food intake: an overlooked driver of climate change casualties? *Trends in Ecology & Evolution 36(8)*, 678.

Appendix A: Field survey methodology

Tabooba - vegetation surveys

To assess the suitability of Tabooba for Koala and GHFF offsets, habitat assessment and BioCondition surveys were undertaken in May 2022 to compare with the habitat quality identified in the action corridor. This applied the methods of the *Guide to Determining Terrestrial Habitat Quality – Version 1.3* (Queensland Government 2020) in line with the habitat assessments undertaken in the action corridor for Koala (Planit 2021a) and GHFF (Planit 2021b), as well as per the *BioCondition: A Condition Assessment Framework for Terrestrial Biodiversity in Queensland* (Eyre et al., 2015); and *Method for the establishment and survey of reference sites for BioCondition*, Version 2.0 (Eyre, et al. 2011) using the most recent Queensland Herbarium Biocondition Benchmarks.

Additional assessment has been undertaken for Koala and GHFF as described below, and the results have been applied in accordance with *How to use the offsets assessment guide* (DSEWPaC, 2012), taking into account site condition, site context and species stocking rate to contribute to the calculation of habitat quality using the EPBC Act Offsets assessment guide.

The site vegetation mapping was ground-truthed, compared to satellite imagery and then adjusted accordingly (refer to BAAM 2022, Figure 5.6). Due to the different ages of regrowth on the property, regrowth vegetation was divided into the following categories:

- Advanced Regrowth: areas supporting a continuous canopy in aerial imagery that was indistinguishable from areas mapped as remnant; and
- Young Regrowth: areas supporting a broken canopy with scattered taller trees, but generally dominated by scattered smaller trees as evident in satellite imagery.

This information was also used to determine the number of transects in each assessment unit (AU; which is the vegetation type and condition) to fulfill the recommendations provided in the BioCondition Framework. This was achieved on 4 of the vegetation classifications; however, significantly wet weather conditions and terrain challenges prevented an additional survey being undertaken on two classifications.

The AUs are described as:

AU1 REMNANT RE 12.8.16: 49.831 ha. Remnant *Eucalyptus crebra, E tereticornis* +/- *Angophora subvelutina* open forest.

AU2 ADVANCED REGROWTH RE 12.8.16: 144.823 ha. Advanced regrowth of open forest dominated by *Eucalyptus tereticornis subsp. basaltica, E. crebra +/- Corymbia tessellaris, C. intermedia*. Occasional relictual trees present.

AU3 YOUNG REGROWTH RE 12.8.16: 48.105 ha. Young regrowth open forest with occasional emergent relictual trees. Dominant species include *Eucalyptus crebra, E. tereticornis* and *Corymbia tessellaris*.

AU4 REMNANT RE 12.8.14: 50.666 ha. Remnant open forest dominated by *Eucalyptus melliodora*, *E. tereticornis* subsp. *basaltica*, *E. eugeniodes*, *Angophora subvelutina* and *Corymbia intermedia*.

AU5 ADVANCED REGROWTH RE 12.8.14: 19.815 ha. Advanced regrowth of *Eucalyptus eugeniodes, E. tereticornis* subsp. *basaltica, E. melanophloia* open forest.

CLEARED PADDOCK FORMERLY OF RE 12.8.16: 76.925 ha. Cleared paddocks with lone trees. Queensland Herbarium Pre-clear RE mapping indicates it would have supported RE 12.8.16.

Tabooba - fauna surveys

Koala were surveyed at Tabooba in both March and May 2022 by Spot Assessment Technique (**SAT**) (as per Phillips and Callaghan, 2011) to determine localised levels of habitat use by koala, and thermal-imaging drone surveys to gather baseline Koala density data in areas that were difficult and/or impossible to survey by foot.

Koala SAT surveys, including searching for individuals in trees and scats within 1m of the base of suitable forage trees, were undertaken in accessible locations on the property on 17 March 2022 and 6-7 May 2022. The nine SAT surveys encompassed 279 koala food trees of *Angophora leiocarpa, Eucalyptus crebra, E. tereticornis, E. melliodora, Lophostemon confertus, Corymbia intermedia* and *C. tessellaris*. These surveys were undertaken predominantly within advanced and young regrowth vegetation, as remnant vegetation on the steeper slopes was relatively inaccessible due to very wet conditions and with dense lantana and/or too steep to survey safely. There was only one site where a SAT survey could be undertaken in riparian vegetation as the channel was relatively shallow and erosion had reduced the amount of weed cover.

Conditions for observing scats were not ideal due to a prolonged wet season, resulting in scats being washed away on steep slopes and riparian areas, degrading quickly in warm and wet conditions, or being lost in the dense grass and/or weed cover. Additionally, weather and terrain challenges prevented access to areas where Koala were identified in the drone surveys.

No surveys targeting GHFF were conducted at Tabooba as there were no flowering events at the time of surveys. However, the property is dominated by preferred forage species of GHFF, including the winter-flowering *Eucalyptus tereticornis* and *E. crebra*, which are critical resources for the species (*National Recovery Plan for the Grey-headed Flying-fox* Pteropus poliocephalus DAWE, 2021).

Both REs present on Tabooba rank as high-moderate value foraging habitat for GHFF. The Recovery Plan describes vegetation communities containing (amongst other species) *Eucalyptus crebra, E. tereticornis* and *E. melliodora* as important resources for grey-headed flying-fox on coastal lowlands of Southern Queensland as they flower reliably over the winter and spring period. While the property is not located within the coastal lowlands of southern Queensland, Eby and Law (2008) state that productive areas for winter flowering are concentrated in South East Queensland and northern New South Wales where flowering occurs in small remnants in coastal floodplains, coastal dunes and inland slopes, and during spring the extent of productive habitat increases in northern regions, expanding from the coastal lowlands into the coastal ranges and valleys.

The presence of critical forage species and distance to a nationally important GHFF camp (within 20 km) indicates Tabooba supports habitat critical to the survival of GHFF.

Greenridge – vegetation surveys

Field surveys were undertaken at Greenridge to assess its suitability for use as an offset for Coastal Swamp Oak TEC, Koala and GHFF. In accordance with the methods of the *Guide to Determining Terrestrial Habitat Quality – Version 1.3* (the guide) Greenridge was mapped into like AUs, differentiated based on:

RE type; and

Vegetation condition (remnant, advanced regrowth, young regrowth or cleared).

Ground-truthing of a number of polygons of the RE types supporting *Casuarina glauca* was undertaken through applying the quaternary survey method of Neldner et al. (2017). Field observations and the use of historical aerial photography contributed to delineation of the regrowth vegetation.

The AUs are described as:

AU1 REMNANT RE 12.1.1: 14.2 ha. Remnant *Casuarina glauca* open forest. Wholly analogous with the coastal swamp oak TEC.

AU2 REGROWTH RE 12.1.1: 5.16 ha. Regrowth Casuarina glauca open forest.

AU3 NON-REMNANT RE 12.1.1: 22.03 ha. Non-remnant *Casuarina glauca* open forest (presently grassland).

AU4 REMNANT RE 12.3.20: 12.9 ha. Remnant *Casuarina glauca*, *Eucalyptus tereticornis* and *Melaleuca quinquenervia* open forest. Where dominated by *Casuarina glauca* the community is analogous with the Coastal Swamp Oak TEC.

AU5 REGROWTH RE 12.3.20: 4.77 ha. Regrowth *Casuarina glauca, Eucalyptus tereticornis* and *Melaleuca quinquenervia* open forest.

AU6 NON-REMNANT RE1 2.3.20: 11.88 ha. Non-remnant *Casuarina glauca, Eucalyptus tereticornis* and *Melaleuca quinquenervia* open forest (presently grassland).

Additional data were collected during field surveys to inform habitat quality scoring parameters for MNES not captured using the standard BioCondition method. These included the following based on the relevant MNES:

1. Casuarina glauca canopy cover

Using the same method described below for Koala tree canopy cover, the proportion of *Casuarina glauca* cover for some transects was also recorded to assist in identifying patches of Coastal Swamp Oak that would qualify as the TEC.

2. Koala tree canopy cover

When assessing the quality of food and foraging habitat for koala using the scoring method applied in the Impact Area Assessment prepared by Planit (2021a), it was necessary to record the proportion of canopy cover comprised of Koala food tree species known to support koalas within the region. Gold Coast City Council identify the following species as diet species for Koala in the region:

Preferred Koala food trees:

- forest red gum or Queensland blue gum (Eucalyptus tereticornis)
- tallowwood (*E. microcorys*)
- swamp mahogany (E. robusta)
- grey gums (E. propinqua and E. biturbinata).

Important local supplementary food sources:

- narrow-leaved red gum (*E. seeana*)
- white stringybark (E. tindaliae)
- red mahogany (*E. resinifera*)
- brush box (*Lophostemon confertus*)

broad-leaved paperbark (Melaleuca guinguenervia).

The City of Gold Coast Koala Conservation Plan states that many other species are known to be utilised by Koala. An in-situ monitoring program at East Coomera during 2007-2014 identified Koalas using more than 40 tree species including those of the genera *Eucalyptus, Corymbia, Melaleuca, Lophostemon* and *Angophora*; however, it is unclear which species, if any, are utilised solely for shelter as opposed to constituting diet (Gold Coast City Council 2018). Based on the REs recorded on Greenridge that are known to provide suitable habitat for koalas and are dominated by recognised Koala food trees, species from any of the above genera were counted as potential Koala food trees for the purposes of this assessment.

Standard BioCondition surveys record canopy cover by measuring the vertical projection of canopy intercepting a 100m transect line (Eyre et al. 2015). To capture the proportion of the canopy comprised of Koala food trees, these species were distinguished separately from other canopy species when recording canopy cover over the 100m transect. Distances of the Koala tree canopies over the 100m transect were summed and then calculated as a proportion of the total canopy cover (koala tree cover plus non-Koala tree cover, less any overlaps).

Greenridge - fauna surveys

Transects in general accordance with Dique et al. (2003) were undertaken to measure localised levels of habitat use by Koalas to gather baseline Koala density data (refer to the full report from the surveys as provided at Appendix 3 of BAAM 2022).

Seven SAT surveys and eight Strip Transect surveys were carried out on Greenridge on 30 June, 1 July, 27 July and 3 August 2022. The results of two of each survey type, undertaken on 27 July and 3 August (at locations shown on Figure 6.8 of BAAM 2022), were reported as these were the only sites relevant to a action Koala offset AU4 (remnant RE 12.3.20). An additional SAT survey was carried out in the eastern portion of Greenridge in State-mapped RE 12.3.20; however, the mapped RE 12.3.20 at this location was subsequently determined to represent a heterogenous polygon comprised of three separate REs (including 12.3.20) and the survey results at that location were therefore not considered representative of a homogenous polygon of remnant RE 12.3.20.

No Koala scats were recorded from the three SAT surveys undertaken within AU4 and no Koalas were recorded from the three Strip Transects undertaken within AU4.

No flying-fox camps were recorded on site, and none have been known from Greenridge previously. GHFF surveys were not undertaken on Greenridge as the REs present are known to be of high value to the species. Greenridge is within 20 km of 20 flying-fox camps used by GHFF and the species has been recorded from Greenridge previously, foraging on *Melaleuca quinquenervia* and *Eucalyptus tereticornis* (ddwfauna 2006). During koala surveys in 2022, the EVE Koala survey team noted heavy flying-fox use of flowering eucalypts on site (pers comm. Deidre de Villiers). GHFF is expected to forage on site regularly during *Eucalyptus* and *Melaleuca* flowering events.

Appendix B: Pest animal control Standard Operating Procedures

There are a number of Standard Operating Procedures (SOPs) relating to the control of pest animals, across several state jurisdictions. The SOPs produced by NSW Department of Primary Industries are the most up-to-date and comprehensive at the time of writing this OAMP. Pest animal control actions will be cognisant of the requirements of the *Biosecurity Act 2014* (Qld). Pest animal control actions carried out under this plan must be consistent with the relevant SOP below.

Feral pigs

https://www.dpi.nsw.gov.au/ data/assets/pdf_file/0005/1396787/NSWPIG-SOP6-Poisoning-of-feral-pigs-using-HOGGONE-meSN-sodium-nitrite-baits.PDF

https://www.dpi.nsw.gov.au/ data/assets/pdf file/0009/1396791/NSWPIG-SOP4-Poisoning-of-feral-pigs-with-sodium-monofluoroacetate-1080.PDF

https://www.dpi.nsw.gov.au/ data/assets/pdf file/0009/1396791/NSWPIG-SOP4-Poisoning-of-feral-pigs-with-sodium-monofluoroacetate-1080.PDF

Foxes

https://www.dpi.nsw.gov.au/ data/assets/pdf_file/0004/1396777/NSWFOX-SOP1-Ground-baiting-of-foxes-with-sodium-monoflouroacetate-1080.PDF

https://www.dpi.nsw.gov.au/ data/assets/pdf file/0009/1396773/NSWFOX-SOP5-Trapping-of-foxes-using-padded-foot-hold-traps.PDF

https://www.dpi.nsw.gov.au/ data/assets/pdf file/0012/1396776/NSWFOX-SOP8-Candid-Pest-Ejectors-CPEs-using-sodium-monoflouroacetate-1080-or-para-aminopropiophenone-PAPP.PDF

Wild dogs

https://www.dpi.nsw.gov.au/ data/assets/pdf_file/0009/1396764/NSWDOG-SOP4-Ground-baiting-of-wild-dogs-with-sodium-monofluoroacetate-1080.PDF

https://www.dpi.nsw.gov.au/ data/assets/pdf_file/0004/1396768/NSWDOG-SOP1-Trapping-of-wild-dogs-using-padded-foot-hold-traps.PDF

https://www.dpi.nsw.gov.au/ data/assets/pdf_file/0012/1396767/NSWDOG-SOP7-Canid-pest-ejectors-CPEs-using-sodium-monofluoroacetate-1080-or-para-aminopropiophenone-PAPP.PDF

Feral deer

https://www.dpi.nsw.gov.au/ data/assets/pdf file/0006/1396761/NSWDEER-SOP1-Ground-shooting-of-feral-deer.PDF

Cats

https://pestsmart.org.au/?s=cats

Euthanasia in the field

https://pestsmart.org.au/pest-animals/general-methods-of-euthanasia-in-field-conditions/

Appendix C: Coastal swamp oak TEC revegetation plan

Timeline/Stage	Action	Rationale				
1.0 Delineation of offset areas in pasturelands	1.1 Burn exotic grass pasturelands using the QPWS Planned Burn Guidelines (SEQ	Burning will reduce the above ground structure to allow for accurate aerial LiDAR imagery. This is to ascertain the current distribution of land zone 1 and 3 in the pasturelands, which are required to determine suitable RE revegetation.				
Aim: To define the land zones of the pasturelands, to determine	Bioregion)	Burning will consider current Casuarina glauca regrowth along the drainage lines of the exotic pasturelands, as well as other fire sensitive species (e.g. mangroves), with fire breaks incorporated accordingly.				
suitable areas for re- establishing either RE 12.1.1 or RE 12.3.20. This is currently not	1.2 Capture LiDAR imagery of pasturelands	Following burning of the target areas, these will be subject to aerial LiDAR survey.				
possible due to site conditions and subsequent challenges, in particularly the dense exotic grass cover.	1.3 Digital Terrain Modelling (DTM)	Using LiDAR imagery, develop a Digital Terrain Model (DTM) of the pasturelands to identify areas of lowlands (land zone 1), and alluvial plains (land zone 3). Hydrological modelling will be undertaken to ensure there is no risk of revegetated areas being impacted by changes in water levels or water salinity should the current (off site) tidal gate be removed in the future, either anthropogenically or by natural disaster/degradation.				
	1.4 Soil testing post burn)	Undertake soil testing throughout the pasturelands to determine soil conditions: pH, electrical conductivity (EC), available Bray phosphorus, Emerso Aggregate Test, organic carbon, plant available water-holding capacity (PAWC), hydraulic conductivity (Ksat), and particle size distribution. Consideration may need to be given to testing for macro and microelements, heavy metals, and persistent organochloride pesticides (Dieldrin). This will provide information on recent and current water parameters, as well as for planning suitable revegetation. In particular, some species in Region Ecosystem (RE) 12.3.20 are less tolerant to salt and may require amelioration measures prior to rehabilitation.				
	1.5 Risk assessment	Based on the soil testing and DTM, undertake a risk assessment using the LiDAR, hydrological and soil testing data to determine areas of the pasturelands that are suitable for establishment of RE 12.1.1 and RE 12.3.20. Note, minimum areas for offsetting requirements are: Coastal Swamp Oak Threatened Ecological Community Offset – represented by RE 12.1.1 Sensitive ecological data Koala Offset - RE 12.3.20 Sensitive ecological data				
2.0 Site preparation	2.1 Spray with suitable herbicide	Following burning of the subject pasturelands, emerging and unburnt weeds will be sprayed with an appropriate herbicide. Herbicides must be registered by the Australian Pesticides and Veterinary Medicine Authority for use within proximity to waterways, be used in strict accordance with the				
Aim: To prepare site for revegetation activities		product label directions and applied by an appropriately qualified person in accordance with the Agricultural Chemicals Distribution Control Act 1996.				
	2.2 Follow-up burn	Once any emerging or remaining weeds have died following herbicide application, a second burn will be carried out with the same consideration for fire-sensitive species as described in Section 1.0.				
	2.3 Amelioration	Should soil testing indicate soil amelioration is required, this will be undertaken post-burn and prior to seeding and/or planting preparation.				
	2.4 Row preparation	Following the second burn, rows will be prepared for planting the canopy trees (Stage 1 planting). Rows will be 3 m apart to allow for subsequent management of re-emerging exotic grasses through mechanical slashing or by hand if conditions are not suitable for machinery.				

Greenridge Revegetation Plan

Timeline/Stage	Action	Rationale
3.0 Revegetation Aim: To reinstate RE 12.1.1 and 12.3.20 to achieve offset	3.1 Species selection for RE 12.1.1: Canopy – Casuarina glauca Mid-storey – C. glauca Ground cover – Sporobolus virginicus,	Species have been selected considering both the technical description for RE 12.1.1, as well as the native species detected on site during field surveys. The latter are particularly relevant as these species are able to persist in the current conditions of the site. While Eucalyptus tereticornis is also described as an emergent species in the state government technical descriptions, this species has been omitted due to the potential water inundation in the lowland areas that are designated for revegetation with RE 12.1.1.
requirements. This will be undertaken in two stages: 1) establish canopy cover, and 2) establish midstory and	Imperata cylindrica, Cyperus polystachyos, Juncus usitatus.	Stocking density and general habitat requirements are described in Attachment 1 . The final restoration target density is also provided, with the planting density to be determined at the time of planting based on environmental and climatic considerations, as well as the form of plantings (tubestock vs seeding). In particular, increased planting density (compared to target density) is required to account for establishment or sapling mortality; however, each site needs to consider mortality factors such as current weather conditions (e.g. drought), capacity/requirement to provide on-going watering, weed management and pest management.
ground cover species.		Additionally, overplanting is required to facilitate rapid canopy closure to enable Stage 2 planting of the ground cover between years 2 and 3. Should stem density be too high by Stage 2 (2-3 years after initial planting), these can be manually thinned prior to planting of the understory, which
		will also provide valuable course woody debris to the ecosystem. Tree guards may need to be considered if herbivory by pest animals (e.g. European hare) and natives (e.g. kangaroo species) occur on newly planted tubestock. Pigs and corresponding damage to C. glauca roots currently exist on site; further control of feral animals is described in the OAMP.
	Species selection for RE 12.3.20: Canopy – Casuarina glauca, Eucalyptus	Species have been selected considering both the technical description for RE 12.3.20 (previously RE 12.3.5a), as well as the native species detected on site during field surveys. The latter is particularly relevant, as these species are able to persist in the current conditions of the site.
	tereticornis, Melaleuca quinquenervia Mid-story — C. glauca, Alphitonia excel Melaleuca salicina Ground cover — Sporobolus virginicus, Dianella brevipedunculata, Imperata cylindrica, Juncus kraussii.	Stocking density and general habitat requirements are described in Attachment 1 . The final restoration target density is also provided, with the planting density to be determined at the time of planting based on environmental and climatic considerations, as well as the form of plantings (tubestock vs seeding). In particular, increased planting density (compared to target density) is required to account for establishment or sapling mortality; however, each site needs to consider mortality factors such as current weather conditions (e.g. drought), capacity/requirement to provide on-going watering, weed management and pest management.
	cymianes, salies arasin.	Additionally, overplanting is required to facilitate rapid canopy closure to enable Stage 2 planting of the ground cover between years 2 and 3. Should stem density be too high by Stage 2 (2-3 years after initial planting), these can be manually thinned prior to planting of the understory, which will also provide valuable course woody debris to the ecosystem. Tree guards may need to be considered if herbivory by native or pest animals (e.g. Grey Kangaroo, European hare) is expected on tree species.
	3.3 Planting	Planting is to be undertaken in two stages: 1) tree canopy species, and 2) midstory and ground cover species.
		Planting is to be carried out at the beginning of the growing season (September-October) to allow maximum growing time prior to extreme temperatures (summer heat and winter frost). Planting should be undertaken in the morning or late afternoon to avoid heat/desiccation stress.
		Stage 1 is aimed at establishing the canopy cover, with trees planted in the prepared rows at a distance of ~1.7-2.2 m (to equal ~1,500 -2,000 stems/ha) between trees of the same row. All canopy plants will be planted at tubestock pot size and be sun-hardened prior to planting. A risk assessment of weed emergence should be undertaken at the time of planting to determine whether tree mulch rings (e.g. made from coir or other biodegradable products) or loose mulch along rows are required to minimise weed growth and competition.
		Stage 2 planting (after canopy cover reaches 80% cover; estimated 2-3 years after initial planting) consists of the midstory and ground cover species. These species are likely to be outcompeted by exotic grasses/weeds if planted during Stage 1. However, many of these exotic species are not adapted to shade, and therefore will have less competitive influence when the canopy is near closure. Midstory species and Salt Couch (Sporobolus virginicus; reproduces primarily by stolons) will be planted at tubestock pot size and be sun-hardened prior to planting. Other grasses or sedges may be able to be direct seeded in lightly ripped soil.
		Seeding at a rate of 20 kg per ha can be considered as an alternative to tubestock planting in smaller revegetation areas in Stage 2.
		Tree guards may need to be considered if herbivory by native or pest animals is expected.
	3.4 Watering regime	All plants must be watered in their pots prior to planting, as well as after placement in the soil. Watering must be with low pressure water stream only. Further watering will be subject to weather conditions and planting season (more watering required during dry weather). Plant health and soil
		moisture levels must be assessed by site inspection at least weekly in the first month after planting, to determine a suitable water schedule.

Greenridge Revegetation Plan

Timeline/Stage	Action	Rationale
4.0 Monitoring and management Aim: To monitor revegetation areas to guide short- and long-term management activities	4.1 Monitor revegetation areas to guide management actions	Monitoring will include: Weed species present and spatial spread (to guide weed control requirements) Pest species present and indicative damage to stock and/or ground area (to guide pest control requirements, as per the OAMP) Revegetation health (to provide information on whether additional water or revegetation requirements are needed) Presence and extent of erosion (to provide information for additional site stability works, if required) Monitoring timeframe from initial planting: Year 1: 1 month, 3 months, 6 months, 9 months, 12 months
	4.2 Weed management	Year 2: 3-month intervals (i.e. 15 months from initial planting, then 18 months, 21 months, 24 months) Year 3: 6-month intervals (i.e. 30 months from initial planting, then 36 months) Weed management will be one of the key ongoing management requirements for the revegetation areas. Weeds detected on site during field surveys in 2022, and recommended methods for control, are provided in Attachment 2 . Further weed species may become apparent during monitoring events.
		For dense, exotic grasses, mechanical slashing (when possible), manual brush-cutting and spot-spraying of suitable herbicide may be required. Herbicides must be registered by the Australian Pesticides and Veterinary Medicine Authority for use within proximity to waterways, be used in strict accordance with the product label directions and applied by an appropriately qualified person in accordance with the Agricultural Chemicals Distribution Control Act 1996. Note, pre-emergent herbicides are not known to be safe for use near waterways and are therefore not recommended.
	Pest management details are provided in the OAMP due to the need to control pest animals at the site level	Pests that are known to occur at Greenridge and require monitoring and management include: Feral pigs (Sus scrofa), which are particularly problematic for Casuarina glauca (as they specifically target the root nodules of this species) and vegetation establishment in general; and Red imported fire ants (Solenopsis invicta), which will increase initially without management due to favoured habitat being created from the burning and grass clearing of revegetation areas.
	4.4 Fire management: Fire management to be undertaken in accordance with QLD Government Planned Burn Guidelines (SEQ Bioregion) Fire breaks around revegetation areas are described in the OAMP Fuel loads within the revegetation areas should be assessed during monitoring events, with fuel reduction burns only undertaken when necessary due to the sensitivity of Casuarina glauca to fire and the regenerative condition of the revegetation areas	Due to the revegetation areas being in a recovery phase, they may be more sensitive to fire disturbance than the recommendations provided in the RE descriptions below. As such, careful consideration should be given to whether the below recommendations are suitable at any given time. Additionally, as RE descriptions may be updated when new information is available, the fire requirements for each RE should be revisited regularly. The recommended fire requirements for RE 12.1.1 are to have a low to moderate intensity burn in early winter or during the storm burning season, at an interval of 6-7 years minimum. Approximately 25-50% minimum should be retained as unburnt per any given year. Active fire management is required to reduce dry fuel layers. However, the fire ecology for this RE is poorly known and monitoring of the impact and recovery is recommended. Note a seven-year minimum fire interval is required for obligate seeding Allocasuarina and Casuarina success in this RE. For 12.3.20, the recommended fire requirements include late summer to mid-winter (after rain) burns, at intervals of 6-20 years for mixed grass/shrub combination vegetation found on site. Management burns of 25-70% burn mosaic per any given event is the recommended guideline for this RE.
	4.5 Monitoring revegetation for progress to offset targets at two-year intervals	Monitoring transects will be established at the time of first planting, and permanently identified by both GPS and survey markers (e.g. star picket with yellow caps at centre and end points) to ensure consistent monitoring and photo locations over time. Monitoring will follow the BioCondition survey process that was used during offset determination to ensure consistent data collection, assessment, and reporting. In addition to data, this includes standardised photos of each plot locations (see Attachment 4 of the BioCondition Assessment Manual). An adaptive management approach (Attachment 3) will be undertaken following each offset monitoring, whereby management and revegetation activities are modified if necessary to ensure the revegetation areas are progressing towards the intended target. For example, replacement plantings, manual thinning, etc.

Greenridge Revegetation Plan

Species list and relevant details for the 12.1.1 revegetation areas. Note, the first column details the minimum number of species for offset requirements and the final restoration target density (based on RE Technical Descriptions). Priority status was determined based on presence and abundance at Greenridge, and dominance within the RE/TEC.

Strata and RE Requirements	Botanical Name	Common Name	Planting Stage	Habitat Preference	Presence at Greenridge	Priority of Species in Revegetation	Form Availability*
Canopy species Min. 1 species Stem density: 500/ha	Casuarina glauca	Swamp Sheoak	1	Moist; high salt tolerance	Very common	Essential	Seed; Tube
Midstory species Min. 1 species Stem density: 180/ha	Casuarina glauca	Swamp Sheoak	1	Moist; high salt tolerance	Very common	Essential	Seed; Tube
Ground Cover (Grasses)	Sporobolus virginicus	Salt Couch	2	Moist; high salt tolerance	Very common	High priority grass	Tube
Min. 2 species	Imperata cylindrica	Blady Grass	2	Moist	Uncommon	Priority grass	Seed; Tube
Stem density: nd	Enteropogon acicularis	Curly Windmill Grass	2	Drought and flood tolerant	Common	Potential grass replacement	Seed
	Paspalidium distans	Shotgrass	2	-	Common	Potential grass replacement	Seed
Ground Cover (Forbs/Sedges)	Juncus usitatus	Common Rush	2	Moist; moderate salt tolerance	Common	Priority sedge	Seed; Tube
Min. 3 species Stem density: nd	Cyperus polystachyos	Bunchy Sedge	2	Moist; moderate salt tolerance	Common	Priority sedge	Seed; Tube
	Fimbristylis ferruginea	Fringe Rush	2	Moisture tolerance	Common	Priority sedge	Tube
	Einadia nutans	Nodding Saltbush	2	Moist; high salt tolerance	Uncommon	Potential forb replacement	Seed; Tube
	Gahnia clarkei	Tall Saw Sedge	2	Moist; moderate salt tolerance	Uncommon	Potential sedge replacement	Seed; Tube

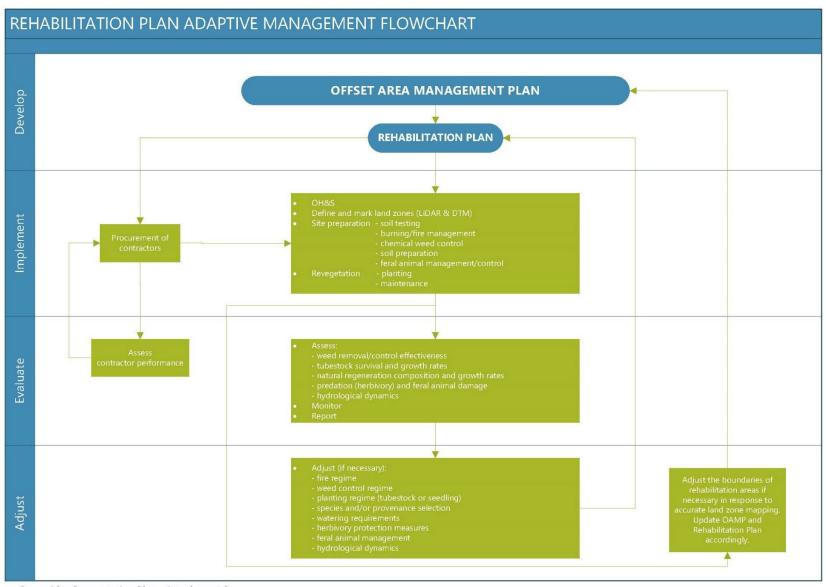
^{*}Availability at time of writing RMP; see stockists closer to planting date to confirm availability and form (seed or tubestock) nd Not detailed in the RE Technical Description

28 June 2024

Species list and relevant details for the 12.3.20 revegetation areas. Note, the first column details the minimum number of species for offset requirements and the final restoration target density (based on RE Technical Descriptions). Priority status was determined based on presence and abundance at Greenridge, and dominance within the RE/TEC.

Strata and RE Requirements	Botanical Name	Common Name	Planting Stage	Habitat Preference	Presence at Greenridge	Priority of Species in Revegetation	Form Availability*
Canopy species Min. 4 species	Casuarina glauca	Swamp Sheoak	1	Moist; high salt tolerance	Very common	Essential	Seed; Tube
Stem density: 1498/ha	Melaleuca quinquenervia	Broad-leaved Paperbark	1	High moisture tolerance	Very common	Essential	Seed; Tube
	Corymbia intermedia	Pink Bloodwood	1	-	Uncommon	Priority	Seed; Tube
	Eucalyptus tereticornis	Queensland Blue Gum	1	-	Common	Priority	Seed; Tube
Midstory species	Alphitonia excelsa	Red Ash	1	-	Common	Priority	Seed; Tube
Min. 4 species Stem density: 2560/ha	Casuarina glauca	Swamp Sheoak	1	Moist; high salt tolerance	Very common	Priority	Seed; Tube
	Melaleuca salicina	Willow Bottlebrush	1	Moisture tolerance	Common	Priority	Seed; Tube
	Myrsine variabilis	Muttonwood	1	-	Common	Priority	Tube
	Cupaniopsis anacardioides	Tuckeroo	1	-	Common	Priority	Seed; Tube
Ground Cover	Imperata cylindrica	Blady Grass	2	-	Very common	High priority grass	Seed; Tube
(Grasses)	Paspalidium distans	Shotgrass	2	-	Common	Priority grass	Seed
Min. 2 species Stem density: 500/ha	Sporobolus virginicus	Salt Couch	2	Moist; high salt tolerance	Uncommon	Potential replacement grass	Tube
(both Grasses and Forbs)	Ottochloa gracillima	Graceful grass	2	Shade preference	Common	Potential replacement grass	Tube
Ground Cover	Centella asiatica	Gotukola	2	-	Very common	Priority forb	Seed
(Forbs/Sedges)	Parsonsia straminea	Monkey Rope	2	-	Very common	Priority forb	Tube
Min. 8 species Stem density: 500/ha	Dianella brevipedunculata	Blue Flax Lily	2	-	Common	Priority forb	Seed; Tube
(both Grasses and Forbs)	Cyperus polystachyos	Bunchy Sedge	2	Moist; moderate salt tolerance	Common	Priority sedge	Seed; Tube
	Commelina diffusa	Wandering Jew	2	Shade preference	Common	Priority forb	Tube
	Lobelia purpurascens	White Root	2	Shade preference	Common	Priority forb	Tube

Greenridge Revegetation Plan – Attachment 1


Strata and RE Requirements	Botanical Name	Common Name	Planting Stage	Habitat Preference	Presence at Greenridge	Priority of Species in Revegetation	Form Availability*
	Dianella caerulea	Blue Flax Lily	2	_	Uncommon	Potential additional/ replacement forb	Seed; Tube
	Geitonoplesium cymosum	Scrambling Lily	2	Shade preference	Uncommon	Potential additional/ replacement forb	Tube
	Juncus kraussii	Salt Marsh Rush	2	Moist; moderate salt tolerance	Uncommon	Potential additional/ replacement sedge	Seed; Tube

^{*}Availability at time of writing RMP; see stockists closer to planting date to confirm availability and form (seed or tubestock).

nd Not detailed in the RE Technical Description

Botanical Name	Common Name	Qld Biosecurity Act / WONS	Occurrence within site	Treatment Method
Woody weeds				
Baccharis halimifolia	Groundsel bush	Category 3 restricted	Frequent	Complete removal (small plants); biological control; basal bark; cut stump; stem injection; foliar spray
Lantana camara	Lantana	Category 3 restricted / WONS	Infrequent	Mechanical removal (followed by foliar spray of regrowth); foliar spray (incl. splatter gun); cut stump; basal bark
Schinus terebinthifolius	Broad-leaved pepper tree	Category 3 restricted	Infrequent	Complete removal; basal bark; cut stump; foliar spray
Solanum chrysotrichum	Giant devil's fig		Infrequent	Cut stump; foliar spray
Solanum mauritianum	Wild tobacco	-	Infrequent	Complete removal (small plants); ring-bark (tall plants); cut stump; basal bark; foliar spay
Grasses				
Chloris gayana	Rhodes grass	-	Frequent	Slashing; foliar spray (glyphosate)
Setaria sphacelata	South African pigeon grass	-	Frequent	Slashing; foliar spray (glyphosate)
Sporobolus pyramidalis, S. natalensis	Giant rats tail grass	Category 3 restricted	Infrequent	Foliar spray, wick-wiping (multiple treatments, pre-emergent and glyphosate); complete removal, burn stools (small infestations)
Vines				
Ipomoea cairica	Mile-a-minute	(a)	Infrequent	Complete removal; foliar spray; cut stump; basal bark
Passiflora suberosa	Corky passion	-	Infrequent	Cut stump; foliar spray; complete removal
Solanum seaforthianum	Brazilian nightshade	×	Infrequent	Cut stump; foliar spray; complete removal (bag and remove fruit)
Forbs				
Ageratum houstonianum	Blue billy-goat weed	-	Infrequent	Foliar spray; complete removal
Asparagus aethiopicus	Basket asparagus	Category 3	Infrequent	Complete removal (remove entire crown, underground stem and berries); basal bark; cut stump; foliar spray (short-term knock down)
Bidens pilosa	Cobbler's pegs	-	Infrequent	Foliar spray; complete removal
Rumex crispus	Curly dock	-	Infrequent	Foliar spray
Senecio madagascariensis	Fireweed	Category 3 / WONS	Frequent	Foliar spray

Greenridge Revegetation Plan – Attachment 2

Greenridge Revegetation Plan - Attachment 3

Appendix D: Pasture photo standards – SEQ (basalt)

Basalt

300 kg/ha

800 kg/ha

1400 kg/ha

Basalt

2000 kg/ha

3000 kg/ha

4000 kg/ha

Appendix E: Impact site field survey data – coastal swamp oak TEC

Appendix E1: Coastal swamp oak TEC raw data

Please see file supplied separately.

Appendix E2: Coastal swamp oak TEC summarised HQS data

Appendix F: Impact site field survey data – koala habitat

Appendix F1: Koala habitat raw data

Please see file supplied separately.

Appendix F2: Koala habitat summarised HQS data

Appendix G: Impact site field survey data – GHFF habitat

Appendix G1: GHFF habitat raw data

Please see file supplied separately.

Appendix G2: GHFF habitat summarised HQS data

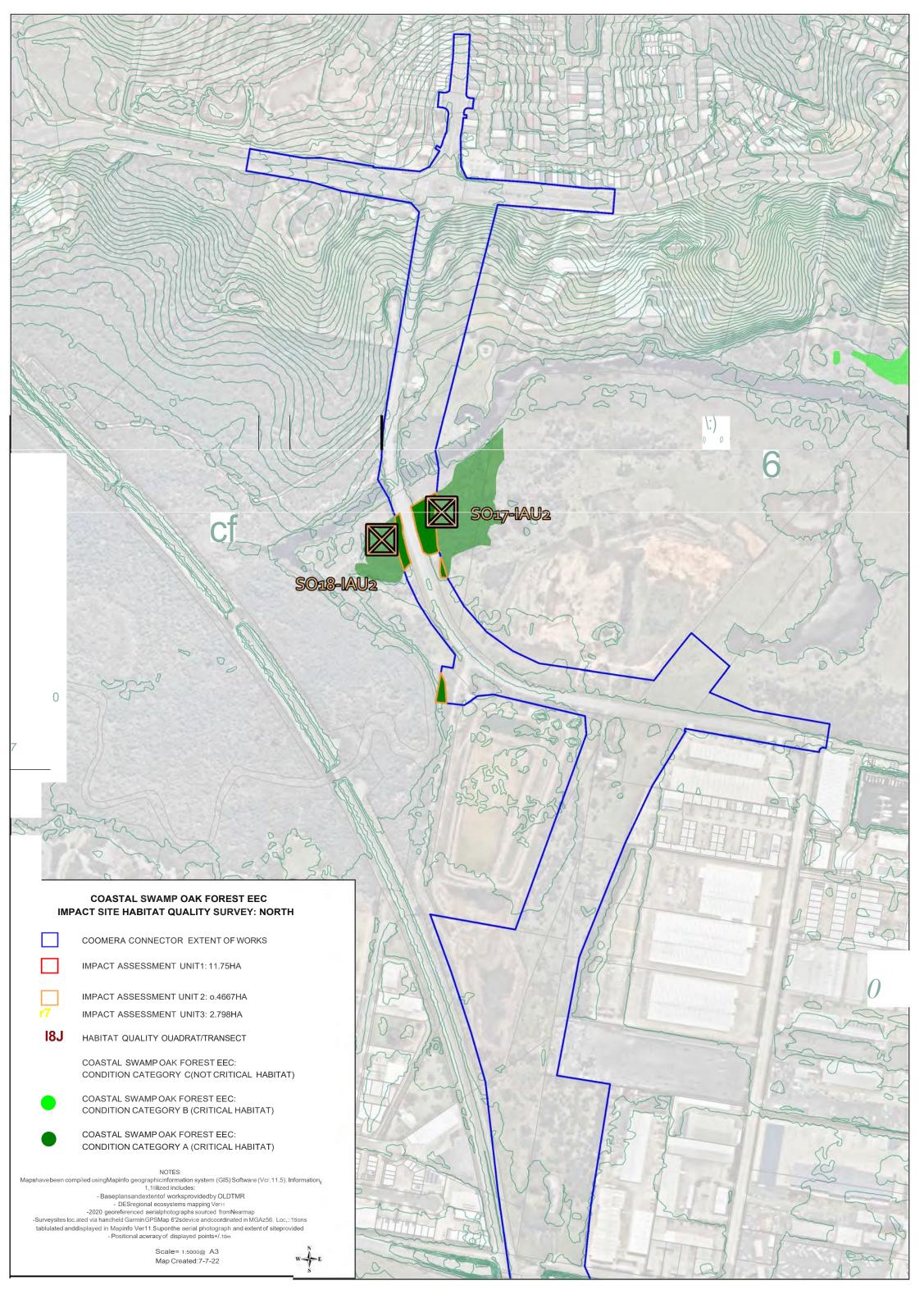
Appendix H: Tabooba BioCondition data

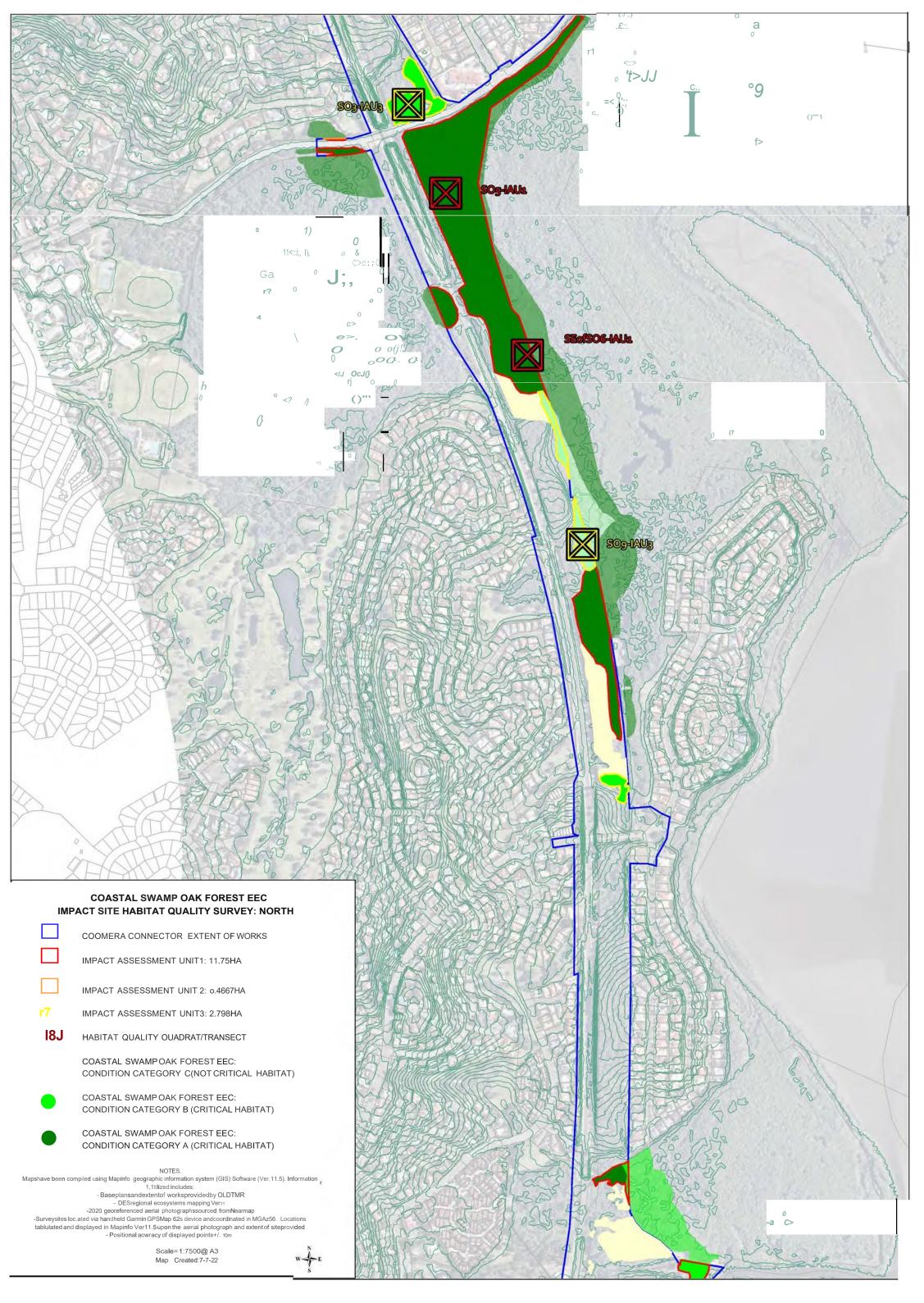
Appendix I: Greenridge BioCondition data

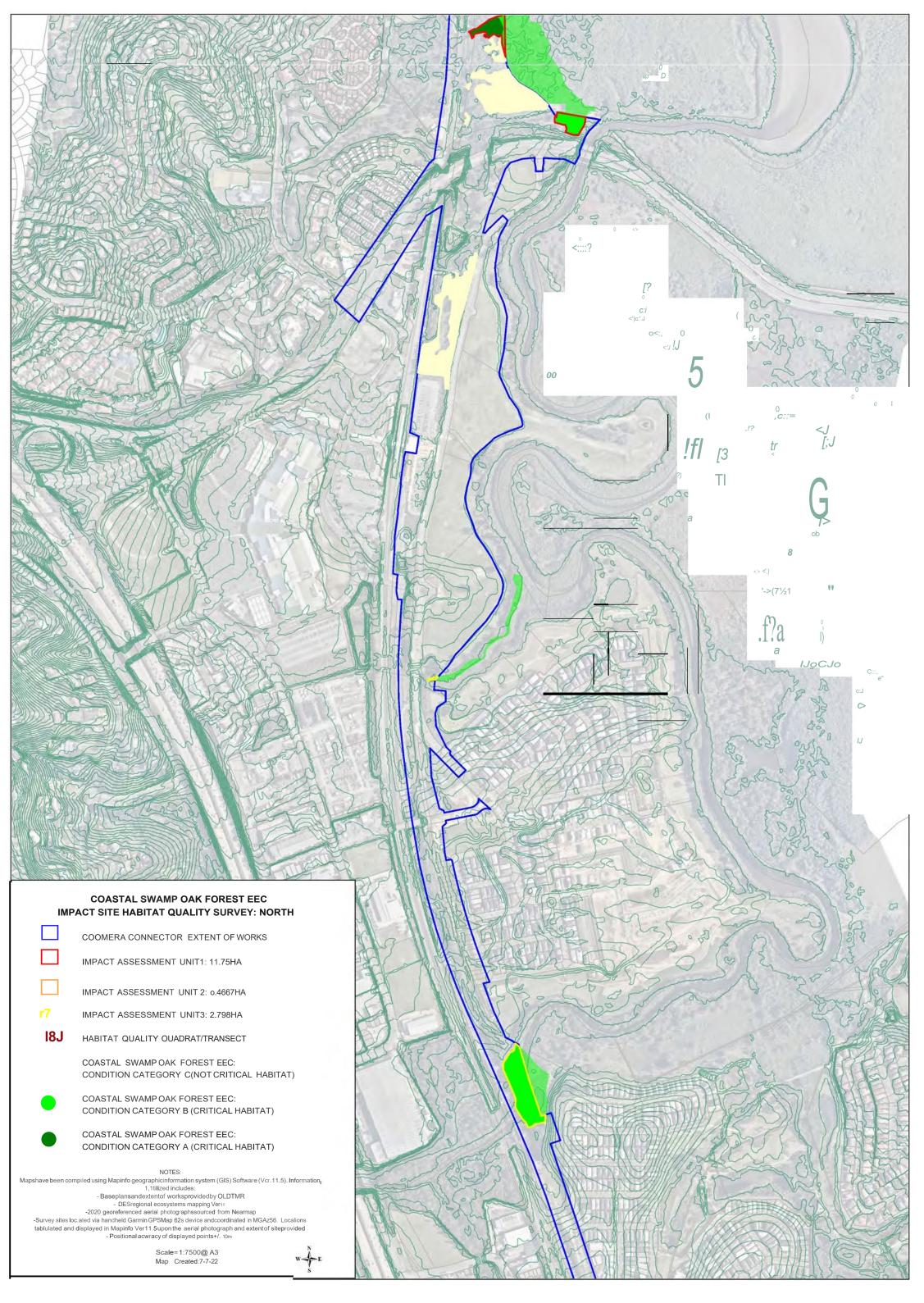
Appendix J: Offset HQS tables coastal swamp oak TEC

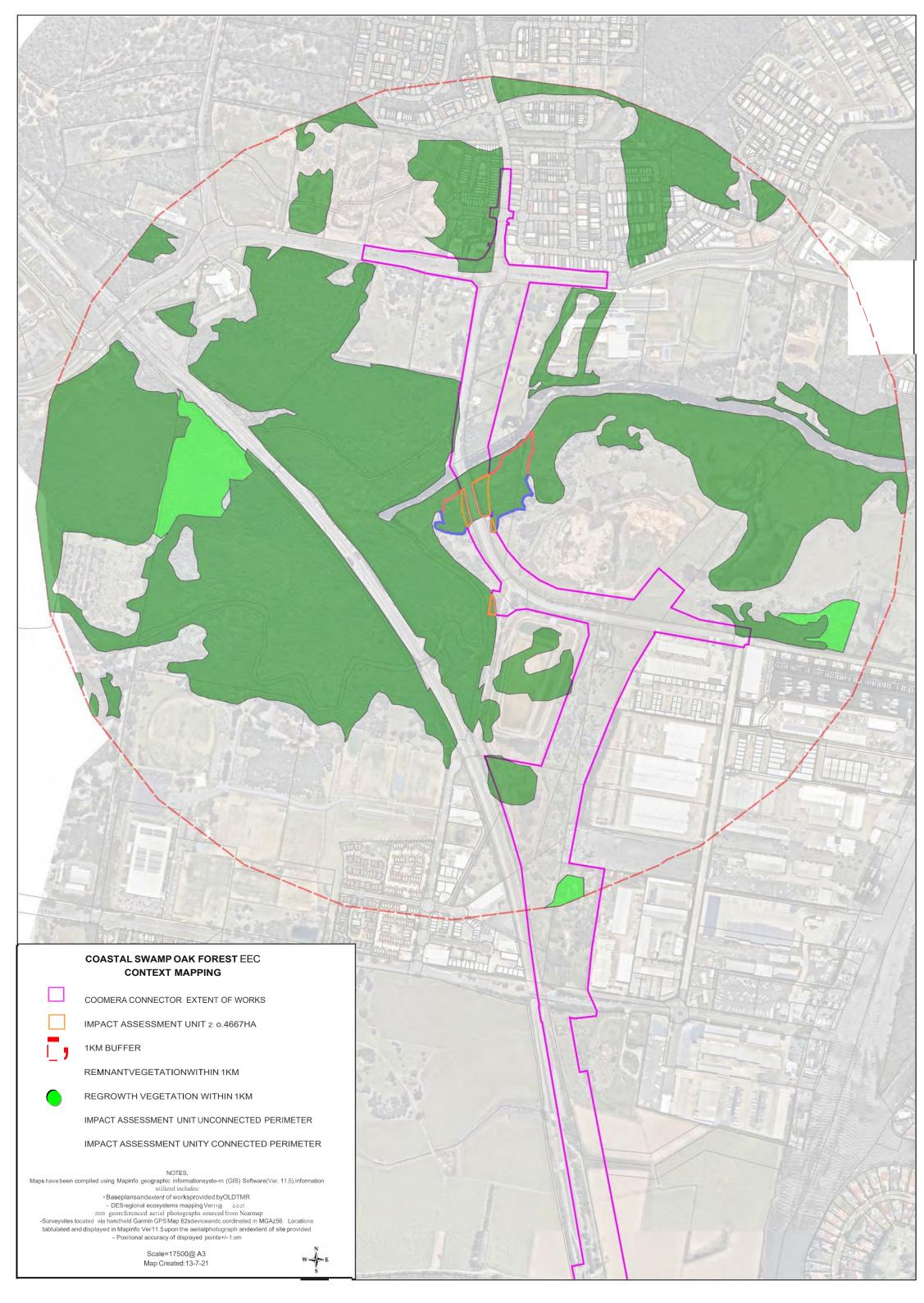
Appendix K: Offset HQS tables koala habitat

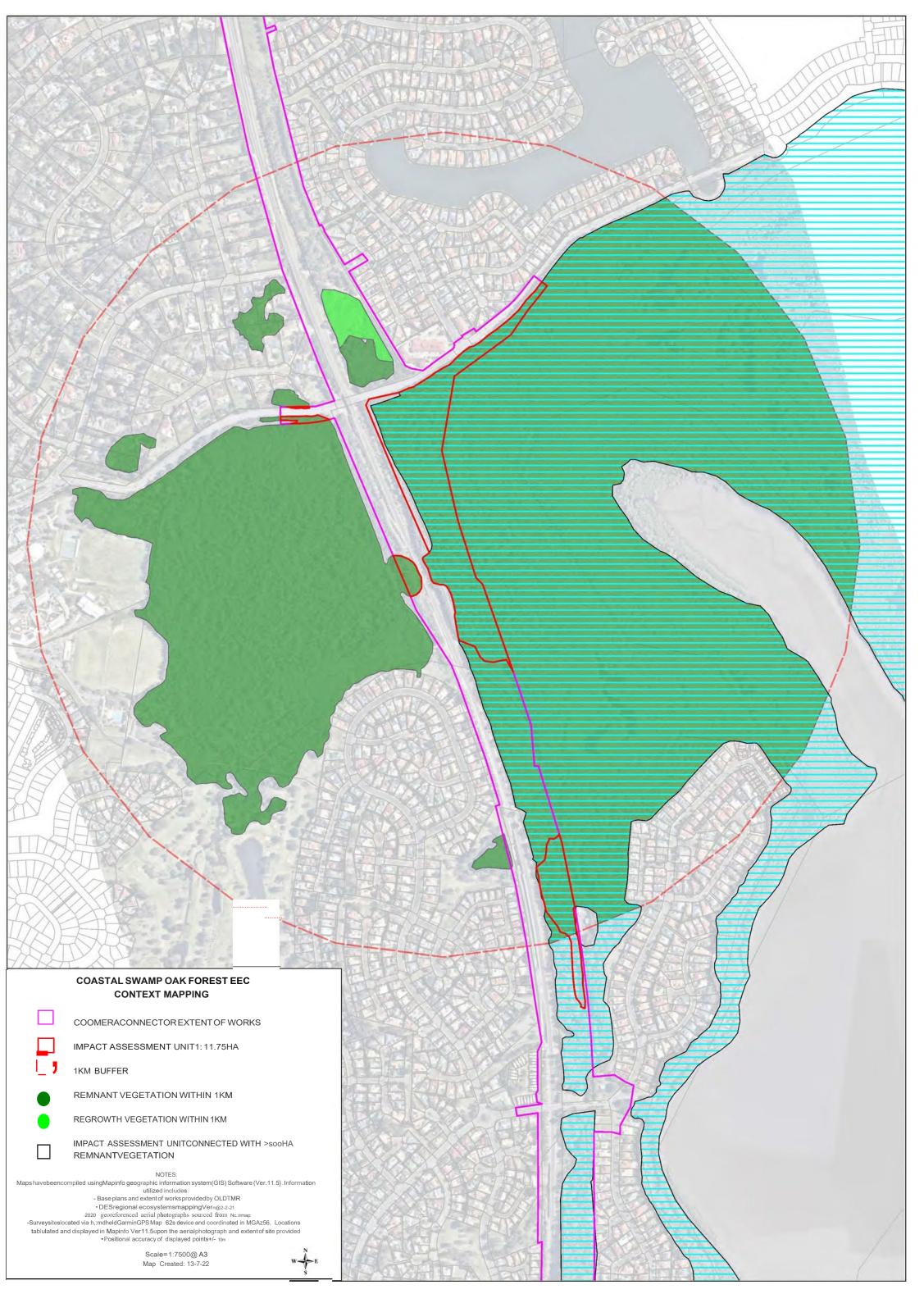
Appendix L: Offset HQS tables GHFF habitat

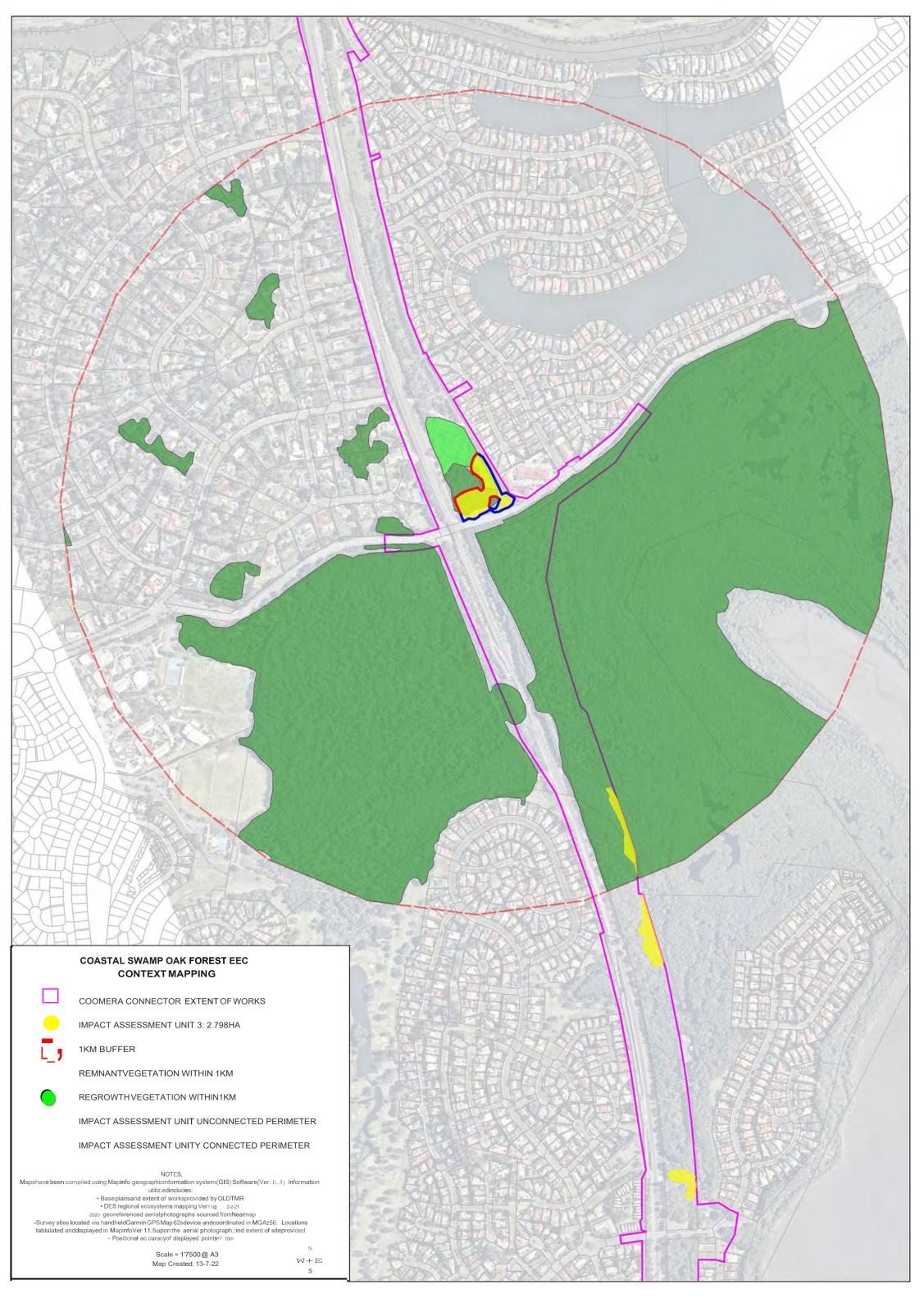

Appendix M: OAG outputs coastal swamp oak TEC

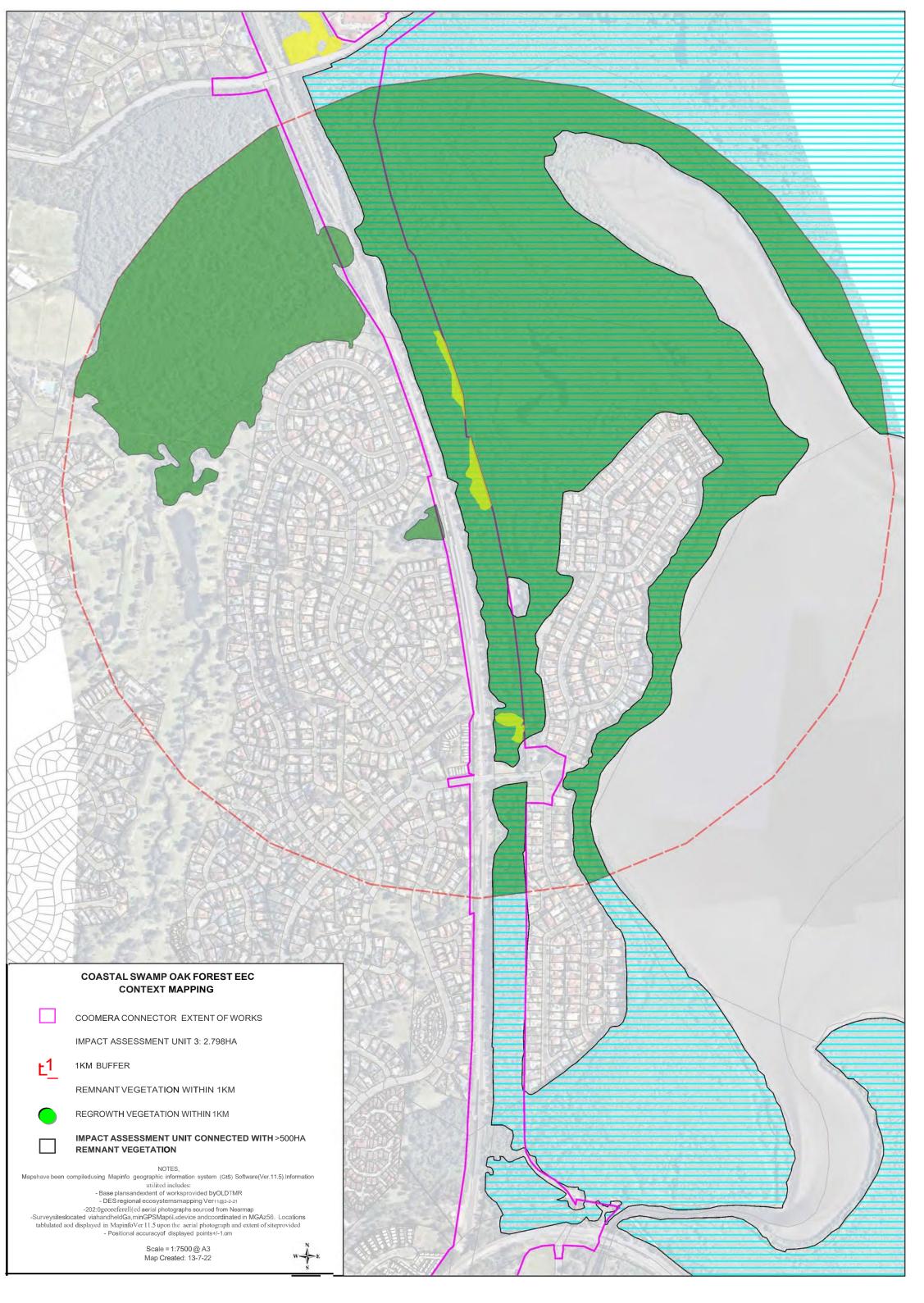

Appendix N: OAG outputs koala habitat


Appendix O: OAG outputs GHFF habitat


Appendix E: Impact Site Survey Data


Appendix E1: Coastal Swamp Oak TEC





HABITAT ASSESSMENT FIELD OBTAINED DATA: IMPACT ASSESSMENT UNIT 1 (IAU1-SO5)

Part C - Sit		SWAMP OAK EEC CH WITHIN LARG	E CONNECTED BATCHES (COO	MDARAU + CURROUNDS DATA		T	
	Property	SCALED FROM FIELD SITE SO5 WIT	H ADDITIONAL SURVEY TO CO	NFIRM LARGE TREES AND CWD	Date	VARIOUS	
				-		<u> </u>	
	Assessment Unit:	Assessment Ui 5.87		RE 12.1.1		Bioregion N Southeast Qu	
	1	3.67	•	12.1.1		30utileast Qu	eensianu
				. 16			
	Landscape Photo- Please attach or inser	t north, south, east and west pho	otos in the spaces provide	ed from row 231-355 below an	d include details such as	Time and Mapping Coordin	ates in the following row.
<u>Datum</u>		0m Mark		Zone		sting	Northing
WGS 84	-			56 Zone		3,199 sting	6,914,528 Northing
GDA 94	▽	50m Mark		56	La	string	
	Plot bearing				Recorders		gd
						l.	
		Site description	and Location (including d	etails of discrete polygons with	in the assessment unit)		
	within extens	ive Swamp Oak Forest/Wetland	associated with Coomba	bah. Tidal influence. Refer im	ages of Swamp Oak Field	Sites SO3-SO13, SO15, SO1	9
Part D. M	Native Species Richness: (*list species belo	···/					
Fait D-1	wative species riciniess. (list species belo	wj	Tre	e species richness:			
Total numb	per of species				2		
	Scientific Name	C	asuarina glauca dominan	t	Common Name		
	Scientific Name		Melaleuca quinquenervia		Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name Scientific Name				Common Name		
	Scientific Name				Common Name		
			Shru	b species richness:			
Total numb	per of species				1		
	Scientific Name		Casuarina glauca		Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name Scientific Name				Common Name		
	Selentine Hame	L			common rume		
			Gras	ss species richness:			
Total numb	per of species				1		
	Scientific Name		Phragmites australis		Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name Scientific Name				Common Name		
	Scientific Name Scientific Name				Common Name Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
						•	
			Forbs and others (n	on grass ground) species richne	ess:		
Total numb	per of species				8		
	Scientific Name		Juncus spp.		Scientific Name		Acrostichum speciosum
	Scientific Name		Eleocharis dulcis		Scientific Name		
	Scientific Name	, , , , , , , , , , , , , , , , , , ,	Alternanthera denticulata		Scientific Name		
	Scientific Name		Baumea articulata		Scientific Name		
	Scientific Name Scientific Name		Gahnia clarkei Lygodium microphyllum		Scientific Name Scientific Name		
	Scientific Name Scientific Name		Cyclosorus interruptus		Scientific Name Scientific Name		
	Scientific Name		cyclosoras interruptus		Scientific Name	<u> </u>	
Part E - N	Non-Native Plant Cover: (*list species below	v)					
	Total percentage cover within plot	Ĺ			4.00%		
	Common Name		Ipomoea cairica		Common Name		
	Common Name		Syagrus romanzoffiana		Common Name		
	Common Name		Schinus terebinthifolius		Common Name		
	Common Name	Calculate and the	Solanum hispidum	vorad with pipo	Common Name		
	Common Name	Saivinia molesta	a [browned off and smoth	iereu witri pine	Common Name		
	Common Name				Common Name		
	Common Name				Common Name		

Total Length of Course Woody Debris (Meters):	200.00							
1		26						
2		27						
3		28						
4		29						
5		30						
6		31						
7		32						
8		33						
9		34						
10		35						
11		36						
12		37						
13		38						
14		39						
15		40						
16		41						
17		42						
18		43						
19		44						
20		45						
21		46						
22		47						
23		48						
24		49						
25		50						

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover)

J		Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
1	Native perennial grass cover	0.00%	10.00%	15.00%	0.00%	20.00%	9.00%
•							
Ī		Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average

 Organic Litter
 Qualitat 1
 Qualitat 2
 Qualitat 3
 Qualitat 4
 Qualitat 3
 Qualitat 4
 Qualitat 3
 Average

 90.00%
 80.00%
 20.00%
 30.00%
 20.00%
 48.00%

Part H- Number of large trees, tree canopy height, recruitment of woody perennial species:

Fait II- Number of large trees, tree canopy neight, recruitment of woody perenman species.									
Eucalypt Large tree DBH benchmark used :				Non- Eucalypt Large tree DBH benchmark used:		29			
Number of large eucalypt trees:				Number of large non eucalypt trees:		55			
Total Number Large Trees:				55					
Median Tree Canopy Height Measurements	Canopy:	13.80	Sub-canopy:	6.70	Emergent:				
Number of ecologically domina				100					

Shrub canopy cover %				4.40%		
Tree canopy cover %	Canopy:	68.00%	Sub-canopy:	17.60%	Emergent:	

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present "If trees are in the same layer and continuous along the transect you can group them

Part J - Site Context Score

ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors
DESCRIPTION	5 - >200ha	4 - >75% or >500ha connection	3 - >30-75% remnant		_
SCORE	10	5	4		

Case Re		EPBC2020-8646			SITE AS	SESSMEN	T BENCH	MARK CC	MPARIS	ON RESU	LTS	
Project		CONNECTOR. IMPACT SITE SWAMP OAK EEC HABITAT QUALITY AS SE	SSM								_	
Total	Area	15.0147										
							Assessm	ent Unit Numb	er			
		Habitat Quality Attributes	1	2	3	4	5	6	7	8	9	10
De	art	Assessment Unit Area (ha)	5.875	5.875	0.23335	0.23335	1.399	1.399	0	0	0	0
		Regional Ecosystems	12.1.1	12.1.1	12.1.1	12.1.1	12.1.1	12.1.1				
		Bioregion	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland				
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
		2. Native plant species richness								•	•	
		- Trees	200.00%	100.00%	100.00%	100.00%	400.00%	400.00%				
		- Shrubs	100.00%	100.00%	200.00%	200.00%	100.00%	100.00%				
		- Grasses	50.00%	150.00%	50.00%	50.00%	100.00%	100.00%				
		- Forbs	266.67%	200.00%	200.00%	100.00%	166.67%	66.67%				
		3. Tree canopy height										
	tes	- Canopy Layer	115.00%	115.00%	125.83%	111.67%	98.33%	121.67%				
	on Attributes	- Sub-Canopy Layer	95.71%	97.14%	97.14%	82.86%	78.57%	101.43%				
1		- Emergent Layer										
1	Condition	4. Tree canopy cover										
	io) a	- Canopy Layer	101.49%	105.07%	67.16%	93.43%	130.75%	89.55%				
	Site	- Sub-Canopy Layer	76.52%	86.09%	140.87%	62.61%	53.04%	217.39%				
		- Emergent Layer										
		5. Shrub canopy cover	88.00%	56.00%	200.00%	308.00%	0.00%	0.00%				
		6. Native perennial grass cover	10.59%	48.24%	92.94%	108.94%	43.53%	4.71%				
		7. Organic litter	960.00%	1020.00%	500.00%	108.00%	960.00%	1340.00%				
		8. Large trees	59.78%	54.35%	92.39%	32.61%	103.26%	54.35%				
		9. Coarse woody debris (Meters)	55.56%	51.39%	38.89%	109.72%	37.78%	60.00%				
		10. Weed cover	4.00%	2.00%	2.00%	2.00%	30.00%	75.00%				
	tes	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	0.00	10.00				
	Attributes	12. Connectedness (fragmented)	5.00	5.00	2.00	2.00	2.00	5.00				
2		13. Context (fragmented)	4.00	4.00	4.00	4.00	4.00	4.00				
	Context	14. Distance from water (intact)										
	Site	15. Ecological corridors										

PREVIOUSLY SUBMITTED SWAMP OAK FOREST EEC ASSESSMENT INFORMATION REFER EPBC 2020/8646 REFERRAL PACKAGE ATTACHMENT 8

COASTAL SWAMP OAK (CASUARINA GLAUCA) FOREST OF NEW SOUTH WALES AND SOUTH EAST QUEENSLAND ECOLOGICAL COMMUNITY DISCUSSION

The key diagnostic criteria are considered to be met for this patch/copse including:

- having canopy trees dominated by Casuarina glauca
- having crown cover of at least 10%

These are not onerous criteria as this particular EEC contains a low height criteria (10m) so even young regrowth can be considered.

Following field survey, the area meeting the key diagnostic criteria was >100 hectares. The extent of contiguous state mapped Regional Ecosystem 12.1.1 has been utilised in this calculation which represents the vegetation within the field site. Therefore, the patch is assigned a 'large' patch size class (>5ha).

A field quadrat survey was then performed in accordance with Section 3.2 and Appendix 3 of the Guidelines. To account for variability the patch was traversed first and the field plot then placed within an area reflective of the investigated areas away from edge affected areas.

The field survey performed resulted in vegetation quality class of 'high.'

Therefore, in accordance with Table 1 of the guideline this site (and connected areas of the same habitat type) is assigned Category A and per Section 3.4 of the Guideline is considered to be <u>habitat critical to the survival</u> of the ecological community.

COASTAL SWAMP OAK (CASUARINA GLAUCA) FOREST OF NEW SOUTH WALES AND SOUTH EAST QUEENSLAND ECOLOGICAL COMMUNITY FIELD ASSESSMENT

Site No.		SO ₅		Re	corder:	GD	GD				
Purpose	20M X 2	20M X 20M CONDITION PLOT									
	East of B	East of B ₃ & ADJACENT AREAS WITHIN COOMBABAH WETLANDS SOUTH OF HELENSVALE ROAD.									
Location:	EXPANS	EXPANSIVE ECOSYSTEM									
GPS coordinates Zone 5			6	E 533	3,155	Ν	6,914,430	Datum:	MGAZ56		

KEY DIAGNOSTICS-CANOPY

REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
Crown cover of at least 10%	30-40%	E (obviously >10%. Refer Images)	V
Canopy dominated by Casuarina glauca [other canopy trees = Melaleuca quinquenervia]	90%	E (obvious. Refer Images)	V
Median canopy height >10m (i.e. open woodland, woodland, forest or closed forest per Hnatiuk et al, 2009)	13.8m	Measured	√

CONDITION THRESHOLDS-PATCH SIZE CLASS

REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
Small Patch-At least 0.5 hectares	>100ha	Measured via GPS and estimated by GIS	√
Small contiguous patch- The patch is at least 0.5 ha and less than 2 ha, and is connected to a larger area of native vegetation of at least 5 ha	>100ha	Measured via GPS and estimated by GIS	√
Medium Patch-at least 2ha and less than 5ha	>100ha	Measured via GPS and estimated by GIS	√
Large Patch-at least 5ha	>100ha	Measured via GPS and estimated by GIS	√

CONDITION THRESHOLDS-VEGETATION QUALITY

MINIMUM REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
HIGH QUALITY Predominately native understorey. Non- native species comprise less than 20% total understorey vegetation cover (all vascular species of all layers below the canopy)	~95%	Measured within 20m x 20m survey plot	√
GOOD QUALITY Mostly native understorey Non-native species comprise less than 50% of total understorey vegetation cover AND transformer species comprise less than 30% of total understorey vegetation cover	~95%	Measured within 20m x 20m survey plot	√
MODERATE QUALITY Some native understorey Non-native species comprise less than 80% of total understorey vegetation cover AND transformer species comprise less than 50% of total understorey vegetation cover	~95%	Measured within 20m x 20m survey plot	√

Minimum vegetation quality class threshold met. Therefore EEC.

NATIVE UNDERSTOREY SPECIES (0.04HA QUADRAT)

GROWTH FORM	SPECIES	EST ABUNDANCE	B-B SCORE	EST COVER %			
T/S	Casuarina glauca	5-10	3	5			
E	Acrostichum speciosum	100-500	6	60-70			
G	Phragmites australis	100-500	4	10			
L	Parsonsia straminae	20-50	4	5			
S	Eleocharis dulcis	1	1	<1			
-	Pine needles / mud			60			
F	Alternanthera denticulata	20-50	3	4			
T/S	Melaleuca quinquenervia	2	1	2			
R	Baumea articulata	1	1	<1			
V	Gahnia clarkei	50-100	4	20			
E	Lygodium microphyllum	5-10	3	1			
E	Cyclosorus interruptus	3	1	<1			
E	Asplenium australasicum	1	1	<1			
E	Platycerium bifurcatum	1	1	<1			
	NATIVE % OF TOTAL UNDERSTOREY VEGETATION COVER 95%						

Growth form: T=tree, S=shrub, G= grass, V=sedge, R=rush, E=fern, F=forb/herb, L=vine, P=palm, O=other Cover: <11,2,3,4,5,10,15,20,25,30,35, etc cover %

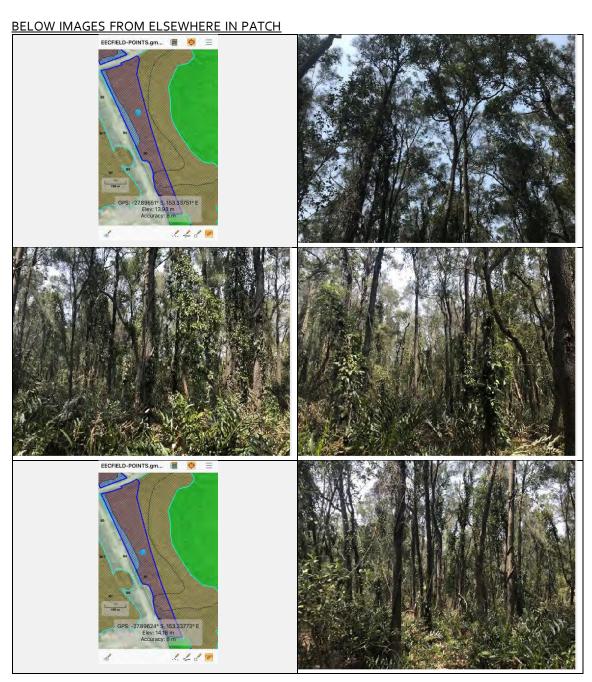
[0.1% cover represents an area of approximately 63 x 63cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, $1\% = 2.0 \times 2.0 \text{ m}$, $5\% = 4 \times 5 \text{ m}$, $25\% = 10 \times 10 \text{ m}$]

Abundance: <5, 5-10, 10-20, 20-50, 50-100, 100-500, 500-1000, >1000

Areas of little to no understorey vegetation cover (e.g. plant litter) are included if key diagnostics are met and non-native species are below thresholds

NON-NATIVE UNDERSTOREY SPECIES (0.04HA QUADRAT)

GROWTH FORM	SPECIES	TRANSFORMER SPECIES	EST ABUNDANCE	B-B SCORE	EST COVER
L	Ipomoea cairica	√	1		<1
Р	Syagrus romanzoffiana		1		<1
S	Schinus terebinthifolius	√	1		<1
S	Solanum hispidum		1		<1
Е	Salvinia molesta [browned off and smothered with pine needles]	V	50-100		4 ⁻ 5
	NON-NATIVE % OF TOTAL	5%			


CANOPY IMAGES

UNDERSTOREY IMAGES

HABITAT ASSESSMENT FIELD OBTAINED DATA: IMPACT ASSESSMENT UNIT 1 (IAU1-SE of SO6)

Part C - Site Data												
Property	SWAMP OAK EEC CH WITHIN LARGE CON	NECTED PATCHES (COOM BABAH + SL	JRROUNDS] DATA SCALED FROM	Date	VARIOUS							
riopercy	FIELD SOUTHEAST OF SITE SO6	WITH ADDITIONAL SURVEY TO CONFIR	UN LANGE INSESS AND CWD	Date	VARIOUS							
	Assessment Un	it Area (ha)			o: :	Nh						
Assessment Unit:			RE		Bioregion							
2	5.87	,	12.1.1		Southeast C	queensianu						
Landscape Photo- Please attach or inser	t north south east and west nhe	otos in the snaces provided t	from row 231-355 helow an	d include details such as	Time and Manning Coordi	inates in the following row						
Editoscope Frioto Freuse actueri of inser	t north, south, cast and west pin	nos in the spaces provided i	ITOM TOW EST SSS BEIOW UN	a melade details sacir as	Time and Mapping coords	mates in the following four.						
<u>Datum</u>		Zo	ne	Ea	asting	Northing						
WGC 84	0m Mark	5			13,428	6,913,949						
GDA 94		Zo	ne	Ea	asting	Northing						
W.	50m Mark											
Plot bearing				Recorders		gd						
	Site description and Location (including details of discrete polygons within the assessment unit) within extensive Swamp Oak Forest/Wetland associated with Coombabah. Tidal influence. Refer images of Swamp Oak Field Sites SO3-SO13, SO15, SO19											
within exten	sive Swamp Oak Forest/Wetland a	ssociated with Coombabah.	. Tidal influence. Refer ima	ages of Swamp Oak Field	d Sites SO3-SO13, SO15, SO	119						
Part D - Native Species Richness: (*list species bel	ow)					'						
	- ,	Tree s	species richness:									
Total number of species				1								
Scientific Name		Casuarina glauca		Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name			•	Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
		Shrub	species richness:									
Total number of species				1								
Scientific Name		Casuarina glauca		Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
		Grass	species richness:									
Total number of species				3								
Scientific Name		Phragmites australis		Common Name								
Scientific Name		Ottochloa gracillima		Common Name								
Scientific Name		Entolasia stricta		Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name Scientific Name				Common Name								
Scientific Name Scientific Name				Common Name								
Security Haire				common realite								
		Forbs and others (no	n grass ground) species rich	ness:								
Total number of species		(112)		6								
Scientific Name		Eleocharis dulcis		Scientific Name								
Scientific Name		Alternanthera denticulata		Scientific Name								
Scientific Name		Cygnogeton striata		Scientific Name								
Scientific Name		Lobelia stenophylla		Scientific Name								
Scientific Name		Cynanchum carnosum		Scientific Name								
Scientific Name		Acrostichum speciosum	-	Scientific Name								
Scientific Name				Scientific Name								
Part E - Non-Native Plant Cover: (*list species belo	ow)											
Total percentage cover within plot				2.00%								
Scientific Name		Asparagus aeithicopus		Common Name								
Scientific Name		Schinus terebinthifolius		Common Name								
Scientific Name Scientific Name				Common Name								
Scientific Name Scientific Name				Common Name								
Scientific Name Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								
Scientific Name				Common Name								

Dart E . C	Carco Moods	Dobrie 1	*lict langthe	of individual	logs in meters)

Total Length of Course Woody Debris (Meters):		185.00	
1		26	
2		27	
3		28	
4		29	
5		30	
6		31	
7		32	
8	_	33	
9		34	
10		35	
11		36	
12		37	
13		38	
14		39	
15		40	
16		41	
17		42	
18		43	
19		44	
20		45	
21		46	
22		47	
23		48	
24		49	
25		50	

Part G - Native perennial grass cover, organic litter: (* provide percentage cover within each quadrat, and provide average cover) Quadrat 1 Quadrat 2 Quadrat 3

Native perennial grass cover	10.00%	40.00%	20.00%	50.00%	85.00%	41.00%
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Organic Litter	90.00%	60.00%	40.00%	50.00%	15.00%	51.00%

Part H- Number of large trees , tree canopy height, recruitment of woody perennial species

Part H- Number of large trees , tree canopy neight, recruitment of woody perennial species:									
Eucalypt Large tree DBH benchmark used :		Non- Eucalypt Large tree DBH benchmark used:	29						
Number of large eucalypt trees:		Number of large non eucalypt trees:	50						
Total Number Large Trees:		50							

Median Tree Canopy Height Measurements	13.80	Sub-canopy:	6.80	Emergent:		
Number of collection develop					100	

Part I - Tree canopy cover. Shrub canopy cover

Part I - Tree canopy cover, Shrub canopy cover									
Tree canopy cover %	Canopy:	70.40%	Sub-canopy:	19.80%	Emergent:				
2007									

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present *If trees are in the same layer and continuous along the transect you can group them

ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors
DESCRIPTION	5 - >200ha	4 - >75% or >500ha connection	3 - >30-75% remnant		
SCORE	10	5	4		

Case Re	eference	EPBC2020-8646				SITE AS	SESSMEN	T BENCH	MARK CO	MPARIS	ON RESU	LTS	
	t Name	CONNECTOR. IMPACT SITE SWAMP OAK EEC HABITAT O	ALITY AS SES	ism .									
Total	l Area	15.0147											
		Habitat Quality Attributes						Assessm	ent Unit Numbe	ır			
				1	2	3	4	5	6	7	8	9	10
P	art	Assessment Unit Area (ha)		5.875	5.875	0.23335	0.23335	1.399	1.399	0	0	0	0
		Regional Ecosystems		12.1.1	12.1.1	12.1.1	12.1.1	12.1.1	12.1.1				
	Bioregion			Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland				
		Recruitment of woody perennial species (Nur	ber of										1
		ecologically dominant layers regenerating)	ber or	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
		2. Native plant species richness						-	-		-	-	
		- Trees		200.00%	100.00%	100.00%	100.00%	400.00%	400.00%				
		- Shrubs		100.00%	100.00%	200.00%	200.00%	100.00%	100.00%				
		- Grasses		50.00%	150.00%	50.00%	50.00%	100.00%	100.00%				
		- Forbs		266.67%	200.00%	200.00%	100.00%	166.67%	66.67%				
		3. Tree canopy height											
	on Attributes	- Canopy Layer		115.00%	115.00%	125.83%	111.67%	98.33%	121.67%				
		- Sub-Canopy Layer		95.71%	97.14%	97.14%	82.86%	78.57%	101.43%				
		- Emergent Layer											
1	Condition	4. Tree canopy cover					=	-	-	=	-	-	-
		- Canopy Layer	101.49%	105.07%	67.16%	93.43%	130.75%	89.55%					
	Site	- Sub-Canopy Layer		76.52%	86.09%	140.87%	62.61%	53.04%	217.39%				
		- Emergent Layer											
		5. Shrub canopy cover		88.00%	56.00%	200.00%	308.00%	0.00%	0.00%				
		6. Native perennial grass cover		10.59%	48.24%	92.94%	108.94%	43.53%	4.71%				
		7. Organic litter		960.00%	1020.00%	500.00%	108.00%	960.00%	1340.00%				
		8. Large trees		59.78%	54.35%	92.39%	32.61%	103.26%	54.35%				
		9. Coarse woody debris (Meters)		55.56%	51.39%	38.89%	109.72%	37.78%	60.00%				
		10. Weed cover		4.00%	2.00%	2.00%	2.00%	30.00%	75.00%				
	ses	11. Size of patch (fragmented)		10.00	10.00	5.00	5.00	0.00	10.00				
	Attributes	12. Connectedness (fragmented)		5.00	5.00	2.00	2.00	2.00	5.00				
2		13. Context (fragmented)		4.00	4.00	4.00	4.00	4.00	4.00				
	Context	14. Distance from water (intact)											
	Site	15. Ecological corridors											

PREVIOUSLY SUBMITTED SWAMP OAK FOREST EEC ASSESSMENT INFORMATION REFER EPBC 2020/8646 REFERRAL PACKAGE ATTACHMENT 8

COASTAL SWAMP OAK (CASUARINA GLAUCA) FOREST OF NEW SOUTH WALES AND SOUTH EAST QUEENSLAND ECOLOGICAL COMMUNITY DISCUSSION

The key diagnostic criteria are considered to be met for this patch/copse including:

- having canopy trees dominated by Casuarina glauca
- having crown cover of at least 10%

These are not onerous criteria as this particular EEC contains a low height criteria (10m) so even young regrowth can be considered.

Following field survey, the area meeting the key diagnostic criteria was >100 hectares. The extent of contiguous state mapped Regional Ecosystem 12.1.1 has been utilised in this calculation which represents the vegetation within the field site. Therefore, the patch is assigned a 'large' patch size class (>5ha).

A field quadrat survey was then performed in accordance with Section 3.2 and Appendix 3 of the Guidelines. To account for variability the patch was traversed first and the field plot then placed within an area reflective of the investigated areas away from edge affected areas.

The field survey performed resulted in vegetation quality class of 'high.'

Therefore, in accordance with Table 1 of the guideline this site (and connected areas of the same habitat type) is assigned Category A and per Section 3.4 of the Guideline is considered to be <u>habitat critical to the survival</u> of the ecological community.

COASTAL SWAMP OAK (CASUARINA GLAUCA) FOREST OF NEW SOUTH WALES AND SOUTH EAST QUEENSLAND ECOLOGICAL COMMUNITY FIELD ASSESSMENT

Site No.		SO6		Re	corde	r: GD	GD				
Purpose 20M X 20M CONDITION PLOT											
	BETWEEN B4 AND B5 WITHIN COOMBABAH WETLANDS SOUTH OF HELENSVALE ROAD.							D.			
Location:	EXPANSIVE ECOSYSTEM										
GPS coordinates		Zone	5	6	E 5	533,248	248 N 6,914,223 Datum: MGAZ56				

KEY DIAGNOSTICS-CANOPY

REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
Crown cover of at least 10%	40-50%	E (obviously >10%. Refer Images)	V
Canopy dominated by Casuarina glauca	100%	E (obvious. Refer Images)	√
Median canopy height >10m (i.e. open woodland, woodland, forest or closed forest			
per Hnatiuk et al, 2009)	18.2m	Measured	√

CONDITION THRESHOLDS-PATCH SIZE CLASS

REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
Small Patch-At least 0.5 hectares	>100ha	Measured via GPS and estimated by GIS	V
Small contiguous patch-The patch is at least 0.5 ha and less than 2 ha, and is connected to a larger area of native vegetation of at least 5 ha	>100ha	Measured via GPS and estimated by GIS	√
Medium Patch-at least 2ha and less than 5ha	>100ha	Measured via GPS and estimated by GIS	V
Large Patch-at least 5ha	>100ha	Measured via GPS and estimated by GIS	V

CONDITION THRESHOLDS-VEGETATION QUALITY

MINIMUM REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
HIGH QUALITY Predominately native understorey. Non- native species comprise less than 20% total understorey vegetation cover (all vascular species of all layers below the canopy)	~90-95%	Measured within 20m x 20m survey plot	V
GOOD QUALITY Mostly native understorey Non-native species comprise less than 50% of total understorey vegetation cover AND transformer species comprise less than 30% of total understorey vegetation cover	~90-95%	Measured within 20m x 20m survey plot	√
MODERATE QUALITY Some native understorey Non-native species comprise less than 80% of total understorey vegetation cover AND transformer species comprise less than 50% of total understorey vegetation cover	~90-95%	Measured within 20m x 20m survey plot	√

Minimum vegetation quality class threshold met. Therefore EEC.

NATIVE UNDERSTOREY SPECIES (0.04HA QUADRAT)

Casuarina glauca Acrostichum speciosum Phragmites australis Parsonsia straminae	5-10 100-500 100-500	3 6	5 60-70
Phragmites australis Parsonsia straminae	<u> </u>	6	60-70
Parsonsia straminae	100-500		55 / 6
		4	10
	20-50	3	5
Eleocharis dulcis	100-500	4	5
Pine needles / mud			50
Alternanthera denticulata	100-500	4	5
Avicennia marina	2	1	2
_ygodium microphyllum	1	1	<1
Cyclosorus interruptus	1	1	<1
Asplenium australasicum	1	1	<1
Platycerium superbum	1	1	<1
Melaleuca salicina	1	1	1
lagera pseudorhus	1	1	1
Cupaniopsis anacardioides	2	1	3
Melicope elleryana	2	1	2
-icus coronata	1	1	1
Al A	ternanthera denticulata vicennia marina vgodium microphyllum vclosorus interruptus splenium australasicum atycerium superbum elaleuca salicina gera pseudorhus upaniopsis anacardioides elicope elleryana	ternanthera denticulata vicennia marina 2 vgodium microphyllum 1 vclosorus interruptus splenium australasicum atycerium superbum elaleuca salicina gera pseudorhus upaniopsis anacardioides elicope elleryana cus coronata 1000-500 2 1 1 1 1 1 1 1 1 1 1 1 1	ternanthera denticulata 100-500 4 vicennia marina 2 1 /godium microphyllum 1 1 /closorus interruptus 1 1 splenium australasicum 1 1 atycerium superbum 1 1 elaleuca salicina 1 1 gera pseudorhus 1 1 upaniopsis anacardioides 2 1 elicope elleryana 2 1

Growth form: T=tree, S=shrub, G= grass, V=sedge, R=rush, E=fern, F=forb/herb, L=vine, P=palm, O=other Cover: <11,2,3,4,5,10,15,20,25,30,35, etc cover %

[0.1% cover represents an area of approximately 63×63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4×1.4 m, $1\% = 2.0 \times 2.0$ m, $5\% = 4 \times 5$ m, $25\% = 10 \times 10$ m]

Abundance: <5, 5-10, 10-20, 20-50, 50-100, 100-500, 500-1000, >1000

Areas of little to no understorey vegetation cover (e.g. plant litter) are included if key diagnostics are met and non-native species are below thresholds

NON-NATIVE UNDERSTOREY SPECIES (0.04HA QUADRAT)

GROWTH FORM	SPECIES	TRANSFORMER SPECIES	EST ABUNDANCE	B-B SCORE	EST COVER
F	Solanum hispidum		3	1	<1
L	Ipomoea cairica	√	1	1	<1
S	Senna pendula	√	1	1	<1
S	Lantana camara	√	1	1	<1
S	Solanum mauritianum		4	1	2
	NON-NATIVE % OF TOTAL	SETATION COVER	5%		

HABITAT ASSESSMENT FIELD OBTAINED DATA: IMPACT ASSESSMENT UNIT 2 (IAU-SO17)

Accounter 0000 Accounts on the Control of Co	Part C - Sit	e Data							
Assessment Unifor Age 10 1233 123 123 123 123 123 123 123 123 12			SWAMP OAK EEC CH ADJAC	ENT SHIPPER DRIVE [SOL	UTH OF OAKEY CREEK] DATA	Date	VARIOUS		
Lookery Proc. Place States in Source Common Review Source Common R		7. 7	SCALED FROM FIELD SITE SO17	WITH ADDITIONAL SUR	VEY TO CONFIRM LARGE TREES		VARIOUS		
Lookery Proc. Place States in Source Common Review Source Common R		Assessment Unit:	Assessment Unit Area (ha) RE			Rioregion Number			
Some No. 19									
State of the control		-							
State of the control		Landscape Photo- Please attach or inser	t north, south, east and west ph	otos in the spaces prov	vided from row 231-355 below	v and include details su	th as Time and Mapping Coor	dinates in the following row.	
Will See American Common Name See American			·						
No. 1									
Sign for hard process of the common forms of t	Datum				Zone		Easting	Northing	
Sign Nation Sign Nation S	WGS 84	<u>-</u>	Um Mark		56		532278	6918516	
Site description and contents (including details of discrete perlapsion will be assessment will)	GDA 94		50m Mark		Zone		Easting	Northing	
Serie descriptions and Location (Including death of descrete policypes within the apsectance will) Some part of Feet Parties Species Richness: Plant species below) Text analysis of species Text analysis of species Solicitific Name Solicitific			John Wark		56				
Treat region filtinoses ("Interpolate betwo) Treat - Native Species filtinoses ("Interpolate betwo) Treat papers abbons Security Nature Se		Plot bearing				Recorders		GD	
Treat region filtinoses ("Interpolate betwo) Treat - Native Species filtinoses ("Interpolate betwo) Treat papers abbons Security Nature Se									
Test of Palaces Species Richness: (**Hist species below) Test and surface signatures South State Sou									
Tres appoint of papers Soleriff, Name Common Name Soleriff, Name Common Name C	l			ociated with Oakey Cre-	ek. Tidal influence. Kerer ima	ges of Swamp Oak Field	1 Sites SO17-18.		
Total market of spotes Social Name Social	Part D - N	Native Species Richness: (*list species belov	v)	_					
Scientific Name Scientific Name Scientific Name Common Name Scientific Name Common Name Scientific Name Common Name Scientific	T-4-1		<u> </u>	Tree	e species richness:	1			
Scientific Remon Common Name	Total numb		Co	ruarina alauca dominant	•				
Scientific Review Scientific R			Cu	saarina giaaca aominant	ι				
Scientific Review Scientific R									
Scientific Remon Common Name Common Name Com									
Scientific Name Scientific Name Common Nam									
Scientific Name Scient									
Scientific Name Scientific Name South species richnese Testal number of species Scientific Name Scientific Name Scientific Name Scientific Name Couriorina place Scientific Name Couriorina place Scientific Name Scien		Scientific Name							
Scientific Name Solved species richness Total number of species Scientific Name Scientific Name Scientific Name Scientific Name Courseman place Scientific Name Courseman place Scientific Name Courseman Name Courseman Name Courseman Name Scientific Name Courseman Name Scientific		Scientific Name				Common Name			
Total number of species Scientific Name Scientific Name		Scientific Name				Common Name			
Test incomber of species Scientific Name Scientific Name Scientific Nam		Scientific Name				Common Name			
Test incomber of species Scientific Name Scientific Name Scientific Nam									
Sisterific Name Sisterific Name Contract Name Sisterific Name Sisterific Name Contract Name Sisterific Name Common Name Common Name Common Name Sisterific Name Sisterific Name Common Name Sisterific Name Common Name Common Name Common Name Sisterific Name American Name Common Name Common Name Sisterific Name American Name Sisterific Name Common Name Common Name Sisterific Name Sisterific Name Sisterific Name Sisterific Name Common Name Comm			l	Shru	b species richness:				
Scientific Name Scient	Total numb	•							
Scientific Name Scient									
Scientific Name Scientific Nam									
Scientific Name Scientific Nam				cuasarma giauca					
Scientific Name Scientific Nam									
Scientific Name Scientific Nam									
Scientific Name Scient		Scientific Name				Common Name			
Grass species rithness: Total number of species Scientific Name Scientific N		Scientific Name							
Total number of species Scientific Name Scien									
Scientific Name Scientific Nam		Scientific Name				Common Name			
Scientific Name Sporobolus virginicus Common Name				C					
Scientific Name Scientific Name Common Nam	Total numb	er of species		Gras	ss species riciniess.	1			
Scientific Name Scientific Name Scientific Name Common Name Common Name Common Name Common Name Common Name Common Name Scientific Name Common Name Co				Sporobolus virainicus					
Scientific Name Scientific Name Common Name Scientific Name Forts and others (non grass ground) species richness: Total number of species Forts and others (non grass ground) species richness: Total number of species Scientific Name Alternonthers denticulats Common Name Scientific Name Scientific Name Common Name Scientific				,					
Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Common Name Common Name Common Name Scientific Name Scientific Name Scientific Name Fortis and others (non grass ground) species richness: Total number of species Fortis and others (non grass ground) species richness: Total number of species Fortis and others (non grass ground) species richness: Total number of species Scientific Name Incus krasil Common Name Scientific Name Alternanthers denticulato Common Name Scientific Name Common Name Scientific Name Common Name Scientific Name Scientific Name Fimbristylis ferriginea Common Name Scientific Name Eclipta prostrata Common Name Common Name Scientific Name Part E - Non-Native Plant Cover: (*list species below) Total percentage cover within plot Scientific Name Common Name Scientific Name Scientific Name Scientific Name Scientific Name Common Name		Scientific Name				Common Name			
Scientific Name Cuphea carthopenesis Common Name Scientific Name Scientific Name Cuphea carthopenesis Common Name Scientific Name Scientific Name Common Name Common Name Common Name Common Name		Scientific Name				Common Name			
Scientific Name Scientific Name Common Name Common Name Common Name Scientific Name Common Name Common Name Common Name Common Name Common Name Common Name Forbs and others (non grass ground) species richness: Total number of species Forbs and others (non grass ground) species richness: Total number of species 6 Alternathers denticulate Common Name Scientific Name Alternathers denticulate Common Name Common Name Common Name Common Name Scientific Name Common Name		Scientific Name				Common Name			
Scientific Name Common Name Co		Scientific Name				Common Name			
Scientific Name Scientific Name Forbs and others (non grass ground) species richness: Total number of species Scientific Name Muncus krossil Scientific Name Alternonthera denticulata Common Name Scientific Name Scientific Name Common Name Scientific Name Common Name Common Name Scientific Name Scientific Name Scientific Name Common Name Common Name Common Name Scientific Name Scientific Name Common Name Common Name Common Name									
Scientific Name Forbs and others (non grass ground) species richness: Total number of species Scientific Name Scientific Name Alternanthera destriculta Common Name Scientific Name Scientific Name Commelina diffusa Common Name Scientific Name Total percentage cover within plot Scientific Name Scientific Name Asprogus acthiopicus cv. Spengeri Scientific Name Common Name Common Name Scientific Name Common Name Common Name									
Forbs and others (non grass ground) species richness: Total number of species 6									
Total number of species Scientific Name Scientific Name Alternanthera denticulata Common Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Fimbristylis ferriginea Common Name Scientific Name Scientific Name Scientific Name Part E - Non-Native Plant Cover: (*list species below) Total percentage cover within plot Scientific Name Asparagus aethiopicus cv. Sprengeri Scientific Name Common Name Common Name Scientific Name Common Name Common Name Common Name Scientific Name Common Name Common Name Common Name Common Name		Scientific Name				Common Name			
Total number of species Scientific Name Scientific Name Alternanthera denticulata Common Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Fimbristylis ferriginea Common Name Scientific Name Scientific Name Scientific Name Part E - Non-Native Plant Cover: (*list species below) Total percentage cover within plot Scientific Name Asparagus aethiopicus cv. Sprengeri Scientific Name Common Name Common Name Scientific Name Common Name Common Name Common Name Scientific Name Common Name Common Name Common Name Common Name				Forbs and others (n	on grass ground) enociae richne	ee•			
Scientific Name Alternonthera denticulata Common Name Scientific Name Commentaria denticulata Common Name Scientific Name Commentaria denticulata Common Name Scientific Name Common Name Scientific Name Fimbristylis ferriginea Common Name Scientific Name Eclipta prostrata Common Name Scientific Name Eclipta prostrata Common Name Scientific Name Scientific Name Common Name Scientific Name Part E - Non-Native Plant Cover: (*list species below) Total percentage cover within plot 2,00% Scientific Name Passifiora subpelitata Common Name Scientific Name Asparagus aethiopicus ev. Sprengeri Common Name Scientific Name Solonum seaforthium Common Name Scientific Name Schinus terebinthifolius Common Name Scientific Name Schinus terebinthifolius Common Name Scientific Name Schinus terebinthifolius Common Name Scientific Name Cuphea carthagenesis Common Name Scientific Name Common Name	Total numb	er of species		Torus and others (in	on grass ground, species ricines				
Scientific Name				Juncus krausii					
Scientific Name Cyperus spp. Common Name Scientific Name Fimbristylis ferriginea Common Name Scientific Name Eclipta prostrata Common Name Scientific Name Common Name Part E - Non-Native Plant Cover: (*list species below) Total percentage cover within plot 2.00% Scientific Name Passiflora subpeltata Common Name Scientific Name Asparagus aethiopicus cv. Sprengeri Common Name Scientific Name Solonum seaforthium Common Name Scientific Name Schinus terebinhifolius Common Name Scientific Name Schinus terebinhifolius Common Name Scientific Name Common Name Scientific Name Schinus terebinhifolius Common Name Scientific Name Common Name Common Name Scientific Name Common Name Scientific Name Common Name			AI						
Scientific Name Scientific Name Eclipta prostrata Common Name Scientific Name Eclipta prostrata Common Name Scientific Name Part E - Non-Native Plant Cover: (*list species below) Total percentage cover within plot Scientific Name Passiflora subpeltata Common Name Scientific Name Asparagus aethiopicus cv. Sprengeri Scientific Name Cuphea carthagenesis Common Name Scientific Name Scientific Name Cuphea carthagenesis Common Name Scientific Name Common Name Scientific Name Common Name		Scientific Name		Commelina diffusa		Common Name			
Scientific Name Scientific Name Part E - Non-Native Plant Cover: (*list species below) Total percentage cover within plot Scientific Name Passiflora subpeltata Common Name Scientific Name Asparagus aethiopicus v. Sprengeri Scientific Name Common Name		Scientific Name		Cyperus spp.		Common Name			
Scientific Name Part E - Non-Native Plant Cover: (*list species below) Total percentage cover within plot Scientific Name Common Name Scientific Name Common Name Scientific Name Common Name Scientific Name Common Name Common Name Common Name Scientific Name Common Name		Scientific Name		Fimbristylis ferriginea		Common Name			
Part E - Non-Native Plant Cover: (* list species below) Total percentage cover within plot Scientific Name Passiflora subpeltata Common Name Scientific Name Asparagus aethiopicus cv. Sprengeri Common Name Scientific Name Common Name Scientific Name Scientific Name Scientific Name Common Name Scientific Name Common Name Scientific Name Common Name Scientific Name Common Name Common Name Common Name Common Name Common Name		Scientific Name		Eclipta prostrata		Common Name			
Total percentage cover within plot Scientific Name Possiflora subpeltata Common Name Scientific Name Asparagus aethiopicus cv. Sprengeri Common Name Scientific Name Solanum seaforthium Common Name Scientific Name Schinus terebinthifolius Common Name Scientific Name Schinus terebinthifolius Common Name Scientific Name Common Name Scientific Name Common Name Scientific Name Cuphea carthagenensis Common Name Scientific Name Common Name		Scientific Name				Common Name			
Total percentage cover within plot Scientific Name Passiflora subpeltata Common Name Scientific Name Asparagus aethiopicus v. Sprengeri Common Name Scientific Name Common Name Scientific Name Scientific Name Common Name Scientific Name Cupheo carthagenensis Common Name Scientific Name Common Name Scientific Name Common Name									
Scientific Name Passiflora subpelitata Common Name Scientific Name Asparagus aethiopicus cv. Sprengeri Common Name Scientific Name Solanum seaforthium Common Name Scientific Name Schinus terebinthifolius Common Name Scientific Name Solanum americanum Common Name Scientific Name Cuphea carthagenensis Common Name Scientific Name Cuphea carthagenensis Common Name Scientific Name Common Name Scientific Name Common Name Scientific Name Common Name	Part E - N)			2.000′			
Scientific Name Asparagus aethiopicus cv. Sprengeri Common Name Scientific Name Solanum seaforthium Common Name Scientific Name Schinus terebinthifolius Common Name Scientific Name Solanum Common Name Scientific Name Solanum Common Name Scientific Name Cuphea carthagenesis Common Name Scientific Name Cuphea carthagenesis Common Name Scientific Name Common Name Scientific Name Common Name Common Name					1				
Scientific Name Solonum seaforthium Common Name Scientific Name Schinus terebinthifolius Common Name Scientific Name Solonum americonum Common Name Scientific Name Cuphea corthagenensis Common Name Scientific Name Cuphea corthagenensis Common Name Scientific Name Common Name Scientific Name Common Name					naeri				
Scientific Name Schinus terebinthifolius Common Name Scientific Name Solanum americanum Common Name Scientific Name Cupheo corthagenensis Common Name Scientific Name Cupheo Corthagenensis Common Name Scientific Name Common Name Scientific Name Common Name					ngen				
Scientific Name Solanum americanum Common Name Scientific Name Cuphea corthagenensis Common Name Scientific Name Common Name Scientific Name Common Name Common Name									
Scientific Name Cupheo corthagenensis Common Name Scientific Name Common Name Scientific Name Common Name									
Scientific Name Common Name Scientific Name Common Name									
		Scientific Name				Common Name			
Scientific Name Common Name		Scientific Name				Common Name			
		Scientific Name				Common Name			

Part F - Coarse	Woody Dehris	(*list lengths o	t individual	logs in meters)

Total Length of Course Woody Debris (Meters):	140.00	
1	26	
2	27	
3	28	
4	29	
5	30	
6	31	
7	32	
8	33	
9	34	
10	35	
11	36	
12	37	
13	38	
14	39	
15	40	
16	41	
17	42	
18	43	
19	44	
20	45	
21	46	
22	47	
23	48	
24	49	
25	50	

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover)

	Quadrat 1	Quadrat 2	Quadrat 3	75	Quadrat 5	Average
Native perennial grass cover	70.00%	80.00%	80.00%	95.00%	70.00%	79.00%

	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Organic Litter	30.00%	20.00%	20.00%	25.00%	30.00%	25.00%

Part H- Number of large trees, tree canopy height, recruitment of woody perennial species

rait in Number of large trees, tree tailopy neight, rectaitment of woody perennial species.								
				Non- Eucalypt Large				
Eucalypt Large tree DBH benchmark used :				tree DBH benchmark		29		
				used:				
Number of large eucalypt trees:				Number of large non		85		
Number of large eucatypt trees.				eucalypt trees:		85		
Total Number Large Trees:		85						
Median Tree Canopy Height Measurements	Canopy:	15.10	Sub-canopy:	6.80	Emergent:			

Number of ecologically dominant layer species regenerating:	100

Part I - Tree canopy cover, Shrub canopy cover

art. The early foreit sin as early forei								
Tree canopy cover %	Canopy:	45.00%	Sub-canopy:	32.40%	Emergent:			
Shrub canopy cover %				10.00%				

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present *If trees are in the same layer and continuous along the transect you can group them

ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors
DESCRIPTION	3 - 26 - 100ha	2 ->10% -<50%	3 - >30-75% remnant		
SCORE	5	2	4		

Case Re	ference					SITE ASS	SESSMEN	IT BENCH	MARK CO	MPARIS	ON RESU	LTS	
Project Name CONNECTOR. IMPACT SITE SWAMP OAK EEC HABITAT QUALITY AS		AS SES											
Total Area 15.0147													
	Habitat Quality Attributes							Assessm	ent Unit Numbe	er			
		Habitat Quality Attributes		1	2	3	4	5	6	7	8	9	10
P:	art	Assessment Unit Area (ha) Regional Ecosystems		5.875	5.875	0.23335	0.23335	1.399	1.399	0	0	0	0
				12.1.1	12.1.1	12.1.1	12.1.1	12.1.1	12.1.1				
	Bioregion			Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland				
		Recruitment of woody perennial species (Number of		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
		ecologically dominant layers regenerating) 2. Native plant species richness											
		- Trees		200.00%	100.00%	100.00%	100.00%	400.00%	400.00%				
				100.00%	100.00%	200.00%	200.00%	100.00%	100.00%				
		- Shrubs											
		- Grasses		50.00%	150.00%	50.00%	50.00%	100.00%	100.00%				
		- Forbs		266.67%	200.00%	200.00%	100.00%	166.67%	66.67%				
		3. Tree canopy height											
	utes	- Canopy Layer		115.00%	115.00%	125.83%	111.67%	98.33%	121.67%				
	Attributes	- Sub-Canopy Layer		95.71%	97.14%	97.14%	82.86%	78.57%	101.43%				
1		- Emergent Layer											
	Condition	4. Tree canopy cover											
	Site Co	- Canopy Layer		101.49%	105.07%	67.16%	93.43%	130.75%	89.55%				
	Si	- Sub-Canopy Layer		76.52%	86.09%	140.87%	62.61%	53.04%	217.39%				
		- Emergent Layer											
		5. Shrub canopy cover		88.00%	56.00%	200.00%	308.00%	0.00%	0.00%				
		6. Native perennial grass cover		10.59%	48.24%	92.94%	108.94%	43.53%	4.71%				
		7. Organic litter		960.00%	1020.00%	500.00%	108.00%	960.00%	1340.00%				
		8. Large trees		59.78%	54.35%	92.39%	32.61%	103.26%	54.35%				
		9. Coarse woody debris (Meters)		55.56%	51.39%	38.89%	109.72%	37.78%	60.00%				
		10. Weed cover		4.00%	2.00%	2.00%	2.00%	30.00%	75.00%				
											-	-	
	tes	11. Size of patch (fragmented)		10.00	10.00	5.00	5.00	0.00	10.00				
	Attributes	12. Connectedness (fragmented)		5.00	5.00	2.00	2.00	2.00	5.00				
2	ext	13. Context (fragmented)		4.00	4.00	4.00	4.00	4.00	4.00				
	e Cont	14. Distance from water (intact)											
	Site	15. Ecological corridors											

PREVIOUSLY SUBMITTED SWAMP OAK FOREST EEC ASSESSMENT INFORMATION REFER EPBC 2020/8646 REFERRAL PACKAGE ATTACHMENT 8

COASTAL SWAMP OAK (CASUARINA GLAUCA) FOREST OF NEW SOUTH WALES AND SOUTH EAST QUEENSLAND ECOLOGICAL COMMUNITY DISCUSSION

The key diagnostic criteria are considered to be met for this patch/copse including:

- having canopy trees dominated by Casuarina glauca
- having crown cover of at least 10%

These are not onerous criteria as this particular EEC contains a low height criteria (10m) so even young regrowth can be considered.

Following field survey and GIS investigation, the area meeting the key diagnostic criteria was ~13.45 hectares. Therefore, the patch is assigned a 'large' patch size class (>5ha). The extent of contiguous state mapped Regional Ecosystem 12.1.1/12.3.20 has been utilised in this calculation which represents the vegetation connected to the field site. Although there are some areas of separation (Shipper Drive, Mangrove Communities of Oakey Creek, areas of Saltmarsh) the separation is less than 30 metres in width and therefore the patches are considered contiguous.

A field quadrat survey was then performed in accordance with Section 3.2 and Appendix 3 of the Guidelines. To account for variability the patch was traversed first and the field plot then placed within an area reflective of the overall investigated patch and away from obvious edge effected areas.

The field survey performed resulted in vegetation quality class of 'high.'

Therefore, in accordance with Table 1 of the guideline Patch SO17 (and connected areas of the same habitat type where the condition criteria are met) is assigned Category A and per Section 3.4 of the Guideline is considered to be <u>habitat critical to the survival</u> of the ecological community.

COASTAL SWAMP OAK (CASUARINA GLAUCA) FOREST OF NEW SOUTH WALES AND SOUTH EAST QUEENSLAND ECOLOGICAL COMMUNITY FIELD ASSESSMENT

Site No.	SO ₁₇	Recorde	r:	TR	TR/GD							
Purpose	20M X 2	20M X 20M CONDITION PLOT										
Location:	East of Shipper Drive and South of Oakey Creek at Coomera											
GPS coordinates		Zone	5	6	Ε	532278	N	6918516	Datum:	MGAZ56		

KEY DIAGNOSTICS-CANOPY

RET DIFTGHTOSTICS CHITOT I			
REQUIREMENT	OBSERVED	MEASURED OR	
	VALUE	ESTIMATED	REQUIREMENT MET
Crown cover of at least 10%		E (obviously >10%.	√
	40-50%	Refer Images)	
Canopy dominated by Casuarina glauca		E (obvious. Refer	√
	100%	lmages)	
Median canopy height >10m (i.e. open			√
woodland, woodland, forest or closed forest			
per Hnatiuk et al, 2009)	15.1	Measured	

CONDITION THRESHOLDS-PATCH SIZE CLASS

REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
Small Patch-At least 0.5 hectares	~13.45ha	Measured via GPS and estimated by GIS	√
Small contiguous patch- The patch is at least 0.5 ha and less than 2 ha, and is connected to a larger area of native		Measured via GPS and estimated by GIS	
vegetation of at least 5 ha	~13.45ha		√
Medium Patch-at least 2ha and less than 5ha	~13.45ha	Measured via GPS and estimated by GIS	√
Large Patch-at least 5ha	~13.45ha	Measured via GPS and estimated by GIS	√

CONDITION THRESHOLDS-VEGETATION QUALITY

MINIMUM REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
HIGH QUALITY Predominately native understorey. Non- native species comprise less than 20% total understorey vegetation cover (all vascular species of all layers below the canopy)	>95	Measured within 20m x 20m survey plot	√
GOOD QUALITY Mostly native understorey Non-native species comprise less than 50% of total understorey vegetation cover AND transformer species comprise less than 30% of total understorey vegetation cover	>95	Measured within 20m x 20m survey plot	V
MODERATE QUALITY Some native understorey Non-native species comprise less than 80% of total understorey vegetation cover AND transformer species comprise less than 50% of total understorey vegetation cover	>95	Measured within 20m x 20m survey plot	V

Minimum vegetation quality class threshold met. Therefore EEC.

NATIVE UNDERSTOREY SPECIES (0.04HA QUADRAT)

FORM		ABUNDANCE		
L	Parsonsia straminae (on trunks)	1-5	1	1
G	Sporobolus virginicus	500-1000	7	>95
R	Juncus krausii	1-5	1	1
F	Alternanthera denticulata	100	4	2
F	Commelina diffusa	50-100	4	2
V	Cyperus spp.	5-10	2	<1
F	Enchylaena tomemtosa	1-5	1	<1
V	Fimbristylis ferriginea	1-5	1	<1
V	Suaeda arbusculoides	1-5	1	<1
F	Eclipta prostrata	50-100	3	1
-	Pine needles/mud		2	<1
	NATIVE % OF TOTAL UNDERSTOREY VEG	GETATION COVER	>95%	

Growth form: T=tree, S=shrub, G= grass, V=sedge, R=rush, E=fern, F=forb/herb, L=vine, P=palm, O=other

Cover: <1 1,2,3,4,5,10,15,20,25,30,35, etc cover%

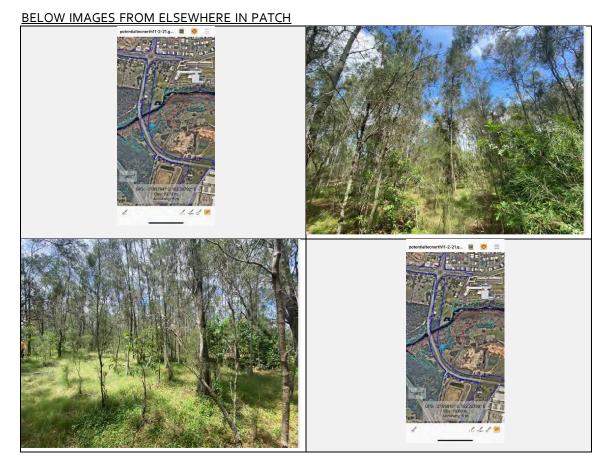
[0.1% cover represents an area of approximately 63 x 63cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m]

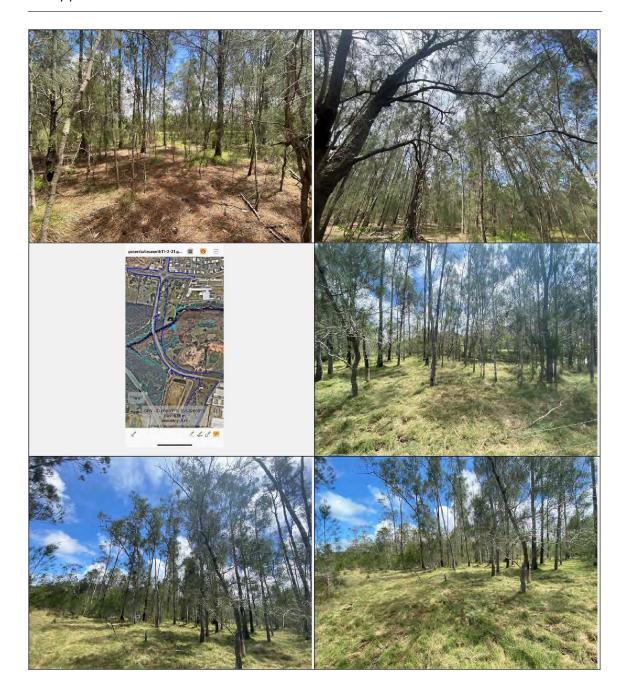
Abundance: <5, 5-10, 10-20, 20-50, 50-100, 100-500, 500-1000, >1000

Areas of little to no understorey vegetation cover (e.g. plant litter) are included if key diagnostics are met and non-native species are below thresholds

NON-NATIVE UNDERSTOREY SPECIES (0.04HA QUADRAT)

GROWTH FORM	SPECIES	TRANSFORMER SPECIES	EST ABUNDANCE	B-B SCORE	EST COVER			
L	Passiflora subpeltata		20	3	<1			
D	Asparagus aethiopicus cv. sprengeri	√	5	1	<1			
L	Solanum seaforthium		3	1	<1			
T/S	Schinus terebinthifolius	√	5	1	<1			
S	Solanum americanum		10	2	<1			
F	Cuphea carthagenensis		10	2	<1			
	NON-NATIVE % OF TOTAL UNDERSTOREY VEGETATION COVER <5%							





HABITAT ASSESSMENT FIELD OBTAINED DATA: IMPACT ASSESSMENT UNIT 2 (IAU-SO18)

Part C - Site I	Data											
	Property	SWAM P OAK EEC CH ADJACENT SHII FIELD SITE SO18 WITH ADDIT	PPER DRIVE [SOUTH OF OAK	KEY CREEK] DATA SCALED FROM	Date	PIOLIS						
	Hoperty	FIELD SITE SO18 WITH ADDIT	HONAL SURVEY TO CONFIRM	W LARGE TREES AND CWD	Date VARIOUS							
	Assessment Unit:	Assessment Un	uit Area (ha)	RE	Rioregion Number							
	4	0.23335 12.1.1			Bioregion Number Southeast Queensland							
	-	0.233.		12.12.12		30dined3t Q	accisand					
	Landscape Photo- Please attach or insert	north, south, east and west ph	notos in the spaces prov	vided from row 231-355 below	and include details such as	Time and Mapping Coord	dinates in the following row.					
	·	•				., •	-					
Datum				Zone	Eastir	g	Northing					
WGS 84	_	0m Mark		56	53218	2	6918471					
GDA 94	<u> </u>			Zone	Eastir	g	Northing					
		50m Mark										
	Plot bearing				Recorders							
		Site description a	and Location (including	details of discrete polygons with	in the assessment unit)							
	Swamp Oak Forest/Wetland associated with Oakey Creek. Tidal influence. Refer images of Swamp Oak Field Sites S017-18.											
Dort D. No.	art D - Native Species Richness: (*list species below)											
Part D - Na	itive species kicilliess. (list species belo	wj	Т	Tree species richness:								
Total number	of species			ree species namess.	1							
Total number	Scientific Name		Casuarina glauca		Common Name							
	Scientific Name		casaarina giaaca		Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
		-										
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
T-1-1	Shrub species richness: 2											
i otai number	Scientific Name		Fire die bestehe		2							
			Einadia hastata		Common Name							
	Scientific Name	Suaeda arbusculoides			Common Name							
	Scientific Name	Causarina glauca			Common Name							
	Scientific Name Scientific Name				Common Name							
		 			Common Name							
	Scientific Name				Common Name Common Name							
	Scientific Name Scientific Name											
					Common Name							
	Scientific Name				Common Name							
	Scientific Name Common Name											
			G	Grass species richness:								
Total number	of species				1							
	Scientific Name		Sporobolus virginicus	s	Common Name							
	Scientific Name		,		Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
					•	-						
			Forbs and others	(non grass ground) species rich	ness:							
Total number	of species				3							
	Scientific Name		Juncus krausii		Common Name							
	Scientific Name		Commelina diffusa		Common Name							
	Scientific Name		Fimbristylis ferrigined	1	Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name											
	Scientific Name				Common Name							
			·			·						
	n-Native Plant Cover: (*list species below	v)										
Т	otal percentage cover within plot				2.00%							
	Scientific Name		Passiflora subpeltata	1	Common Name							
	Scientific Name		Paspalum urvillei		Common Name							
	Scientific Name		Schinus terebinthifoliu		Common Name		•					
	Scientific Name		Baccharis halimifolia	1	Common Name							
	Scientific Name				Common Name							
	Scientific Name			· · · · · · · · · · · · · · · · · · ·	Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name							
	Scientific Name				Common Name		-					

Part F - Coarse	Woody Debris:	(*list langths o	f individual	lage in materel

Total Length of Course Woody Debris (Meters):	395.00	
1	26	
2	27	
3	28	
4	29	
5	30	
6	31	
7	32	
8	33	
9	34	
10	35	
11	36	
12	37	
13	38	
14	39	
15	40	
16	41	
17	42	
18	43	
19	44	
20	45	
21	46	
22	47	
23	48	
24	49	
25	50	

ivative perennial grass cover	95.00%	95.00%	85.00%	98.00%	90.00%	92.60%
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Organic Litter	5.00%	5.00%	5.00%	2.00%	10.00%	5.40%
	Native perennial grass cover	Quadrat 1				

Eucalypt Large tree DBH benchmark used :				Non- Eucalypt Large tree DBH benchmark		29		
Eddalypt Edige tree Boll bellation wascu.			used:					
Number of large eucalypt trees:				Number of large non eucalypt trees:		30		
Total Number Large Trees:	30							
Admilian Trans Community Indiaha Administrative	C	12.40	Cut	5.90	F			

Number of ecologically dominant layer species regenerating:	100

Part I - Tree canopy cover, Shrub canopy cover

Tree canopy cover %	Canopy:	62.60%	Sub-canopy:	14.40%	Emergent:		
Shrub canopy cover %		15.40%					

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present *If trees are in the same layer and continuous along the transect you can group them

ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors
DESCRIPTION	3 - 26 - 100ha	2 - >10% - <50%	3 - >30-75% remnant		
SCORE	5	2	4		

	Case Reference EPBC2020-8646			SITE ASSESSMENT BENCHMARK COMPARISON RESULTS									
	Project Name CONNECTOR. IMPACT SITE SWAMP OAK EEC HABITAT QUALITY AS SES		AS SES										
Total	l Area	15.0147											
				Assessment Unit Number									
		Habitat Quality Attributes		1	2	3	4	5	6	7	8	9	10
P	Part	Assessment Unit Area (ha)		5.875	5.875	0.23335	0.23335	1.399	1.399	0	0	0	0
		Regional Ecosystems		12.1.1	12.1.1	12.1.1	12.1.1	12.1.1	12.1.1				
		Bioregion		Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland				
		Recruitment of woody perennial species (Number ecologically dominant layers regenerating)	ıf	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
		2. Native plant species richness								-	=	-	
		- Trees		200.00%	100.00%	100.00%	100.00%	400.00%	400.00%				
		- Shrubs		100.00%	100.00%	200.00%	200.00%	100.00%	100.00%				
		- Grasses		50.00%	150.00%	50.00%	50.00%	100.00%	100.00%				
		- Forbs		266.67%	200.00%	200.00%	100.00%	166.67%	66.67%				
		3. Tree canopy height								-	-	-	
	tes	- Canopy Layer		115.00%	115.00%	125.83%	111.67%	98.33%	121.67%				
	Attributes	- Sub-Canopy Layer		95.71%	97.14%	97.14%	82.86%	78.57%	101.43%				
1		- Emergent Layer											
1	ndition	4. Tree canopy cover							-	='	-	='	
	Site Co	- Canopy Layer		101.49%	105.07%	67.16%	93.43%	130.75%	89.55%				
	S	- Sub-Canopy Layer		76.52%	86.09%	140.87%	62.61%	53.04%	217.39%				
		- Emergent Layer											
		5. Shrub canopy cover		88.00%	56.00%	200.00%	308.00%	0.00%	0.00%				
		6. Native perennial grass cover		10.59%	48.24%	92.94%	108.94%	43.53%	4.71%				
		7. Organic litter		960.00%	1020.00%	500.00%	108.00%	960.00%	1340.00%				
		8. Large trees		59.78%	54.35%	92.39%	32.61%	103.26%	54.35%				
		9. Coarse woody debris (Meters)		55.56%	51.39%	38.89%	109.72%	37.78%	60.00%				
		10. Weed cover		4.00%	2.00%	2.00%	2.00%	30.00%	75.00%				
	ses	11. Size of patch (fragmented)		10.00	10.00	5.00	5.00	0.00	10.00				
	Attributes	12. Connectedness (fragmented)		5.00	5.00	2.00	2.00	2.00	5.00				
2		13. Context (fragmented)		4.00	4.00	4.00	4.00	4.00	4.00				
	Context	14. Distance from water (intact)											
	Site	15. Ecological corridors											

PREVIOUSLY SUBMITTED SWAMP OAK FOREST EEC ASSESSMENT INFORMATION REFER EPBC 2020/8646 REFERRAL PACKAGE ATTACHMENT 8

COASTAL SWAMP OAK (CASUARINA GLAUCA) FOREST OF NEW SOUTH WALES AND SOUTH EAST QUEENSLAND ECOLOGICAL COMMUNITY DISCUSSION

The key diagnostic criteria are considered to be met for this patch/copse including:

- having canopy trees dominated by Casuarina glauca
- having crown cover of at least 10%

These are not onerous criteria as this particular EEC contains a low height criteria (10m) so even young regrowth can be considered.

Following field survey and GIS investigation, the area meeting the key diagnostic criteria was ~13.45 hectares. Therefore, the patch is assigned a 'large' patch size class (>5ha). The extent of contiguous state mapped Regional Ecosystem 12.1.1/12.3.20 has been utilised in this calculation which represents the vegetation connected to the field site. Although there are some areas of separation (Shipper Drive, Mangrove Communities of Oakey Creek, areas of Saltmarsh) the separation is less than 30 metres in width and therefore the patches are considered contiguous.

A field quadrat survey was then performed in accordance with Section 3.2 and Appendix 3 of the Guidelines. To account for variability the patch was traversed first and the field plot then placed within an area reflective of the overall investigated patch and away from obvious edge effected areas.

The field survey performed resulted in vegetation quality class of 'high.'

Therefore, in accordance with Table 1 of the guideline Patch SO18 (and connected areas of the same habitat type where the condition criteria are met) is assigned Category A and per Section 3.4 of the Guideline is considered to be <u>habitat critical to the survival</u> of the ecological community.

COASTAL SWAMP OAK (CASUARINA GLAUCA) FOREST OF NEW SOUTH WALES AND SOUTH EAST QUEENSLAND ECOLOGICAL COMMUNITY FIELD ASSESSMENT

Site No.	SO ₁ 8	Recorde	r:	TR	TR/GD					
Purpose	20M X 2	20M X 20M CONDITION PLOT								
Location:	West of	West of Shipper Drive and South of Oakey Creek at Coomera								
GPS coordinates	GPS coordinates Zone 5				Ε	532182	N	6918471	Datum:	MGAZ56

KEY DIAGNOSTICS-CANOPY

REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
Crown cover of at least 10%	30-40%	E (obviously >10%. Refer Images)	√
Canopy dominated by Casuarina glauca	100%	E (obvious. Refer Images)	V
Median canopy height >10m (i.e. open woodland, woodland, forest or closed forest			V
per Hnatiuk et al, 2009)	13.4	Measured	

CONDITION THRESHOLDS-PATCH SIZE CLASS

REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
Small Patch-At least 0.5 hectares	~13.45ha	Measured via GPS and estimated by GIS	√
Small contiguous patch- The patch is at least 0.5 ha and less than 2 ha, and is connected to a larger area of native		Measured via GPS and estimated by GIS	
vegetation of at least 5 ha	~13.45ha		√
Medium Patch-at least 2ha and less than 5ha	~13.45ha	Measured via GPS and estimated by GIS	√
Large Patch-at least 5ha	~13.45ha	Measured via GPS and estimated by GIS	√

CONDITION THRESHOLDS-VEGETATION QUALITY

MINIMUM REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
HIGH QUALITY Predominately native understorey. Non- native species comprise less than 20% total understorey vegetation cover (all vascular species of all layers below the canopy)	>95	Measured within 20m x 20m survey plot	√
GOOD QUALITY Mostly native understorey Non-native species comprise less than 50% of total understorey vegetation cover AND transformer species comprise less than 30% of total understorey vegetation cover	>95	Measured within 20m x 20m survey plot	V
MODERATE QUALITY Some native understorey Non-native species comprise less than 80% of total understorey vegetation cover AND transformer species comprise less than 50% of total understorey vegetation cover	>95	Measured within 20m x 20m survey plot	V

Minimum vegetation quality class threshold met. Therefore EEC.

NATIVE UNDERSTOREY SPECIES (0.04HA QUADRAT)

FORM		ABUNDANCE		
T/S	Casurina glauca	40-50	4	5
G	Sporobolus virginicus	>1000	7	90
R	Juncus krausii	1-5	1	<1
S	Einadia hastata	50-100	4	1
F	Commelina diffusa	20-50	3	<1
V	Fimbristylis ferriginea	1-5	1	<1
	NATIVE % OF TOTAL UNDERSTOREY VEG	>95%		

Growth form: T=tree, S=shrub, G= grass, V=sedge, R=rush, E=fern, F=forb/herb, L=vine, P=palm, O=other Cover: <11,2,3,4,5,10,15,20,25,30,35, etc cover%

[0.1% cover represents an area of approximately 63 x 63cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, $1\% = 2.0 \times 2.0 \text{ m}$, $5\% = 4 \times 5 \text{ m}$, $25\% = 10 \times 10 \text{ m}$]

Abundance: <5, 5-10, 10-20, 20-50, 50-100, 100-500, 500-1000, >1000

Areas of little to no understorey vegetation cover (e.g. plant litter) are included if key diagnostics are met and non-native species are below thresholds

NON-NATIVE UNDERSTOREY SPECIES (0.04HA QUADRAT)

	NOW TO THE END END TO THE ST ESTED (COST IN COST ESTED TO THE								
GROWTH FORM	SPECIES	TRANSFORMER SPECIES	EST ABUNDANCE	B-B SCORE	EST COVER				
L	Passiflora subpeltata		1	1	<1				
G	Paspalum urvillei		1	1	<1				
T/S	Schinus terebinthifolius	√	10	3	1				
S	Baccharis halimifolia	√	3	1	<1				
	NON-NATIVE % OF TOTAL	<5%							

BELOW IMAGES FROM ELSEWHERE IN PATCH

HABITAT ASSESSMENT FIELD OBTAINED DATA: IMPACT ASSESSMENT UNIT 3 (IAU3-SO3)

Part C - Site Data						
Property	SURROUNDS] BUT HIGHER LEVEL ADDITIONAL SU	OF WEED INVASION DATA SCALED	D FROM FIELD SITE SO3 WITH S AND CWD	Date	VARIOUS	
-		<u>.</u>				
Assessment Unit:	Assessment U		RE 12.1.1		Bioregion I Southeast Q	
3	1.3.	,,	12.1.1		Journe ast Q	queerisianu
Landscape Photo- Please attach or i	sert north, south, east and west p	hotos in the spaces provided	from row 231-355 below	and include details sud	h as Time and Mapping Coor	rdinates ir the following row.
Datum		Zone			Easting	Northing
Datum WGS 84	0m Mark	5			33,012	6,914,671
GDA 94	50 March	Zo	ne	E	Easting	Northing
	50m Mark					
Plot bearing				Recorders		
	Site description	and Location (including detail	ils of discrete nolygons with	hin the assessment unit	4	
Proximate but fragmented by ma	or roadway from extensive Swamp					invasion than AU1-AU2
Part D - Native Species Richness: (*list species b	elow)					
	_	Tree spe	ecies richness:			
Total number of species Scientific Name	0	asuarina glauca dominant	1	4 Common Name		
Scientific Name		Melaleuca quinquenervia		Common Name		
Scientific Name	С	upaniopsis anacardioides		Common Name		
Scientific Name		Callistemon salignus		Common Name		
Scientific Name Scientific Name				Common Name		
Scientific Name				Common Name Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
		Shrub sn	pecies richness:			
Total number of species				1		
Scientific Name		Casuarina glauca		Common Name		
Scientific Name				Common Name		
Scientific Name Scientific Name				Common Name Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name Scientific Name				Common Name		
Scientific Name				Common Name		
Total number of species		Grass sp	ecies richness:	2		
Scientific Name		Phragmites australis		Common Name		
Scientific Name		Entolasia stricta		Common Name		
Scientific Name				Common Name		
Scientific Name Scientific Name				Common Name Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name Scientific Name				Common Name Common Name		
		Forbs and others (non g	grass ground) species richne			
Total number of species		Juncus spp.		5		
Scientific Name Scientific Name		Mternanthera denticulata		Common Name Common Name		
Scientific Name		Cynanchum carnosum		Common Name		
Scientific Name		Cycnogeton procerus		Common Name		
Scientific Name		Acrostichum speciosum		Common Name		
Scientific Name Scientific Name				Common Name Common Name		
			ı			
Part E - Non-Native Plant Cover: (*list species b	low)					
Total percentage cover within plot Scientific Name	Acade	agus aethiopicus cv. Sprenger	i I	30.00%		
Scientific Name Scientific Name	Aspan	agus aetniopicus cv. sprenger Ipomoea cairica	1	Common Name		
Scientific Name		Senna pendula		Common Name		
Scientific Name		Lantana camara		Common Name		
Scientific Name		Passiflora suberosa		Common Name		
Scientific Name Scientific Name		Sphagneticola trilobata Schinus terebinthifolius		Common Name Common Name		
Scientific Name		Baccharis halimifolia		Common Name		
Scientific Name		Corymbia torelliana		Common Name		

D. 15 C	(*list lengths of individual logs in meters)

Total Length of Course Woody Debris (Meters):	 136.00	
1	26	
2	27	
3	28	
4	29	
5	30	
6	31	
7	32	
8	33	
9	34	
10	35	
11	36	
12	37	
13	38	
14	39	
15	40	
16	41	
17	42	
18	43	
19	44	
20	45	
21	46	
22	47	
23	48	
24	49	
25	50	

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover)

		Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Ì	native perennial grass cover	30.00%	20.00%	5.00%	50.00%	80.00%	37.00%
J	Organic Litter	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average

Part H. Number of large trees tree canony height recruitment of woody perennial species

Part H- Number of large trees , tree canopy height, recruitment of woody perennial species:									
Eucalypt Large tree DBH benchmark used :				Non- Eucalypt Large tree DBH benchmark		29			
Eucasypt Laige tiee DBH benchinark useu .				used:					
Number of large eucalypt trees:				Number of large non eucalypt trees:	95				
Total Number Large Trees:				95					
Median Tree Canopy Height Measurements	Canopy:	11.80	Sub-canopy:	5.50	Emergent:				

	Number of ecologically domina	nt layer species regenerating:		100	
•					

Part I - Tree canopy cover, Shrub canopy cover

Tart 1 - Tree tailopy cover, sin as canopy cover										
Tree canopy cover %	Canopy:	87.60%	Sub-canopy:	12.20%	Emergent:					
Shrub canopy cover %				0.00%						

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present "If trees are in the same layer and continuous along the transect you can group them

ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors
DESCRIPTION	1 - <5ha	2 ->10% -<50%	3 - >30-75% remnant		
SCORE	0	2	4		

Case Re	ference	EPBC2020-8646			SITE AS	SESSMEN	IT BENCH	MARK CO	MPARIS	ON RESU	LTS	
Projec		CONNECTOR. IMPACT SITE SWAMP OAK EEC HABITAT QUALITY AS	SESSM		<u> </u>							
Total	Area	15.0147	_									
		Habitant Counties Attailbutan					Assessme	nt Unit Numbe	er			
o.		Habitat Quality Attributes	1	2	3	4	5	6	7	8	9	10
P.	art	Assessment Unit Area (ha)	5.875	5.875	0.23335	0.23335	1.399	1.399	0	0	0	0
		Regional Ecosystems	12.1.1	12.1.1	12.1.1	12.1.1	12.1.1	12.1.1				
	Bioregion		Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland				
		L										
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
		2. Native plant species richness								-		
		- Trees	200.00%	100.00%	100.00%	100.00%	400.00%	400.00%				
		- Shrubs	100.00%	100.00%	200.00%	200.00%	100.00%	100.00%				
		- Grasses	50.00%	150.00%	50.00%	50.00%	100.00%	100.00%				
		- Forbs	266.67%	200.00%	200.00%	100.00%	166.67%	66.67%				
		3. Tree canopy height									•	-
	on Attributes	- Canopy Layer	115.00%	115.00%	125.83%	111.67%	98.33%	121.67%				
		- Sub-Canopy Layer	95.71%	97.14%	97.14%	82.86%	78.57%	101.43%				
		- Emergent Layer										
1	Condition	4. Tree canopy cover			-	-			-	-	•	-
		- Canopy Layer	101.49%	105.07%	67.16%	93.43%	130.75%	89.55%				
	Site	- Sub-Canopy Layer	76.52%	86.09%	140.87%	62.61%	53.04%	217.39%				
		- Emergent Layer										
		5. Shrub canopy cover	88.00%	56.00%	200.00%	308.00%	0.00%	0.00%				
		6. Native perennial grass cover	10.59%	48.24%	92.94%	108.94%	43.53%	4.71%				
		7. Organic litter	960.00%	1020.00%	500.00%	108.00%	960.00%	1340.00%				
		8. Large trees	59.78%	54.35%	92.39%	32.61%	103.26%	54.35%				
		9. Coarse woody debris (Meters)	55.56%	51.39%	38.89%	109.72%	37.78%	60.00%				
		10. Weed cover	4.00%	2.00%	2.00%	2.00%	30.00%	75.00%				
	es	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	0.00	10.00				
	Attributes	12. Connectedness (fragmented)	5.00	5.00	2.00	2.00	2.00	5.00				
2		13. Context (fragmented)	4.00	4.00	4.00	4.00	4.00	4.00				
	Context	14. Distance from water (intact)										
	Site	15. Ecological corridors										

PREVIOUSLY SUBMITTED SWAMP OAK FOREST EEC ASSESSMENT INFORMATION REFER EPBC 2020/8646 REFERRAL PACKAGE ATTACHMENT 8

COASTAL SWAMP OAK (CASUARINA GLAUCA) FOREST OF NEW SOUTH WALES AND SOUTH EAST QUEENSLAND ECOLOGICAL COMMUNITY DISCUSSION

The key diagnostic criteria are considered to be met for this patch/copse including:

- having canopy trees dominated by Casuarina glauca
- having crown cover of at least 10%

These are not onerous criteria as this particular EEC contains a low height criteria (10m) so even young regrowth can be considered.

Following field survey, the area meeting the key diagnostic criteria was >100 hectares. The extent of contiguous state mapped Regional Ecosystem 12.1.1 has been utilised in this calculation which represents the vegetation within the field site. Therefore, the patch is assigned a 'large' patch size class (>5ha). Although this smaller area (~0.9ha) is separated from the larger patch within Coombabah by Helensvale Road, the separation is less than 30 metres in width and therefore the patches are considered contiguous.

To define the boundary of the patch dominated by Casuarina glauca the area was field surveyed and the outer canopy defined with a handheld GPS unit. Where Casuarina glauca presence in the canopy was visually estimated to fall below 50%, the area was excluded (i.e. within the transition to Paperbark Forest)

A field quadrat survey was then performed in accordance with Section 3.2 and Appendix 3 of the Guidelines. To account for variability the patch was traversed first and the field plot then placed within an area reflective of the investigated areas away from edge affected areas.

The field survey performed resulted in vegetation quality class of 'good.'

Therefore, in accordance with Table 1 of the guideline this site (and connected areas of the same habitat type) is assigned Category B and per Section 3.4 of the Guideline is considered to be <u>habitat critical to the survival</u> of the ecological community.

COASTAL SWAMP OAK (CASUARINA GLAUCA) FOREST OF NEW SOUTH WALES AND SOUTH EAST QUEENSLAND ECOLOGICAL COMMUNITY FIELD ASSESSMENT

Site No.		SO ₃		Re	cord	er: GD				
Purpose	20M X 2	oM CONE	OITIC)N F	LOT					
Location:	B ₂₅ NOR	TH OF HE	LEN	SVA	ALE R	OAD.				
GPS coordinates		Zone	5	6	Ε	533,012	N	6,914,671	Datum:	MGAZ56

KEY DIAGNOSTICS-CANOPY

REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
Crown cover of at least 10%	60%	E (obviously >10%. Refer Images)	V
Canopy dominated by Casuarina glauca [other canopy species = Melaleuca quinquenervia]	95%	E (obvious. Refer Images)	V
Median canopy height >10m (i.e. open woodland, woodland, forest or closed forest per Hnatiuk et al, 2009)	11.8m	Measured	√

CONDITION THRESHOLDS-PATCH SIZE CLASS

REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
Small Patch-At least 0.5 hectares	>100ha	Measured via GPS and estimated by GIS	V
Small contiguous patch- The patch is at least 0.5 ha and less than 2 ha, and is connected to a larger area of native vegetation of at least 5 ha	>100ha	Measured via GPS and estimated by GIS	V
Medium Patch-at least 2 ha and less than 5 ha	>100ha	Measured via GPS and estimated by GIS	V
Large Patch-at least 5ha	>100ha	Measured via GPS and estimated by GIS	√

CONDITION THRESHOLDS-VEGETATION QUALITY

MINIMUM REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
HIGH QUALITY Predominately native understorey. Non- native species comprise less than 20% total understorey vegetation cover (all vascular species of all layers below the canopy)	~75%	Measured within 20m x 20m survey plot	×
GOOD QUALITY Mostly native understorey Non-native species comprise less than 50% of total understorey vegetation cover AND transformer species comprise less than 30% of total understorey vegetation cover	~75%	Measured within 20m x 20m survey plot	V

MINIMUM REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
MODERATE QUALITY Some native understorey Non-native species comprise less than 80% of total understorey vegetation cover AND transformer species comprise less than 50% of total understorey vegetation cover	~75%	Measured within 20m x 20m survey plot	√

Minimum vegetation quality class threshold met. Therefore EEC.

NATIVE UNDERSTOREY SPECIES (0.04HA QUADRAT)

GROWTH FORM	SPECIES	EST ABUNDANCE	B-B SCORE	EST COVER %
T/S	Casuarina glauca	10-20	4	8
E	Acrostichum speciosum	5	2	1-2
G	Phragmites australis	100-500	5	20
L	Parsonsia straminae	20-50	3	5
R	Juncus spp.	10-20	3	1
-	Pine needles/litter			70
F	Alternanthera denticulata	10-20	3	1
S/T	Alphitonia excelsa	1	1	1
G	Imperata cylindrica	20-50	3	2
L	Cynanchum carnosum	2	1	<1
S/T	Melaleuca quinquenervia	5	2	2
S/T	Cupaniopsis anacardioides	3	1	1
	NATIVE % OF TOTAL UNDERSTOREY VEG	GETATION COVER	75%	

Growth form: T=tree, S=shrub, G= grass, V=sedge, R=rush, E=fern, F=forb/herb, L=vine, P=palm, O=other Cover: <11,2,3,4,5,10,15,20,25,30,35, etc cover %

[0.1% cover represents an area of approximately 63×63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4×1.4 m, $1\% = 2.0 \times 2.0$ m, $5\% = 4 \times 5$ m, $25\% = 10 \times 10$ m]

Abundance: <5, 5-10, 10-20, 20-50, 50-100, 100-500, 500-1000, >1000

Areas of little to no understorey vegetation cover (e.g. plant litter) are included if key diagnostics are met and non-native species are below thresholds

NON-NATIVE UNDERSTOREY SPECIES (0.04HA QUADRAT)

NON-NATIVE ONDERSTORET SI ECIES (0.0411A QUADRAT)									
GROWTH FORM	SPECIES	TRANSFORMER SPECIES	EST ABUNDANCE	B-B SCORE	EST COVER				
F	Asparagus aethiopicus cv. sprengeri	$\sqrt{}$	5	2	1				
L	Ipomoea cairica	√	5-10	3	<1				
S	Senna pendula	√	2	1	<1				
S	Lantana camara	√	1	1	<1				
L	Passiflora suberosa		1	1	<1				
F	Sphagneticola trilobata	√	100-500	4	15-20				
S/T	Schinus terebinthifolius	√	5-10	4	7-8				
S	Baccharis halimifolia	√	10-20	3	2				
S/T	Corymbia torelliana		3	2	1				
G	Melinis minutiflora		10-20	3	1				
	NON-NATIVE % OF TOTAL	25%							

EXCLUDED AREAS [CANOPY NOT DOMINATED BY CASUARINA GLAUCA]

AREAS EXCLUDED FROM 20M X 20M CONDITION PLOT [OBVIOUS EDGE AFFECTED AREAS, NOT REPRESENTATIVE]

HABITAT ASSESSMENT FIELD OBTAINED DATA: IMPACT ASSESSMENT UNIT 3 (IAU3-SO9)

Part C - Site Data							
Property	SWAMP OAK EEC CH WITHIN OR PI SURROUNDS] BUT HIGHER LEVEL (ROXIMATE TO LARGE CONNEC DF WEED INVASION. DATA SCA	LED PATCHES (COOM BABAR + LED FROM FIELD SITE SO3 WITH	Date	VARIOUS		
. ,	ADDITIONAL SU	RVEY TO CONFIRM LARGE TR	REES AND CWD		77111003		
Assessment Unit:	Assessment U	nit Area (ha)	RE	Bioregion Number			
6	1.39	9	12.1.1		Southeast Qu	eensland	
Landscape Photo- Please attach or insert	north, south, east and west pho	otos in the spaces provide	ed from row 231-355 below an	d include details such a	s Time and Mapping Coordina	tes in the following row.	
			_				
<u>Datum</u>			Zone	E	asting	Northing	
WGS 84	0m Mark		56	5	33,513	6,913,511	
GDA 94	50m Mark		Zone	E	asting	Northing	
Plot bearing				Recorders			
Piot bearing				Recorders			
	Site description	and Location (including de	etails of discrete polygons with	nin the assessment unit)		
Within extensi	ve Swamp Oak Forest/Wetland	associated with Coombab	oah. Refer images of Swamp O	ak Field Sites SO9. Mor	e weed invasion than AU1-AU	12	
Part D - Native Species Richness: (*list species below	w)						
		Tree	species richness:				
Total number of species				4			
Scientific Name		Casuarina glauca		Common Name			
Scientific Name Scientific Name		Livistona australis		Common Name Common Name			
Scientific Name	Archo	Alphitonia excelsa ontophoenix cunninghamia	ana	Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name Scientific Name				Common Name Common Name			
Scientific Haine	l .			Common Name			
		Shruk	b species richness:				
Total number of species				1			
Scientific Name		Casuarina glauca		Common Name			
Scientific Name Scientific Name				Common Name Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name Scientific Name				Common Name Common Name			
Secretary raine				common rame			
		Grass	s species richness:				
Total number of species				2			
Scientific Name Scientific Name		Ottochloa gracillima Oplismenus aemulus		Common Name Common Name			
Scientific Name		Opiismenus uemuius		Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name Scientific Name				Common Name Common Name			
Scientific Name				Common Name			
		Forbs and others (no	on grass ground) species richne				
Total number of species	-	Charles !- ! !		2			
Scientific Name Scientific Name		Stephania japonica Acrostichum speciosum		Common Name Common Name			
Scientific Name		Acrosticioni speciosum		Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Part E - Non-Native Plant Cover: (*list species below	d)						
Total percentage cover within plot	ĺ			75.00%			
Scientific Name		Senna pendula		Common Name			
Scientific Name		Lantana camara		Common Name			
Scientific Name		Schinus terebinthifolius		Common Name			
Scientific Name Scientific Name	Asnan	Ipomoea cairica agus aethiopicus cv. Spren	naeri	Common Name Common Name			
Scientific Name	ларин	Passiflora suberosa	J -	Common Name			
Scientific Name		Murraya paniculata		Common Name			
Scientific Name		Solanum seaforthium		Common Name			
Scientific Name		Paspalum dilatatum		Common Name			

D C	Woody Dehris	/*I:-+ I I	 :

Total Length of Course Woody Debris (Meters):	216.00	
1	26	
2	27	
3	28	
4	29	
5	30	
6	31	
7	32	
8	33	
9	34	
10	35	
11	36	
12	37	
13	38	
14	39	
15	40	
16	41	
17	42	
18	43	
19	44	
20	45	
21	46	
22	47	
23	48	
24	49	
25	50	

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover) Quadrat 1 Quadrat 2 Quadrat 3 Quadrat 4 Quadrat 5

Native perennial grass cover	0.00%	0.00%	0.00%	10.00%	10.00%	4.00%	
		•			•		
		Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
	Organic Litter	30.00%	25.00%	100.00%	90.00%	90.00%	67.000/

rait ii- mulliber of large trees, tree callopy height, i	Part H- Number of large trees , tree canopy height, recruitment of woody perennial species:							
Eucalypt Large tree DBH benchmark used :				Non- Eucalypt Large tree DBH benchmark used:		29		
Number of large eucalypt trees:				Number of large non eucalypt trees:		50		
Total Number Large Trees:	50							
Median Tree Canopy Height Measurements	Canopy:	14.60	Sub-canopy:	7.10	Emergent:			

Part I - Tree canopy cover, Shrub canopy cover							
Tree canopy cover %	Canopy:	60.00%	Sub-canopy:	50.00%	Emergent:		
Shruh canony cover %	0.00%						

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present *If trees are in the same layer and continuous along the transect you can group them

ATTRIBUTE	Size of Patch	Connectedness Context		Distance to Permanent Water	Ecological Corridors
DESCRIPTION	5 - >200ha	4 - >75% or >500ha connection	3 - >30-75% remnant		
SCORE	10	5	4		

Case Re	ference	EPBC2020-8646				SITE AS	SESSMEN	T BENCH	MARK CO	MPARIS	ON RESU	LTS	
	t Name	CONNECTOR. IMPACT SITE SWAMP OAK EEC HABITAT QUA	TY AS SES			<u>5112715</u>	JEGGIVIEI	T DEITOIT			OIT ILLOO		
Total	Area	15.0147											
								maacaann	ne onie isamo	,			
		Habitat Quality Attributes		1	2	3	4	5	6	7	8	9	10
P	art	Assessment Unit Area (ha)		5.875	5.875	0.23335	0.23335	1.399	1.399	0	0	0	0
	.	Regional Ecosystems		12.1.1	12.1.1	12.1.1	12.1.1	12.1.1	12.1.1				
		Bioregion		Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland				
		Recruitment of woody perennial species (Numb ecologically dominant layers regenerating)	of of	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				
		2. Native plant species richness											
		- Trees		200.00%	100.00%	100.00%	100.00%	400.00%	400.00%				
		- Shrubs		100.00%	100.00%	200.00%	200.00%	100.00%	100.00%				
		- Grasses		50.00%	150.00%	50.00%	50.00%	100.00%	100.00%				
		- Forbs		266.67%	200.00%	200.00%	100.00%	166.67%	66.67%				
		3. Tree canopy height				<u>-</u>	=	<u>-</u>			<u>-</u>	<u>-</u>	
	tes	- Canopy Layer		115.00%	115.00%	125.83%	111.67%	98.33%	121.67%				
	Attributes	- Sub-Canopy Layer		95.71%	97.14%	97.14%	82.86%	78.57%	101.43%				
1		- Emergent Layer											
1	Condition	4. Tree canopy cover				-		-			=	=	
	Site Co	- Canopy Layer		101.49%	105.07%	67.16%	93.43%	130.75%	89.55%				
	Si	- Sub-Canopy Layer		76.52%	86.09%	140.87%	62.61%	53.04%	217.39%				
		- Emergent Layer											
		5. Shrub canopy cover		88.00%	56.00%	200.00%	308.00%	0.00%	0.00%				
		6. Native perennial grass cover		10.59%	48.24%	92.94%	108.94%	43.53%	4.71%				
		7. Organic litter		960.00%	1020.00%	500.00%	108.00%	960.00%	1340.00%				
		8. Large trees		59.78%	54.35%	92.39%	32.61%	103.26%	54.35%				
		9. Coarse woody debris (Meters)		55.56%	51.39%	38.89%	109.72%	37.78%	60.00%				
		10. Weed cover		4.00%	2.00%	2.00%	2.00%	30.00%	75.00%				
			[
	ses	11. Size of patch (fragmented)		10.00	10.00	5.00	5.00	0.00	10.00				
	Context Attributes	12. Connectedness (fragmented)		5.00	5.00	2.00	2.00	2.00	5.00				
2	ext Al	13. Context (fragmented)		4.00	4.00	4.00	4.00	4.00	4.00				
		14. Distance from water (intact)											
	Site	15. Ecological corridors											

PREVIOUSLY SUBMITTED SWAMP OAK FOREST EEC ASSESSMENT INFORMATION REFER EPBC 2020/8646 REFERRAL PACKAGE ATTACHMENT 8

COASTAL SWAMP OAK (CASUARINA GLAUCA) FOREST OF NEW SOUTH WALES AND SOUTH EAST QUEENSLAND ECOLOGICAL COMMUNITY DISCUSSION

The key diagnostic criteria are considered to be met for this patch/copse including:

- having canopy trees dominated by Casuarina glauca
- having crown cover of at least 10%

These are not onerous criteria as this particular EEC contains a low height criteria (10m) so even young regrowth can be considered.

To define the boundary of the patch dominated by Casuarina glauca the area was field surveyed and the outer canopy defined with a handheld GPS unit. Where Casuarina glauca presence in the canopy was visually estimated to fall below 50%, the area was excluded (i.e. within areas to the west in which the canopy is dominated by Eucalyptys/Corymbians with few Casuarina [RE12.3.11])

Following field survey, the area meeting the key diagnostic criteria was determined >100 hectares. The extent of contiguous state mapped Regional Ecosystem 12.1.1 has been utilised in this calculation which represents the vegetation within the field site.

Therefore, the patch is assigned a 'large' patch size class (>5ha).

A field quadrat survey was then performed in accordance with Section 3.2 and Appendix 3 of the Guidelines. To account for variability the patch was traversed first and the field plot then placed within an area reflective of the investigated areas away from edge affected areas.

Woody weeds are abundant in the understorey of this patch.

The field survey performed resulted in vegetation quality class of borderline 'moderate' quality (the lowest quality class).

Therefore, in accordance with Section 3 of the Guideline, this site (and connected areas of the same habitat type) is assigned Category C. Per Section 3.4 of the Guideline this Category is not considered to be <u>habitat critical to the survival</u> of the ecological community.

COASTAL SWAMP OAK (CASUARINA GLAUCA) FOREST OF NEW SOUTH WALES AND SOUTH EAST QUEENSLAND ECOLOGICAL COMMUNITY FIELD ASSESSMENT

Site No.	SOg			Re	cord	ler: GD	GD								
Purpose	20M X 20	oM COND	ITIC)NF	PLOT	-									
	EAST OF	B11 WIT	HIN	CO	ОМВ	BABAH WETLAN	AH WETLANDS TO THE EAST OF THE RAILWAY LINE. FOOTHILL								
Location:	ADJACE	ADJACENT INTERTIDAL AREAS													
GPS coordinates Zone 5					Ε	533,5 ¹ 3	N	6,913,511	Datum:	MGAZ56					

KEY DIAGNOSTICS-CANOPY

REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
Crown cover of at least 10%	50-60%	E (obviously >10%. Refer Images)	V
Canopy dominated by Casuarina glauca Other canopy includes Eucalyptus tereticornis, Melaleuca quinquenervia	80%	E (obvious. Refer Images)	V
Median canopy height >10m (i.e. open woodland, woodland, forest or closed forest per Hnatiuk et al, 2009)	14.4m	Measured	V

CONDITION THRESHOLDS-PATCH SIZE CLASS

REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
Small Patch-At least 0.5 hectares	>100ha	Measured via GPS and estimated by GIS	V
Small contiguous patch-The patch is at least 0.5 ha and less than 2 ha, and is connected to a larger area of native vegetation of at least 5 ha	>100ha	Measured via GPS and estimated by GIS	V
Medium Patch-at least 2ha and less than 5ha	>100ha	Measured via GPS and estimated by GIS	V
Large Patch-at least 5ha	>100ha	Measured via GPS and estimated by GIS	√

CONDITION THRESHOLDS-VEGETATION QUALITY

CONDITION THRESHOLDS-VEGETA			
MINIMUM REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
HIGH QUALITY Predominately native understorey. Non- native species comprise less than 20% total understorey vegetation cover (all vascular species of all layers below the canopy)	~20%	Measured within 20m x 20m survey plot	Х

MINIMUM REQUIREMENT	OBSERVED VALUE	MEASURED OR ESTIMATED	REQUIREMENT MET
GOOD QUALITY Mostly native understorey Non-native species comprise less than 50% of total understorey vegetation cover AND transformer species comprise less than 30% of total understorey vegetation cover	~20%	Measured within 20m x 20m survey plot	Х
MODERATE QUALITY Some native understorey Non-native species comprise less than 80% of total understorey vegetation cover AND transformer species comprise less than 50% of total understorey vegetation cover	~20%	Measured within 20m x 20m survey plot	√

Minimum vegetation quality class threshold met. Therefore, EEC.

NATIVE UNDERSTOREY SPECIES (0.04HA QUADRAT)

GROWTH FORM	SPECIES	EST ABUNDANCE	B-B SCORE	EST COVER %
L	Parsonsia straminae	20-50	4	10
S/T	Casuarina glauca	10-20	3	5
G	Ottochloa gracillima	100-500	3	3-4
Р	Livistona australis	2	2	2
Р	Archontophoenix cunninghamiana	1	1	1
Т	Alphitonia excelsa	2	2	1
L	Stephania japonica	2	2	<1
F	Acrostichum speciosum	1	1	<1
	Pine needles/leaf litter			50
	NATIVE % OF TOTAL UNDERSTOREY VEG	SETATION COVER	~20%	

Growth form: T=tree, S=shrub, G= grass, V=sedge, R=rush, E=fern, F=forb/herb, L=vine, P=palm, O=other

Cover: <1 1,2,3,4,5,10,15,20,25,30,35, etc cover %

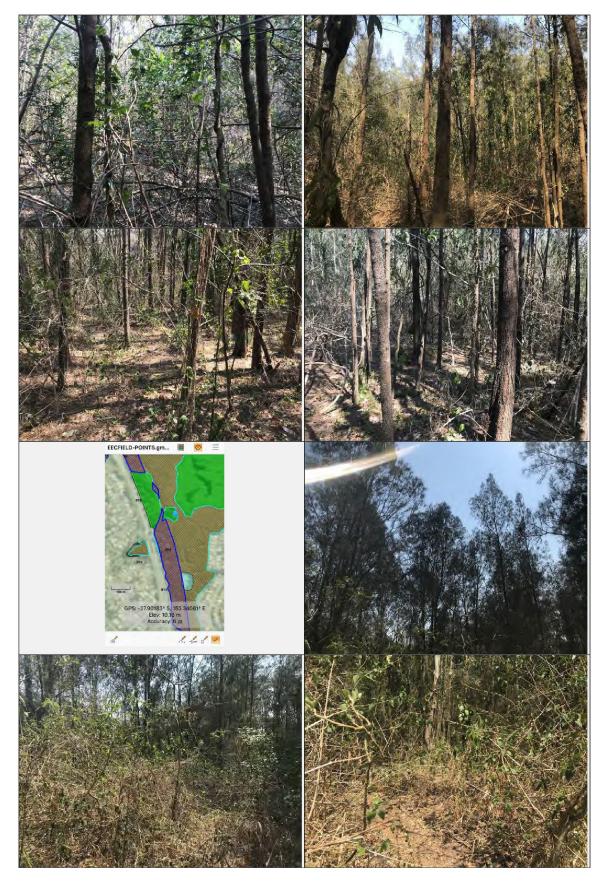
[0.1% cover represents an area of approximately 63 x 63cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, $1\% = 2.0 \times 2.0 \text{ m}$, $5\% = 4 \times 5 \text{ m}$, $25\% = 10 \times 10 \text{ m}$]

Abundance: <5, 5-10, 10-20, 20-50, 50-100, 100-500, 500-1000, >1000

Areas of little to no understorey vegetation cover (e.g. plant litter) are included if key diagnostics are met and non-native species are below thresholds

NON-NATIVE UNDERSTOREY SPECIES (0.04HA QUADRAT)

14	CIN-INATIVE CINDERSTORET SI ECIES	(0.0411A QUAD	NA 1)									
GROWTH		TRANSFORMER	EST	B-B SCORE	EST COVER							
FORM	SPECIES	SPECIES	ABUNDANCE									
S/T	Senna pendula	√	20-50	5	20							
S	Lantana camara	√	20-50	5	30							
S/T	Schinus terebinthifolius	√	50-100	5	30							
L	Ipomoea cairica	√	1	1	<1							
F	Asparagus aethiopicus cv. sprengeri	√	3	2	<1							
L	Passiflora suberosa		3	2	<1							
	NON-NATIVE % OF TOTAL UNDERSTOREY VEGETATION COVER ~80%											





Appendix E2: Coastal Swamp Oak TEC – summarised HQS data

3.2 IMPACT ASSESSMENT TABLES

3.2.1 Coastal Swamp Oak TEC Assessment Table

COASTAL SWAMP OAK TEC								JNDS.		_															
ssessment Unit - Regional Ecosystem				ΙΔΙΙ1 - R	E 12.1.1 Rem	nant							IAU2 - RE 12.	1 1 Re	emnant					ΙΔΙ	13 - RF 13	2.1.1 Remnan	it/Regrowth		
ite Reference	Benchmark	ς	O5 Category A	IAO1 - II		SO6 Category A		Average %	Average	Benchmark	Si	O17 Category A			18 Category A	Avor	age % Average	Benchmark		O3 Category B			9 Category C	Average	% Ave
ne nererence		aw Data	% Benchmark	Score		% Benchmark		benchmark	Score	12.1.1		% Benchmark			% Benchmark Sco			12.1.1		% Benchmark			6 Benchmark Sco		
ite Condition		arr Bata	70 Benemiark	500.0	naw Bata	70 Berrerimani	500.0	Serieiman	500.0		naw Bata	70 Beriefiliarik	Score man	Jutu	70 Dericimiani, Dec	e sene.	man score		naw bata	70 Demonnant	500.0	naw bata /	Demoninaria ded	ochonine.	
decruitment of woody perennial species in EDL	100	100	100.0	5	100	100.0	5	100.0		100	100	100.0	5	100	100.0	-	100.0	100	100	100.0	-	100	100.0	10	00.0
lative plant species richness - trees	1	2	200.0	5	100	100.0	5	150.0	-	1	1	100.0	5	1	100.0	-	100.0	100	4	400.0	4	100	400.0		00.0
lative plant species richness - shrubs	1	1	100.0	5	1	100.0	5	100.0	-		2	200.0	5	2	200.0	-	200.0	- 1	1	100.0	4		100.0		00.0
lative plant species richness - grasses	2	1	50.0	2.5	3	150.0	5	100.0	-		1	50.0	25	1	50.0	25	50.0 2.5		1 2	100.0	9		100.0		00.0
lative plant species richness - forbs	3	8	266.7	5	6	200.0	5	233.3	-		6	200.0	5	3	100.0		150.0		5	166.7	9		66.7		16.7
ree canopy height	12	13.8	115.0	5	13.8	115.0	5	115.0	-	12	15.1	125.8	5	13.4	111.7	-	118.8	12	1 11.8	98.3	4	14.6	121.7		10.0
ree subcanopy height	7	6.7	95.7	5	6.8	97.1	5	96.4]	6.8	97.1	5	5.8	82.9		90.0	-	5.5	78.6	9	7.1	101.4		90.0
ree canopy height (average of emergent, canopy, sub-canopy)	9.5	10.25	107.9	5	10	108.4	5	108.2	-	9.5	10.95		5	9.6	101.1	-	108.2	9.5	8.65	91.1		10.85	114.2		02.6
ree canopy cover (EDL)	67	68	107.5	5	70.4		5	108.2	-	67	10.93	67.2	5	62.6	93.4	-	80.3	67	87.6	130.7		60	89.6		10.1
ubcanopy cover	23	17.6	76.5	5	19.8		5	81.3		23	32.4	140.9	5	14.4	62.6	-	101.7	23		53.0		50	217.4		35.2
ree canopy cover (average of emergent, canopy, sub-canopy)	45	42.8	95.1	5	45	100.2		97.7	-	45	38.7	86.0	5	38.5	85.6	1	85.8	45		110.9		50	122.2		16.6
hrub canopy cover	45	42.8 4.4	88.0	5	2.8		5	72.0	3	45	38.7	200.0	5	15.4	308.0	3	254.0	43	49.9	0.0	9	33	0.0		0.0
lative grass cover	95	4.4	10.6	1	41	48.2	1	29.4	1	00	79	92.9	5	92.6	108.9	1	100.9	00	1 9	43.5	1		4.7		24.1
Organic litter	65	48	960.0		51	1020.0	2	990.0	1 2	0.0	25	500.0	3	5.4	108.9	1	304.0	0.3	1 10	960.0	1	67	1340.0	3 115	
Total large trees per hectare	02	55	59.8	10	50	54.3	10	57.1	10	0	25 85	92.4	10	3.4	32.6		62.5 10	02	95	103.3	10	57	54.3		78.8
Coarse woody debris (m/ha)	360	200	55.6	10	185		10	53.5	10	360	140		10	395	109.7	3	74.3	360		37.8	13	216	60.0		76.d 48.9
Ion-native plant cover	300	200	55.0	10	103	51.4	10	3.0	10	300	140	36.9	10	292	109.7	10	74.5	300	30	37.0	1 4	210	60.4		40.5 52.5
·	U	4		10			10	5.0	69.0	, ,			67.5		-	10	2 10		30		50	/3			
ite Condition Score AAX Site Condition Score				66.5 <i>80</i>			69 <i>80</i>		80				67.5 <i>80</i>		65		68.5 <i>80</i>				59 <i>80</i>			0.5 0	5
MAX Site Condition Score				<i>δU</i>			<i>8</i> 0						80		0	U					80				
ite Context				Score			Score		Average				Canna		C-		Average Score				Caana		c.		Ave
ize of patch (ha)				Score			Score		Score				Score		Sco	re	Score				Score		Sc	ore	Sci
				10			10		10	1	<u> </u>	<u> </u>) 3			3					1 4			14	
Connectivity				5			5] = 3		<u> </u>	<u> </u>	4			1					4				-
Context				4			4		40.0	†			4			4	4				- 4			-	
ite Context Score				19			19		19.0				11		1		11				6			.9	:
MAX Site Context Score				20			20		20				20		2		20				20			0	2
otal habitat quality score /100				85.50			88.00		88.00				78.50		76		79.50				65.00			.50	64
MAX Habitat Quality Score				100			100		100				100		10	00	100				100		10	00	10
inal habitat quality score (weighted)	IAU1	IAU2	IAU3	Final																					
labitat Quality Score (measured /100)	88.00	79.50	64.00	77.17																					
labitat Quallity Score (max)	100	100	100	100																					
ssessment Unit area (ha)	11.75	0.4667	2.798	15.01																					
ssessment Unit Habitat Quality Score /10	8.80	7.95	6.40	7.72																					
ize Weighting	0.78	0.03	0.19																						
Weighted Habitat Quality Score	6.89	0.25	1.19	8.33																					

Physical impact = 15.01 ha and an additional functional loss impact = 0.918 ha. Total impact = 15.928 ha

From the Offset Assessment Guide, quantum of impact for Coastal Swamp Oak TEC = 15.928 x 0.8 = 12.74 ha

Appendix F: Impact Site Survey Data

Appendix F1: Koala habitat

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.11.24 ASSESSMENT UNIT 1 (IAU1-AU1)

	Property Property	Impact A	rea Coomera Connector Stag	ge 1	Date		23/03/:				
	Assessment Unit:	Assessment Un		RE		Number					
	IAU1-AU1 12.11.24	13.9	5	12.11.24	Southeast Queensland						
		•									
	Landscape Photo- Please attach or insert	north, south, east and west ph	otos in the spaces provided	from row 231-355 below	and include details such a	s Time and Mapping Coor	dinates in the following row.				
Datum		0m Mark	Zo	ne	Ea	sting	Northing				
NGS 84		OIII IVIAIK	5	6	53	3569	6912270				
GDA 94	▼	FO 84	Zo	ne	Ea	sting	Northing				
		50m Mark	5		53	3563	6912323				
	Plot bearing		35	6	Recorders		TR / SS				
			and Location (including deta								
		Eucalyptus siderophlo	ia, Corymbia intermedia an	d Angophora leiocarpa do	minant. Flora Field Sheet	B22.					
Part D - Nativ	ve Species Richness: (*list species belov	w)									
			Tree sp	ecies richness:							
otal number of					8						
	Scientific Name		Lophostemon confertus		Common Name						
	Scientific Name		Angophora leiocarpa		Common Name						
	Scientific Name		Eucalyptus siderophloia		Common Name						
	Scientific Name		Corymbia intermedia		Common Name						
	Scientific Name		Eucalyptus tereticornis		Common Name						
	Scientific Name		Eucalyptus tindaliae		Common Name						
	Scientific Name	1	Lophostemon suaveolens		Common Name						
	Scientific Name		Corymbia citriodora		Common Name						
	Scientific Name				Common Name						
	Scientific Name				Common Name						
		1	Shrub s	pecies richness:							
otal number of					6						
	Scientific Name		Acacia disparrima		Common Name						
	Scientific Name		Acacia melanoxylon		Common Name						
	Scientific Name		Jagera pseudorhus		Common Name						
	Scientific Name		Syzygium luehmannii		Common Name						
	Scientific Name		Alphitonia excelsa		Common Name						
	Scientific Name		Breynia oblongifolia		Common Name						
	Scientific Name				Common Name						
	Scientific Name				Common Name						
	Scientific Name				Common Name						
	Scientific Name				Common Name						
		<u> </u>	Grass s _l	pecies richness:							
Total number of					3						
	Scientific Name		Cymbopogon refractus		Common Name						
	Scientific Name		Oplismenus aemulus		Common Name						
	Scientific Name		Ottochloa gracillima		Common Name						
	Scientific Name				Common Name						
	Scientific Name				Common Name						
	Scientific Name				Common Name						
	Scientific Name				Common Name						
	Scientific Name				Common Name						
	Scientific Name				Common Name						
	Scientific Name				Common Name						
	<u> </u>	<u> </u>	Francisco de de								
otal number of	f enocine		Forms and others (non g	grass ground) species richn	ess: 7						
otal number of			Lepidosperma laterale		•						
	Scientific Name		Pteridium esculentum		Scientific Name						
	Scientific Name				Scientific Name Scientific Name						
	Scientific Name		Lomandra longifolia Lobelia purpurascens								
	Scientifi Name				Scientific Name						
	Scientific Name		Goodenia rotundifolia		Scientific Name						
	Scientific Name		Geodorum densiflorum		Scientific Name						
	Scientific Name	<u> </u>	Eustrephus latifolius		Scientific Name						
Doub F Pt	Notice Plant C /*!	.A									
	Native Plant Cover: (*list species below	v) T			3.00%						
Tota	tal percentage cover within plot		lantan		3.00%						
	Common Name		Lantana camara		Common Name						
	Common Name		Schefflera actinophylla		Common Name						
	Common Name		Aspararagus aethiopicus		Common Name						
	Common Name		Ornamental species		Common Name						
	Common Name				Common Name						
	Common Name	-			Common Name						
	Common Name	I		Common Name							
	Common Name				Common Name						
	Common Name Common Name Common Name				Common Name Common Name Common Name						

Dank E. Casara Manada Dalada.	(*list lengths of individual logs in meters)
Part F - Charse Woody Debris:	(*list lengths of individual logs in meters)

Total Length of Course Woody Debris (Meters):		541.00	
1	3.00	26	
2	2.40	27	
3	2.20	28	
4	2.00	29	
5	1.00	30	
6	2.60	31	
7	1.50	32	
8	4.20	33	
9	3.60	34	
10	1.80	35	
11	4.40	36	
12	16.00	37	
13	1.40	38	
14	4.40	39	
15	3.60	40	
16		41	
17		42	
18		43	
19		44	
20		45	
21		46	
22		47	
23		48	
24		49	
25		50	

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover) Quadrat 1 Quadrat 2 Quadrat 3

Native perennial grass cover	5.00%	2.00%	5.00%	8.00%	1.00%	4.20%
	3.0070	2.0070	3.00%	0.0070	1.00%	4.2070
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average

Part H- Number of large trees, tree canopy height, recruitment of woody perennial species

Eucalypt Large tree DBH benchmark used :	46	Non- Eucalypt Large tree DBH benchmark used:	20
Number of large eucalypt trees:	10	Number of large non eucalypt trees:	1
Total Number Large Trees:		11	

Median Tree Canopy Height Measurements Canopy: 22.00 Sub-canopy: 10.00	Emergent:	
		$\overline{}$

Part I - Tree canopy cover, Shrub canopy cover

Tree canopy cover %	Canopy:	55.00%	Sub-canopy:	11.00%	Emergent:	
Shrub canopy cover %				6.90%		

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present *If trees are in the same layer and continuous along the transect you can group them

ATTRIBLITE	ATTRIBUTE Size of Patch Connectedness Context Distance to Permanent Water						
DESCRIPTION	5 - >200ha	4 - >75% or >500ha	3 - >30-75% remnant		Ecological Corridors 3 - Within (whole or part)		
SCORE	10	5	4		6		

Case Reference	EPBC2020-8646					
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.				
Total Area	78.811					

							Assessme	ent Unit Numbe	er		
		Habitat Quality Attributes	IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
Pa	art	Assessment Unit Area (ha)	13.95	13.95	10.28	10.28	7.655	7.655	3.347	3.347	3.347
Part		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
		Bioregion	Southeast Queensland	Southeast Queensland	Southeast Queensland						
			Queensianu	Queensianu	Queensianu	Queensianu	Queensianu	Queerisianu	Queerisianu	Queensianu	Queerisianu
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
		2. Native plant species richness									
		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
		3. Tree canopy height									
	tes	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
	Attributes	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
	on At	- Emergent Layer									
1	Condition	4. Tree canopy cover									
	e Cor	- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
	Site	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
		- Emergent Layer									
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
	se	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00
	ttribut	12. Connectedness (fragmented)	5.00	5.00	0.00	2.00	2.00	2.00	0.00	2.00	4.00
2	Context Attributes	13. Context (fragmented)	4.00	4.00	2.00	2.00	2.00	2.00	0.00	4.00	2.00
		14. Distance from water (intact)									
	Site	15. Ecological corridors	6.00	6.00	6.00	6.00	6.00	6.00	4.00	4.00	6.00
								·			

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.11.24 ASSESSMENT UNIT 1 (IAU1-AU2)

Part C - Site Data						
Property	Impact A	rea Coomera Connector	Stage 1	Date	19.4.21	
Assessment Unit:	Assessment Ur	nit Area (ha)	RE		Bioregion N	Number
IAU1-AU2 12.11.24	13.9		12.11.24		Southeast Qu	
INOT-NOZ 12.11.24	13.5	.5	12.11.24		Southeast Qu	cerisiana
Landscape Photo- Please attach or inser	t north couth past and wast pho	atos in the spaces provid	ad from row 221 255 holow ar	ad include details such as T	ime and Manning Coordin	atos in the following row
Lanuscape Prioto-Prease attach of hiser	t north, south, east and west pric	otos in the spaces provid	ed Holli Tow 231-333 below ai	ia incidae details sacir as i	inic and mapping coordina	ites in the following row.
<u>Datum</u>			Zone	Fas	sting	Northing
WGS 84	0m Mark		56		454	6913599
GDA 94			Zone		sting	Northing
GDA 54	50m Mark		Lone		3436	6913645
Plot bearing			334	Recorders	3150	TR & BS
riot scaring			334	Necorders		11(4.65
	Site description	and Location (including	details of discrete polygons wit	hin the accordment unit		
			us and Corymbia intermedia d		+ P10	
	Eucalyptus sideropillois	a, cophosternon content	as and corymbia intermedia d	omminant. Flora neid snee	t B10.	
Part D - Native Species Richness: (*list species belo	w)					
		Tre	e species richness:			
Total number of species				6		
Scientific Name		Corymbia intermedia		Common Name		
Scientific Name		Eucalyptus tereticornis		Common Name		
Scientific Name		Lophostemon confertus		Common Name		
Scientific Name		Eucalyptus siderophloia		Common Name		
Scientific Name		Corymbia citriodora		Common Name		
Scientific Name		Angophora leiocarpa		Common Name		
Scientific Name		Allocasuarina littoralis		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
				•		
		Shr	ub species richness:			
Total number of species			·	5		
Scientific Name	C	Cupaniopsis anacardioide	s	Common Name		
Scientific Name		Acacia melanoxylon		Common Name		
Scientific Name		Acacia disparrima		Common Name		
Scientific Name		Alphitonia excelsa		Common Name		
Scientific Name		Allocasuarina littoralis		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
		Gra	ss species richness:			
Total number of species			•	3		
Scientific Name		Entolasia stricta		Common Name		
Scientific Name		Ottochloa gracillima		Common Name		
Scientific Name		Themeda triandra		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
		Forbs and others (non grass ground) species richr	ness:		
Total number of species				8		
Scientific Name	L.	Desmodium rhytidophyllu	m	Scientific Name		Eustrephus latifolius
Scientific Name		Lomandra longifolia		Scientific Name		
Scientific Name		Goodenia rotundifolia		Scientific Name		
Scientific Name		Dianella caerulea		Scientific Name		
Scientific Name		Pteridium esculentum		Scientific Name		
Scientific Name		Glycine clandestina		Scientific Name		
Scientific Name		Marsdenia rostrato	1	Scientific Name		
Part E - Non-Native Plant Cover: (*list species below	v)					
Total percentage cover within plot				5.00%		
Scientific Name		Asparagus aethiopicus		Common Name		
Scientific Name		Ochna serrulata		Common Name		
Scientific Name		Syagrus romanzoffiana		Common Name		
Scientific Name		Schinus terebinthifolius		Common Name		
Scientific Name		Passiflora subpeltata		Common Name		
Scientific Name		Lantana camara		Common Name		
Scientific Name				Common Name		
Scientific Name Scientific Name				Common Name Common Name		

Part F - Coarse Woody Debris:	*list lengths of individual logs in meters)

Total Length of Course Woody Debris (Meters):	470.00						
1	5.00	26					
2	1.00	27					
3	3.00	28					
4	10.00	29					
5	0.50	30					
6	2.50	31					
7	4.00	32					
8	8.00	33					
9	1.50	34					
10	5.00	35					
11	5.00	36					
12	1.50	37					
13		38					
14		39					
15		40					
16		41					
17		42					
18		43					
19		44					
20		45					
21		46					
22		47					
23		48					
24		49					
25		50					

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover) Quadrat 1 Quadrat 2 Quadrat 3 Quadrat 4 Quadrat 5

Native perennial grass cover	2.00%	5.00%	1.00%	15.00%	10.00%	6.60%
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average

Part H- Number of large trees , tree canopy height, recruitment of woody perennial species:

Eucalypt Large tree DBH benchmark used :		46		Non- Eucalypt Large tree DBH benchmark used:		20
Number of large eucalypt trees:	28			Number of large non eucalypt trees:		2
Total Number Large Trees:				30		
	•	•	•		•	
Median Tree Canopy Height Measurements	Canopy:	22.00	Sub-canopy:	10.00	Emergent:	

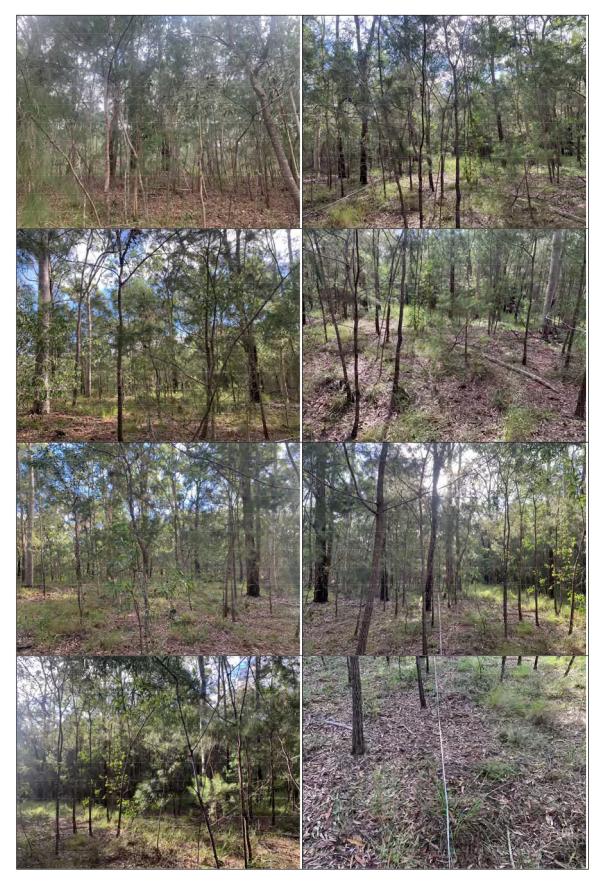
- [Number of ecologically dominant layer species regenerating:	100

Part I - Tree canopy cover, Shrub canopy cover

Tree canopy cover %	Canopy:	66.30%	Sub-canopy:	16.30%	Emergent:	
Shrub canopy cover %				6.60%		

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present *If trees are in the same layer and continuous along the transect you can group them

alt) - Site Colitext Scole					
ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors
DESCRIPTION	5 - >200ha	4 - >75% or >500ha connection	3 - >30-75% remnant		3 - Within (whole or part)
SCORE	10	5	4		6



Case Reference EPBC2020-8646 Project Name MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM ENT. Total Area 78.811

							•				
Habitat Quality Attributes							ent Unit Numbe	IAU4-AU7	IAU4-AU8	IAU4-AU9	
		Habitat Quality Attributes	IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	REGROWTH 12.3.11	REGROWTH 12.3.20	REMNANT 12.3.11
Part		Assessment Unit Area (ha)	13.95	13.95	10.28	10.28	7.655	7.655	3.347	3.347	3.347
		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
		Bioregion	Southeast	Southeast	Southeast	Southeast	Southeast	Southeast	Southeast Queensland	Southeast Queensland	Southeast
			Queensland	Queensland	Queensland	Queensland	Queensland	Queensland	Queensianu	Queensianu	Queensland
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
		2. Native plant species richness									
		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
		3. Tree canopy height									
	tes	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
	Attributes	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
1	on A	- Emergent Layer									
_	Condition	4. Tree canopy cover									
	Site Co	- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
	Si	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
		- Emergent Layer									
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
											_
	tes	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00
	ext A ttrib	12. Connectedness (fragmented)	5.00	5.00	0.00	2.00	2.00	2.00	0.00	2.00	4.00
2		13. Context (fragmented)	4.00	4.00	2.00	2.00	2.00	2.00	0.00	4.00	2.00
	S.	14. Distance from water (intact)									
	ş	15. Ecological corridors	6.00	6.00	6.00	6.00	6.00	6.00	4.00	4.00	6.00

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.11.25 ASSESSMENT UNIT 2 (IAU2-AU3)

Part C - Site	. Data							
	Property	Impact A	rea Coomera Connector Sta	ge 1	Date		4/07/20	
	. ,	· ·					-407/2	
	Assessment Unit:	Assessment Ur	nit Area (ha)	RE		Bioregion	Number	
	IAU2-AU3 12.11.25	10.28 12.11.25			Southeast Queensland			
	IAUZ-AUS 12.11.23	10.2	•	12.11.25		Southeast C	acersiana	
	Landscape Photo- Please attach or insert	north couth pact and wast ph	atos in the spaces provided	from row 221 255 holow a	nd include details such as	Time and Manning Coordi	nator in the following row	
	Lanuscape Photo-Please attach of insert	north, south, east and west pin	otos ili tile spaces provided	110111 10W 231-333 Delow at	na mciade detans such as	Time and Mapping Coord	nates in the following low.	
				-				
Datum			Zo		Fa.	sting	Northing	
<u>Datum</u>		0m Mark	5			4834	6906637	
WGS 84								
GDA 94	D	50m Mark	Zo			sting	Northing	
	51.11			56		4796	6906650	
	Plot bearing		28	80	Recorders		TR	
		40. 1 1.1						
			and Location (including deta					
		Corymbia intermedia,	C. henryii, Eucalyptus seea	na and E. tindaliae co-dom	inant. Flora field sheet CC	11.		
		,						
Part D - N	ative Species Richness: (*list species below	N)	T	and and the same				
T-1-1		T	i ree sp	pecies richness:	- 12			
Total numbe					13			
	Scientific Name		Corymbina intermedia		Scientific Name		Lophostemon suaveolens	
	Scientific Name		Eucalyptus propinqua		Scientific Name		Lophostemon confertus	
	Scientific Name	ļ	Eucalyptus crebra		Scientific Name		Allocasuarina littoralis	
	Scientific Name		Eucalyptus siderophloia		Common Name			
	Scientific Name		Eucalyptus carnea		Common Name			
	Scientific Name		Corymbia henryi		Common Name			
	Scientific Name		Eucalyptus microcorys		Common Name			
	Scientific Name		Eucalyptus tereticornis		Common Name			
	Scientific Name		Eucalyptus seeana		Common Name			
	Scientific Name		Eucalyptus pilularis		Common Name			
			Shrub s	species richness:				
Total numbe	r of species				5			
	Scientific Name		Acacia leiocalyx		Common Name			
	Scientific Name		Acacia disparrima		Common Name			
	Scientific Name		Breynia oblongifolia		Common Name			
	Scientific Name	(Cupaniopsis anacardioides		Common Name			
	Scientific Name		Allocasuarina littoralis		Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
			Grass s	pecies richness:				
Total numbe	er of species				4			
	Scientific Name				Common Name			
	Scientific Name		Themeda triandra		Common Name			
	Scientific Name		Imperata cylindrica		Common Name			
	Scientific Name		Cymbopogon refractus		Common Name			
	Scientific Name		Entolasia stricta		Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
			Forbs and others (non	grass ground) species richn	iess:			
Total numbe	er of species			,	10			
	Scientific Name		Geodorum densiflorum		Scientific Name		hrysocephalum apiculatum	
	Scientific Name		Pteridium esculentum		Scientific Name		Goodenia rotundifolia	
	Scientific Name		Lomandra fiiformis		Scientific Name		Glycine clandestina	
	Scientific Name		Lepidosperma laterale		Common Name			
	Scientific Name		Lobelia purpurascens		Common Name			
	Scientific Name	_	esmodium rhytidophyllum		Common Name			
	Scientific Name	ř	Eustrephus latifolius		Common Name			
	Scientific Name		Lustreprius iutijoilus		Common Name			
Dart E . No	on-Native Plant Cover: (*list species below	d						
		') 			2.00%			
	Total percentage cover within plot	1	Acadrague aethionione		Common Name	1		
	Scientific Name		Asparagus aethiopicus Paspalum spp.					
	Scientific Name				Common Name			
	Scientific Name	G	Passiflora subpeltata		Common Name			
	Scientific Name	 			Common Name			
	Scientific Name		Schefflera actinophylla		Common Name			
	Scientific Name		Lantana camara		Common Name			
	Scientific Name	Se	enna pendula var. glabrata		Common Name	 		
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name	Ī			Common Name	I		

Total Length of Course Woody Debris (Meters):		470.00	
1	4.00	26	
2	2.00	27	
3	1.00	28	
4	3.00	29	
5	10.00	30	
6	2.00	31	
7	5.00	32	
8	0.50	33	
9	1.50	34	
10	2.00	35	
11	4.00	36	
12	2.00	37	
13	1.00	38	
14	6.00	39	
15	3.00	40	
16		41	
17		42	
18		43	
19		44	
20		45	
21		46	
22	_	47	
23		48	
24	_	49	
25		50	

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover)

	Quadrat 1	Quadrat 2	Quadrat 3	/5	Quadrat 5	Average
Native perennial grass cover	40.00%	10.00%	2.00%	0.00%	30.00%	16.40%
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Organic Litter	60.00%	90.00%	98.00%	100.00%	70.00%	83,60%

Part H- Number of large trees , tree canopy height, recruitment of woody perennial species

Fatth Number of large trees, tree tamply neight, rectainment of woody perennial species.										
Eucalypt Large tree DBH benchmark used :		46		Non- Eucalypt Large tree DBH benchmark used:		20				
Number of large eucalypt trees:		31		Number of large non eucalypt trees:		7				
Total Number Large Trees:				38						
Median Tree Canopy Height Measurements	Canopy:	20.00	Sub-canopy:	10.00	Emergent:					

Number of ecologically dominant layer species regenerating:

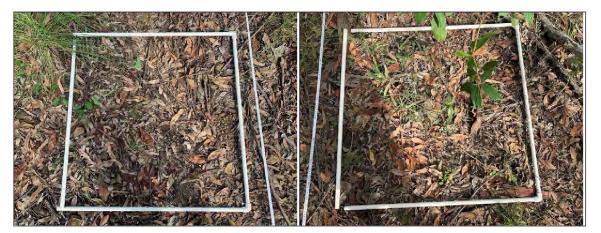
Part I - Tree canopy cover, Shrub canopy cover							
Tree canopy cover %	Canopy:	36.40%	Sub-canopy:	52.30%	Emergent:		
Shrub canony cover %		15.80%					

75

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present "If trees are in the same layer and continuous along the transect you can group them

ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors
DESCRIPTION	3 - 26 - 100ha	1 - 0% - 10% connection	2 - >10% to 30% remna		3 - Within (whole or part)
SCORE	5	0	2		6

Case Reference	EPBC2020-8646	
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.
Total Area	78.811	


	Assessment Unit Number										
							Assessme	ent Unit Numbe			
		Habitat Quality Attributes	IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
P	art	Assessment Unit Area (ha)	13.95	13.95	10.28	10.28	7.655	7.655	3.347	3.347	3.347
		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
		Bioregion	Southeast Queensland	Southeast Queensland	Southeast Queensland						
	Biological			Queensianu	Queensianu	Queensianu	Queensianu	Queensianu	Queensianu	Queensianu	Queensianu
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
		2. Native plant species richness									
		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
		3. Tree canopy height									
	ıtes	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
	e Condition Attributes	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
1		- Emergent Layer									
_		4. Tree canopy cover									
		- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
	Site	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
		- Emergent Layer									
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
	ies	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00
	Attributes	12. Connectedness (fragmented)	5.00	5.00	0.00	2.00	2.00	2.00	0.00	2.00	4.00
2		13. Context (fragmented)	4.00	4.00	2.00	2.00	2.00	2.00	0.00	4.00	2.00
	e Context	14. Distance from water (intact)									
	Site	15. Ecological corridors	6.00	6.00	6.00	6.00	6.00	6.00	4.00	4.00	6.00

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.11.25 ASSESSMENT UNIT 2 (IAU2-AU4)

Part C - Site Data	_									
Property	Impact A	rea Coomera Connector Sta	ige 1	Date 8.4.21						
					l.					
Assessment Unit:	Assessment U	nit Area (ha)	RE		Bioregion N	lumber				
IAU2-AU4 12.11.25	10.2	18	12.11.25		Southeast Qu	eensland				
Landscape Photo- Please attach or ins	ert north, south, east and west p	hotos in the spaces provide	d from row 231-355 below a	and include details such a	as Time and Mapping Coord	inates in the following row.				
			_							
-		_		Easting						
<u>Datum</u>	0m Mark		one		_	Northing				
WGS 84			56	534205		6907702				
GDA 94	50m Mark	20	one		sting 4229	Northing 6907663				
Plot bearing		1	.45	Recorders	1	TR & BS				
Site description and Location (including details of discrete polygons within the assessment unit)										
	•		a henryii. Flora field sheet C							
Deat D. Notice Consider Bishares (#list assets below)									
Part D - Native Species Richness: (*list species belo	w)	Tree sr	pecies richness:							
Total number of species		1100 5	occies namessi	7						
Scientific Name		Corymbia henryi		Common Name						
Scientific Name	Corymbia intermedia			Common Name						
Scientific Name		Eucalyptus carnea								
Scientific Name		Eucalyptus seeana		Common Name						
Scientific Name		Lophostemon confertus		Common Name						
Scientific Name		Eucalyptus crebra		Common Name						
Scientific Name		Eucalyptus pilularis		Common Name						
Scientific Name				Common Name						
Scientific Name				Common Name						
Scientific Name				Common Name						
		Shrub s	species richness:							
Total number of species		Alabitania aveeles	1	6	1					
Scientific Name Scientific Name		Alphitonia excelsa		Common Name Common Name						
Scientific Name		Allocasuarina littoralis Acacia disparrima								
Scientific Name	lei	·								
Scientific Name		Leptospermum polygalifolium Cupaniopsis anacardioides								
Scientific Name	Callistemon salignus			Common Name Common Name						
Scientific Name	Cullisterion Sullyilus			Common Name						
Scientific Name				Common Name						
Scientific Name				Common Name						
Scientific Name				Common Name						
		Grass s	pecies richness:							
Total number of species				3						
Scientific Name		Cymbopgon refractus		Common Name						
Scientific Name Scientific Name		Entolasia stricta Imperata cylindrica		Common Name Common Name						
Scientific Name		imperata cyimanea		Common Name						
Scientific Name				Common Name						
Scientific Name				Common Name						
Scientific Name				Common Name						
Scientific Name				Common Name						
Scientific Name				Common Name						
Scientific Name				Common Name						
		Forbs and others (non	grass ground) species richne							
Total number of species		Lepidosperma laterale		9 Common Name	I	Dassansia straminas				
Scientific Name Scientific Name		Geodorum densiflorum		Common Name Common Name		Parsonsia straminea Glycine clandestina				
Scientific Name		Eustrephus latifolius		Common Name		diyene clanaesana				
Scientific Name		Lomandra filiformis		Common Name						
Scientific Name	E	Desmodium rhytidophyllum		Common Name						
Scientific Name		Goodenia rotundifolia		Common Name						
Scientific Name		Lobelia purpurascens		Common Name						
Part E - Non-Native Plant Cover: (*list species belo	w)									
Total percentage cover within plot				1.00%	•					
Scientific Name		Lantana camara		Common Name						
Scientific Name		Passiflora subpeltata		Common Name						
Scientific Name				Common Name						
Scientific Name Scientific Name				Common Name Common Name						
Scientific Name Scientific Name				Common Name Common Name						
Scientific Name				Common Name						
Scientific Name				Common Name						
Scientific Name				Common Name						
Scientific Name				Common Name						

Total Length of Course Woody Debris (Meters):	1260.00						
1	2.50	26	10.00				
2	0.50	27	5.00				
3	6.50	28	2.00				
4	5.50	29	8.00				
5	4.00	30	2.00				
6	2.00	31	3.00				
7	2.00	32	5.00				
8	1.00	33	2.00				
9	1.00	34					
10	2.00	35					
11	5.00	36					
12	11.00	37					
13	4.50	38					
14	1.00	39					
15	8.00	40					
16	5.00	41					
17	1.50	42					
18	4.00	43					
19	1.00	44					
20	2.00	45					
21	3.00	46					
22	8.00	47					
23	2.00	48					
24	3.00	49					
25	3.00	50					

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover)

	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Native perennial grass cover	1.00%	1.00%	2.00%	2.00%	5.00%	2.20%
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Organic Litter						

Part H- Number of large trees , tree canopy height, recruitment of woody perennial species:

Number of large eucalypt trees: 58 Number of large non eucalypt trees: 4 Total Number Large Trees: 62	Eucalypt Large tree DBH benchmark used :	46	Non- Eucalypt Large tree DBH benchmark used:	20
Total Number Large Trees: 62	Number of large eucalypt trees:	58		4
	Total Number Large Trees:		62	

_							
	Median Tree Canopy Height Measurements	Canopy:	22.00	Sub-canopy:	8.00	Emergent:	

Part I - Tree canopy cover, Shrub canopy cover

Tree canopy cover %	Canopy:	45.90%	Sub-canopy:	32.00%	Emergent:			
Shrub canopy cover %	nopy cover % 16.70%							

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present *If trees are in the same layer and continuous along the transect you can group them

Turry one context ocore						
ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors	
DESCRIPTION	3 - 26 - 100ha	2->10%-<50%	2 - >10% to 30% remna		3 - Within (whole or part)	
SCORE	5	2	2		6	

Case Reference	EPBC2020-8646	
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT
Total Area	70 011	

							Assessme	ent Unit Numbe	er		
		Habitat Quality Attributes	IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
P	art	Assessment Unit Area (ha)	13.95	13.95	10.28	10.28	7.655	7.655	3.347	3.347	3.347
		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
		Bioregion	Southeast	Southeast	Southeast	Southeast	Southeast	Southeast	Southeast Queensland	Southeast Queensland	Southeast Queensland
			Queensland	Queensland	Queensland	Queensland	Queensland	Queensland	Queerisianu	Queensianu	Queerisianu
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
		2. Native plant species richness									
		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
		3. Tree canopy height									
	tes	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
	on Attributes	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
		- Emergent Layer									
1	Condition	4. Tree canopy cover									
	e Cor	- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
	Site	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
		- Emergent Layer									
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
	tes	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00
	ttrib	12. Connectedness (fragmented)	5.00	5.00	0.00	2.00	2.00	2.00	0.00	2.00	4.00
2	ext A ttrib	13. Context (fragmented)	4.00	4.00	2.00	2.00	2.00	2.00	0.00	4.00	2.00
	S.	14. Distance from water (intact)									
	Sit	15. Ecological corridors	6.00	6.00	6.00	6.00	6.00	6.00	4.00	4.00	6.00

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.11.23 ASSESSMENT UNIT 3 (IAU $_3$ -AU $_5$)

Part C - Site	Data							
	Property	Impact Area Coomera Connector Stage 1			Date 8.4.21			
		· · · · · · · · · · · · · · · · · · ·						
	Assessment Unit:	Assessment U	nit Area (ha)	RE		Bioregion	Number	
	IAU3-AU5 12.11.23	7.65	5	12.11.23		Southeast (Queensland	
	Landscape Photo- Please attach or inse	rt north, south, east and west p	hotos in the spaces provide	ed from row 231-355 below a	and include details such a	s Time and Mapping Coor	dinates in the following row.	
<u>Datum</u>			Z	one .	Ea	sting	Northing	
WGS 84		0m Mark		56	53	4087	6907769	
GDA 94	▼	50m Mark	Zone			sting	Northing	
				170		4097	6907720	
	Plot bearing		170	Recorders		TR & BS		
		Site description	and Location (including det	ails of discrete polygons with	in the assessment unit)			
				and Corymbia henryii. Flora				
Dort D. No	ative Species Richness: (*list species belov							
Fait D- No	stive species Niciliess. (list species below	wj	Trees	species richness:				
Total number	r of species			•	9			
	Scientific Name		Eucalyptus pilularis		Common Name			
	Scientific Name		Corymbia intermedia		Common Name			
	Scientific Name		Corymbia henryi		Common Name			
	Scientific Name		Eucalyptus carnea		Common Name			
	Scientific Name Scientific Name	 	Eucalyptus tindaliae Eucalyptus seeana		Common Name Common Name			
	Scientific Name		Angophora leiocarpa		Common Name			
	Scientific Name		Eucalyptus crebra		Common Name			
	Scientific Name		Lophostemon confertus		Common Name			
	Scientific Name				Common Name			
		ľ	Shrub	species richness:				
Total number					3			
	Scientific Name Scientific Name		Allocasuarina littoralis		Common Name Common Name			
	Scientific Name	Acacia disparrima Alphitonia excelsa			Common Name			
	Scientific Name	Alphitonia excelsa			Common Name			
	Scientific Name				Common Name			
	Scientific Name			Common Name				
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name Scientific Name				Common Name Common Name			
	Scientific Name				Common Name			
			Grass	species richness:				
Total number	r of species			,	4			
	Scientific Name		Entolasia stricta		Common Name			
	Scientific Name		Cymbopogon refractus		Common Name			
	Scientific Name		Ottochla gracillima		Common Name			
	Scientific Name Scientific Name		Cynodon dactlyon		Common Name Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
			Forbs and others (nor	n grass ground) species richno	occ:			
Total number	r of species	1	TOTAS AND OTHERS (NO	r grass ground, species richin	6			
	Scientific Name		Lomandra longifolia		Common Name			
	Scientific Name		Lomandra filiformis		Common Name			
	Scientific Name		Lobelia purpurascens		Common Name			
	Scientific Name		Lepidosperma laterale		Common Name			
	Scientific Name		Goodenia rotundiflora		Common Name			
	Scientific Name Scientific Name		Geodorum densiflorum		Common Name Common Name			
	Scientific Name				Common Name			
Part E - No	on-Native Plant Cover: (*list species below	v)						
	Fotal percentage cover within plot				10.00%			
	Scientific Name		Lantana camara	-	Common Name			
	Scientific Name		Paspalum spp.		Common Name			
	Scientific Name		Ageratina adenophora		Common Name			
	Scientific Name				Common Name			
	Scientific Name Scientific Name				Common Name Common Name	-		
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			

Total Length of Course Woody Debris (Meters):	855.00						
1	6.00	26					
2	9.00	27					
3	4.50	28					
4	4.00	29					
5	1.00	30					
6	4.00	31					
7	3.00	32					
8	4.00	33					
9	1.00	34					
10	10.00	35					
11	4.00	36					
12	3.00	37					
13	1.00	38					
14	6.00	39					
15	4.00	40					
16	15.00	41					
17	3.00	42					
18	2.00	43					
19	1.00	44					
20		45					
21		46					
22		47					
23		48					
24	·	49					
25		50					

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover)

	Quadrat 1	Quaurat 2	Quadrat 5	Quaurat 4	Quaurat 5	Average
Native perennial grass cover	5.00%	0.00%	20.00%	5.00%	2.00%	6.40%
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Organic Litter	95.00%	50.00%	75.00%	90.00%	96.00%	81.20%

Part H- Number of large trees , tree canopy height, recruitment of woody perennial species:

Eucalypt Large tree DBH benchmark used :	47	Non- Eucalypt Large tree DBH benchmark used:	
Number of large eucalypt trees:	35	Number of large non eucalypt trees:	3
Total Number Large Trees:		38	

Median Tree Canopy Height Measure	ements	Canopy:	21.00	Sub-canopy:	7.00	Emergent:	
Number of ecologically dominant layer species regenerating: 100							
Number of ecologically dominant layer species regenerating.						100	

Part I - Tree canopy cover, Shrub canopy cover

Tree canopy cover %	Canopy:	55.80%	Sub-canopy:	6.00%	Emergent:	
Shrub canopy cover %	15.00%					

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present *If trees are in the same layer and continuous along the transect you can group them

ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors
DESCRIPTION	3 - 26 - 100ha	2 ->10% -<50%	2 - >10% to 30% remna		3 - Within (whole or part)
SCORE	5	2	2		6

Case Reference	EPBC2020-8646	
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.
Total Area	78.811	

Total Area		78.811									
							Assessm	nt Unit Numb	er		
Part		Habitat Quality Attributes	IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
		Assessment Unit Area (ha)	13.95	13.95	10.28	10.28	7.655	7.655	3.347	3.347	3.347
		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
		Bioregion	Southeast Queensland	Southeast Queensland	Southeast Queensland						
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
		2. Native plant species richness									
		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
		3. Tree canopy height									
	tes	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
	Attributes	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
1	n A	- Emergent Layer									
-	Condition	4. Tree canopy cover									
	e Co	- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
	Site	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
		- Emergent Layer									
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
	tes	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00
	Attributes	12. Connectedness (fragmented)	5.00	5.00	0.00	2.00	2.00	2.00	0.00	2.00	4.00
2		13. Context (fragmented)	4.00	4.00	2.00	2.00	2.00	2.00	0.00	4.00	2.00
	e Context	14. Distance from water (intact)									
	Site	15. Ecological corridors	6.00	6.00	6.00	6.00	6.00	6.00	4.00	4.00	6.00
				·	· ·	· ·		·	·	·	

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: ${\tt 12.11.23}$ ASSESSMENT UNIT ${\tt 3}$ (IAU ${\tt 3}$ -AU6)

Part C - Site Data							
Property	Impact A	rea Coomera Connector Stag	e 1	Date	19.4.21		
Assessment Unit:				Bioregion Number			
IAU3-AU6 12.11.23	7.65	55	12.11.23	Southeast Queensland			
Landscape Photo- Please attach or inse	ert north, south, east and west p	hotos in the spaces provided	from row 231-355 below a	and include details such as	Time and Mapping Coor	dinates in the following row.	
D-4		1 7-	Foot	Al	Newhiles		
Datum	0m Mark	Zone 56		Eas 534		Northing 6907041	
WGS 84 GDA 94		Zoi		Eas		Northing	
GDA 54	50m Mark	201	ic .	534		6907003	
Plot bearing	<u> </u>	116		Recorders		TR & BS	
			-				
	Site description	and Location (including detai	Is of discrete polygons with	nin the assessment unit)			
		lyptus pilularis. Small draina			3.		
	Dominated by Edea	nypeus phuluris. Sinuir urum	age mic dround the dom in	idik. Flora fiela sileet ees.	J.		
'						·	
Part D - Native Species Richness: (*list species belo	w)						
		Tree sp	ecies richness:	_			
Total number of species				7			
Scientific Name		Eucalyptus pilularis		Common Name			
Scientific Name		Corymbia intermedia		Common Name			
Scientific Name		Lophostemon confertus		Common Name			
Scientific Name		Lophostemon suaveolens		Common Name			
Scientific Name		Melaleuca quinquenervia		Common Name			
Scientific Name		Allocasuarina littoralis		Common Name			
Scientific Name		Acacia disparrima		Common Name			
Scientific Name				Common Name	-		
Scientific Name				Common Name			
Scientific Name				Common Name			
		Shrub s	pecies richness:				
Total number of species				4			
Scientific Name		Melaleuca bracteata		Common Name			
Scientific Name		Melaleuca salicina		Common Name			
Scientific Name		Alphitonia excelsa		Common Name			
Scientific Name		Hovea acutifolia		Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
T-4-1		Grass s	pecies richness:	4			
Total number of species Scientific Name		Fatalasia staleta		4			
Scientific Name		Entolasia stricta Themeda triandra		Common Name			
Scientific Name		Cymbopogon refractus		Common Name			
Scientific Name		Imperata cylindrica		Common Name			
Scientific Name		ппрегаса суппанса		Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name	i		
Scientific Name				Common Name			
	•				•		
		Forbs and others (non	grass ground) species richn	ess:			
Total number of species				5			
Scientific Name		Lepidosperma laterale		Common Name			
Scientific Name		Dianella caerulea		Common Name			
Scientific Name		Lobelia purpurascens		Common Name			
Scientific Name		Lomandra longifolia		Common Name			
Scientific Name		Goodenia rotundifolia		Common Name			
Scientific Name		· · · · · · · · · · · · · · · · · · ·		Common Name			
Scientific Name				Common Name			
Part E - Non-Native Plant Cover: (*list species below	v)						
Total percentage cover within plot	İ			2.00%			
Scientific Name	Se	enna pendula var. glabrata		Common Name			
Scientific Name		Passiflora suberosa		Common Name			
Scientific Name		Lantana camara		Common Name			
Scientific Name		Paspalum spp.		Common Name			
Scientific Name				Common Name			
Scientific Name	l			Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			

Total Length of Course Woody Debris (Meters):		1270.00	
1	14.00	26	
2	15.00	27	
3	24.00	28	
4	1.00	29	
5	2.00	30	
6	6.00	31	
7	4.00	32	
8	10.00	33	
9	20.00	34	
10	3.00	35	
11	2.00	36	
12	1.00	37	
13	3.00	38	
14	8.00	39	
15	2.00	40	
16	0.50	41	
17	1.50	42	
18	3.00	43	
19	2.00	44	
20	3.00	45	
21	2.00	46	
22		47	
23		48	
24		49	
25		50	

	4	4	4		4	111-11-80
Native perennial grass cover	2.00%	40.00%	5.00%	0.00%	10.00%	11.40%
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Organic Litter	80.00%	60.00%	50.00%	95.00%	90.00%	75.00%

Part H- Number of large trees , tree canopy height, recruitment of woody perennial species:

	neight, rectulation woody perchinar species.						
Eucalypt Large tree DBH benchmark used :	47	Non- Eucalypt Large tree DBH benchmark used:	27				
Number of large eucalypt trees:	19	Number of large non eucalypt trees:	5				
Total Number Large Trees:	24						

Median Tree Canopy Height Measurements	Canopy:	24.00	Sub-canopy:	12.00	Emergent:	
	•				•	•
Number of ecologically dominar	nt layer species regenerating:				100	

Part I - Tree canopy cover, Shrub canopy cover

Tree canopy cover %	Canopy:	39.50%	Sub-canopy:	10.00%	Emergent:		
Shrub canopy cover %		9.50%					

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present *If trees are in the same layer and continuous along the transect you can group them

Part J - Site Context Score

ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors
DESCRIPTION	2 - 5 - 25ha	2 - >10% - <50%	2 - >10% to 30% remna		3 - Within (whole or part)
SCORE	2	2	2		6

Case Reference	EPBC2020-8646					
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.				
Total Area	70 011					

							Assassma	ent Unit Numbe	•		
		Habitat Quality Attributes	IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
Pa	art	Assessment Unit Area (ha)	13.95	13.95	10.28	10.28	7.655	7.655	3.347	3.347	3.347
		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
		Bioregion	Southeast Queensland	Southeast Queensland	Southeast Queensland						
			Queensianu	Queensianu	Queensianu	Queensianu	Queensianu	Queensianu	queensiana	Queensuna	Queensianu
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
		2. Native plant species richness									_
		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
		3. Tree canopy height									-
	sə:	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
	Site Condition Attributes	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
	n At	- Emergent Layer									
1	ditio	4. Tree canopy cover									
	con	- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
	Site	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
		- Emergent Layer									
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
	tes	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00
	ext A ttrib	12. Connectedness (fragmented)	5.00	5.00	0.00	2.00	2.00	2.00	0.00	2.00	4.00
2		13. Context (fragmented)	4.00	4.00	2.00	2.00	2.00	2.00	0.00	4.00	2.00
	So	14. Distance from water (intact)									
	ij	15. Ecological corridors	6.00	6.00	6.00	6.00	6.00	6.00	4.00	4.00	6.00

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.3.11/20 ASSESSMENT UNIT 4 (IAU4-AU7)

Part C - Site I	Data							
	Property	Impact A	rea Coomera Connector Sta	σe 1	Date			
	Floperty	III pact Ai	ea coomera connector sta	8c 1	Date	21.4.21		
	Assessment Unit:	Assessment Un		RE		Bioregion		
	IAU4-AU7 REGROWTH 12.3.11	3.34	7	12.3.11 REGROWTH		Southeast C	ueensland	
	Landscape Photo- Please attach or inse	rt north, south, east and west p	hotos in the spaces provide	d from row 231-355 below a	and include details such as	Time and Mapping Coor	dinates in the following row.	
Datum			Zo	one	East	ing	Northing	
1		0m Mark		56	532		6917493	
WGS 84				one	East			
GDA 94	▼	50m Mark			532		Northing 6917528	
			3	56		479		
	Plot bearing				Recorders		TR	
		Site description a	and Location (including deta	ails of discrete polygons with	nin the assessment unit)			
		Blue	Gum with weed lower strat	a. Small drain. Flora field si	heet CC-21-J.			
l							I	
Part D - Na	tive Species Richness: (*list species belov	v)						
			Tree s	species richness:				
Total number					2			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name							
					Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
			Shrub	species richness:				
Total number	of species				0			
	Scientific Name		Eucalyptus tereticornis		Common Name			
	Scientific Name		Eucalyptus siderophloia		Common Name			
	Scientific Name		/,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
		•				•		
			Grass :	species richness:				
Total number	of species				0			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
					4			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
			Forbs and others (non	n grass ground) species richn	ess:			
Total number	of species			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3			
Total named	Scientific Name		cyperus spp		Common Name			
			Parsonsia straminae					
	Scientific Name				Common Name			
	Scientific Name		Lomandra longifolia		Common Name			
	Scientific Name				Common Name	lame		
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
Part E - Noi	n-Native Plant Cover: (*list species below	r)						
	Total percentage cover within plot				95.00%			
	Scientific Name		Singapore daisy		Common Name			
	Scientific Name		Blue Billygoat Weed		Common Name			
	Scientific Name		Columbian Waxweed		Common Name			
	Scientific Name		Cobblers Pegs		Common Name			
	Scientific Name		Devils Fig		Common Name			
	Scientific Name		Cocos Palm		Common Name			
	Scientific Name		Pigeon Grass		Common Name			
	Scientific Name		Balloon Cotton		Common Name			
	Scientific Name		Latana		Common Name			
	Scientific Name		Silverleaf Desmodium		Common Name			

Total Length of Course Woody Debris (Meters):		20.00	
1	0.50	26	
2	1.50	27	
3		28	
4		29	
5		30	
6		31	
7		32	
8		33	
9		34	
10		35	
11		36	
12		37	
13		38	
14		39	
15		40	
16		41	
17		42	
18		43	
19		44	
20		45	
21		46	
22		47	
23		48	
24		49	
25	_	50	

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover) | Quadrat 1 | Quadrat 2 | Quadrat 3 | Quadrat 4 | Quadrat 5 | Average

						3.
Native perennial grass cover	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Organic Litter	5.00%	5.00%	15.00%	0.00%	35.00%	12.00%

Part H- Number of large trees , tree canopy neight, r	ecruitment of woody perennal species.		
Eucalypt Large tree DBH benchmark used :	49	Non- Eucalypt Large tree DBH benchmark used:	36
Number of large eucalypt trees:	2	Number of large non eucalypt trees:	0
Total Number Large Trees:		2	

Number of ecologically dominan	nt layer enecies regenerating:				33	
Median Tree Canopy Height Measurements	Canopy:	18.00	Sub-canopy:	8.00	Emergent:	

Part I - Tree canopy cover, Shrub canopy cover

Tr	ee canopy cover %	Canopy:	18.00%	Sub-canopy:	8.00%	Emergent:	
Sh	rub canopy cover %				0.00%		

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present "If trees are in the same layer and continuous along the transect you can group them

Part J - Site Context Score

ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors
DESCRIPTION	1 - <5ha	1 - 0% - 10% connection	1 - <10% remnant		2 - Sharing a common boundary
SCORE	0	0	0		4

Case Reference	EPBC2020-8646	
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.
Total Area	78.811	

IAU4-AU8 REGROWTH 12.3.20

3.347 12.3.20 REGROWTH

100.00%

250.00%

100.00%

50.00%

100.00%

125.00%

18.57%

415.00%

25.00%

22.47%

10.00%

2.00

4.00

4.00

IAU4-AU9 REMNANT 12.3.11 3.347

12.3.11

100.00%

142.86%

100.00%

25.00%

32.00%

95.65%

150.00%

91.96%

109.09%

70.91% 98.38% 53.33%

10.81%

25.00%

7.00

4.00

2.00

TOTAL		/8.811							
		Habitat Quality Attributes	IAU1-AU1	IAU1-AU2	IAU2-AU3	IAU2-AU4	IAU3-AU5	IAU3-AU6	IAU4-AU
			12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	REGROW1 12.3.11
Pa	art	Assessment Unit Area (ha)	13.95	13.95	10.28	10.28	7.655	7.655	3.347 12.3.11
		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	REGROW
		Bioregion	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southea: Queenslar
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%
		2. Native plant species richness							
		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%
		3. Tree canopy height							
	tes	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%
	Site Condition Attributes	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.009
	n At	- Emergent Layer							
1	ditio	4. Tree canopy cover							
	Š	- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%
	Site	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%
		- Emergent Layer							
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%
	es	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00
	tribut	12. Connectedness (fragmented)	5.00	5.00	0.00	2.00	2.00	2.00	0.00
2	ext A	13. Context (fragmented)	4.00	4.00	2.00	2.00	2.00	2.00	0.00
	Site Context Attributes	14. Distance from water (intact)							
	Site	15. Ecological corridors	6.00	6.00	6.00	6.00	6.00	6.00	4.00

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.3.11/20 ASSESSMENT UNIT 4 (IAU4-AU8)

Part C - Site Data						
	Impact A	ea Coomera Connector Stag	n 1	Date		
Property	IIIIpact Ai	ea Coomera Connector Stag	eı	Date	21.4.21	
Assessment Unit:	Assessment Un	it Area (ha)	RE		Bioregion	Number
IAU4-AU8 REGROWTH 12.3.20	3.34		12.3.20 REGROWTH		Southeast C	
Landscape Photo- Please attach or inser	t north, south, east and west pl	notos in the spaces provided	from row 231-355 below a	and include details such a	s Time and Mapping Coor	dinates in the following row.
<u>Datum</u>	0m Mark	Zor			sting	Northing
WGS 84		56 Zor			2982 sting	6914745 Northing
GDA 94	50m Mark	56			3030	6914753
Plot bearing		63		Recorders		TR
					l.	<u>'</u>
	Site description a	nd Location (including detai	ls of discrete polygons with	nin the assessment unit)		
	Wattle do	minated with Swamp Oak a	nd Euclaypt Regrowth. Flora	a field sheet B26.		
Part D - Native Species Richness: (*list species belov	v)					
		Tree sp	ecies richness:			
Total number of species				10		
Scientific Name		Eucalyptus tereticornis		Common Name		
Scientific Name Scientific Name		Casuarina glauca		Common Name		
Scientific Name Scientific Name		Corymbia tessellaris Acacia disparrima		Common Name Common Name		
Scientific Name Scientific Name		Alphitonia excelsa		Common Name		
Scientific Name		Lophostemon confertus		Common Name		
Scientific Name		Corymbia intermeida		Common Name		
Scientific Name		Angophora leiocarpa		Common Name		
Scientific Name		Melaleuca quinquenervia		Common Name		
Scientific Name		Eucalyptus siderophloia		Common Name		
		Shrub s	pecies richness:			
Total number of species Scientific Name		Breynia oblongifolia		5 Common Name		
Scientific Name		Acacia podalyriifolia		Common Name		
Scientific Name		Acacia leiocalyx		Common Name		
Scientific Name		Callistemon salignus		Common Name		
Scientific Name	(Cupaniopsis anacardioides		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
		Grass sa	pecies richness:			
Total number of species		3		2		
Scientific Name		Themeda triandra		Common Name		
Scientific Name		Entolasia stricta		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name Scientific Name				Common Name Common Name		
Scientific Name Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
		Forbs and others (non	grass ground) species richno			
Total number of species				4	1	
Scientific Name		Parsonsia straminae		Common Name		
Scientific Name Scientific Name		Lomandra longifolia Eustrephus latifolius		Common Name Common Name		
Scientific Name		Lobelia purpurascens		Common Name		
Scientific Name		Loberta parparascens		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		<u> </u>
	<u> </u>					
Part E - Non-Native Plant Cover: (*list species below)					
Total percentage cover within plot		7/		10.00%		abadas mass
Scientific Name Scientific Name		Zig zag wattle wattle		Common Name Common Name		rhodes grass singapore daisy
Scientific Name		lantana		Common Name		Elastic grass
Scientific Name		passionflower		Common Name		O
Scientific Name		asparagus fern		Common Name		
Scientific Name		cocos palm		Common Name		
Scientific Name		slash pine		Common Name		
Scientific Name		уисса		Common Name		
Scientific Name		pigeon grass		Common Name		
Scientific Name	1	paspalum/vasey grass		Common Name		

Part F - Coarse Woody Debri	: (*list lengths of individual logs in meters)
-----------------------------	--

Total Length of Course Woody Debris (Meters):		200.00	
1	4.00	26	
2	2.50	27	
3	1.50	28	
4	2.00	29	
5	1.00	30	
6	5.00	31	
7	1.00	32	
8	3.00	33	
9		34	
10		35	
11		36	
12		37	
13		38	
14		39	
15		40	
16		41	
17		42	
18		43	
19		44	
20		45	
21		46	
22		47	
23		48	
24		49	
25		50	

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover)

	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Native perennial grass cover	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%
Organic Litter	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average

Part H- Number of large trees , tree canopy height, recruitment of woody perennial species:

Eucalypt Large tree DBH benchmark used :	, , , , , , , , , , , , , , , , , , , ,	30		Non- Eucalypt Large tree DBH benchmark used:		30
Number of large eucalypt trees:		Number of large non eucalypt trees:				8
Total Number Large Trees:				31		
Median Tree Canopy Height Measurements	Canopy:	16.00	Sub-canopy:	10.00	Emergent:	

Number of ecologically dominant layer species regenerating:	100
	•

Part I - Tree canopy cover, Shrub canopy cover

Part 1 - Tree canopy cover, Shrub canopy cover							
Tree canopy cover %	Canopy:	13.00%	Sub-canopy:	83.00%	Emergent:		
Shrub canopy cover %	7.80%						

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present "If trees are in the same layer and continuous along the transect you can group them

Part J - Site Context Score

ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors
DESCRIPTION	1 - <5ha	2 - >10% - <50%	3 - >30-75% remnant		2 - Sharing a common boundary
SCORE	0	2	4		4

Case Reference	EPBC2020-8646	
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.
Total Area	78.811	

Tota											
							Assessme	ent Unit Numbe			
		Habitat Quality Attributes	IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
Part		Assessment Unit Area (ha)	13.95	13.95	10.28	10.28	7.655	7.655	3.347	3.347	3.347
		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
		Bioregion	Southeast Queensland	Southeast Queensland	Southeast Queensland						
			- Control	<u> </u>	4.000.000.000	4	4	4.00	4	- Caramana	Q.000
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
		2. Native plant species richness									
		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
		3. Tree canopy height									
	rtes	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
	Attributes	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
1	on A	- Emergent Layer									
	Condition	4. Tree canopy cover									
	Site Co	- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
	is	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
		- Emergent Layer									
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
	tes	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00
	Attributes	12. Connectedness (fragmented)	5.00	5.00	0.00	2.00	2.00	2.00	0.00	2.00	4.00
2	Context A	13. Context (fragmented)	4.00	4.00	2.00	2.00	2.00	2.00	0.00	4.00	2.00
	e Con	14. Distance from water (intact)									
	Site	15. Ecological corridors	6.00	6.00	6.00	6.00	6.00	6.00	4.00	4.00	6.00

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.3.11/20 ASSESSMENT UNIT 4 (IAU4-AU9)

Part C - Site I	Data									
Property Impact Area Coomera Connector Stage 1					Date	29-4-21				
		pact Al			29-4-21					
	Assessment Unit:	Assessment Un	it Area (ha)	RE	Bioregion Number					
	IAU4-AU9 REMNANT 12.3.11	3.34		12.3.11	Southeast Queensland					
	Landscape Photo- Please attach or insert	north, south, east and west pho	tos in the spaces provided f	rom row 231-355 below an	d include details such as	Time and Mapping Coordi	nates in the following row.			
				1						
<u>Datum</u>		0m Mark	Zo	ne	Ea	sting	Northing			
WGS 84		OIII Wark	5	6	53	3689	6909494			
GDA 94		50m Mark	Zo			sting	Northing			
			5	6		3711	6909579			
	Plot bearing				Recorders		TR & KK			
		Clas describations		IIf -ll	-l 4h 4\					
	Description		and Location (including deta							
	Proximati	e to Coombabah Creek. Subject t	o minor ponding. Blue Gum	and Swamp Oak co-domina	int species with wattle n	egrowth also common.				
Part D - Na	tivo Species Pichpess: (*list species heles	**								
Part D - Na	Part D - Native Species Richness: (*list species below) Tree species richness:									
Total number	of species		1100 5	recies riciniess.	10					
	Scientific Name		Eucalyptus tereticornis		Common Name					
	Scientific Name		Eucalyptus microcorys		Common Name					
	Scientific Name		Casuarina glauca		Common Name					
	Scientific Name		Eucalyptus siderophloia		Common Name					
	Scientific Name		Acacia disparrima		Common Name					
	Scientific Name		Acacia melanoxylon		Common Name					
	Scientific Name		Callistemon salignus		Common Name					
	Scientific Name		felaleuca quinquenervia		Common Name					
	Scientific Name		Lophostemon confertus		Common Name					
	Scientific Name Myrsine variabilis				Common Name					
Tatal assault as	of annual and	<u> </u>	Shrub s	pecies richness:	7					
Total number	Scientific Name		Ficus watkinsiana		Common Name					
	Scientific Name		Breynia oblongifolia		Common Name					
	Scientific Name	Macaranga tanarius			Common Name					
	Scientific Name		Glochidion sumatranum		Common Name					
	Scientific Name	Cryptocarya triplinervis			Common Name					
	Scientific Name	Lej	otospermum polygalifolium		Common Name					
	Scientific Name	С	upaniopsis anacardioides		Common Name					
	Scientific Name				Common Name					
	Scientific Name				Common Name					
	Scientific Name				Common Name					
		<u> </u>	Grass s	pecies richness:	3					
Total number	or species Scientific Name		Oplismenus aemulus		Common Name					
	Scientific Name		Ottochloa gracillima		Common Name					
	Scientific Name		Themeda triandra		Common Name					
	Scientific Name				Common Name					
	Scientific Name				Common Name					
	Scientific Name				Common Name					
	Scientific Name				Common Name					
	Scientific Name				Common Name					
	Scientific Name				Common Name					
	Scientific Name				Common Name					
			Forbs and others (non	grass ground) species richno	oss.					
Total number	of species		Torus and others (non	grass ground, species richin	8					
TOTAL HAMBET	Scientific Name		Goodenia rotundifolia		Scientific Name		Persicaria attenuata			
	Scientific Name		Maclura cochinchinensis		Scientific Name	P:	seuderanthemum variabile			
	Scientific Name		Parsonsia straminea		Common Name					
	Scientific Name		Lobelia purpurascens		Common Name					
	Scientific Name		Lomandra longifolia		Common Name					
	Scientific Name		Hardenbergia violacea	· · ·	Common Name					
	Scientific Name		Smilax australis		Common Name					
	n-Native Plant Cover: (*list species below	/) 			35.00%					
Т	otal percentage cover within plot		Manaifora !!!		25.00%		Colonium pigrum			
	Scientific Name Scientific Name		Mangifera indica Lantana camara		Scientific Name Scientific Name		Solanum nigrum Asparagus virgatus			
	Scientific Name		Passiflora suberosa		Common Name					
	Scientific Name		Ageratina adenophora		Common Name					
	Scientific Name	Se	nna pendula var. glabrata		Common Name					
	Scientific Name		Ageratum houstonianum		Common Name					
	Scientific Name		Setaria sphacelata		Common Name					
	Scientific Name		Senecio madagascariensis		Common Name					
	Scientific Name		Cuphea carthagenensis		Common Name					
	Scientific Name	1	Solanum torvum		Common Name					

Total Length of Course Woody Debris (Meters):		60.00	
1	1.00	26	
2	4.00	27	
3	1.00	28	
4		29	
5		30	
6		31	
7		32	
8		33	
9		34	
10		35	
11		36	
12		37	
13		38	
14		39	
15		40	
16		41	
17		42	
18		43	
19		44	
20		45	
21		46	
22		47	
23		48	
24		49	
25		50	

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover) | Quadrat 1 | Quadrat 2 | Quadrat 3 | Quadrat 4 | Quadrat 5 |

							- 10-
Ì	Native perennial grass cover	40.00%	5.00%	96.00%	0.00%	15.00%	31.20%
J	Organic Litter	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average

Part H- Number of large trees , tree canopy height, recruitment of woody perennial species:

Eucalypt Large tree DBH benchmark used :		49		Non- Eucalypt Large tree DBH benchmark used:		36	
Number of large eucalypt trees:	14			Number of large non eucalypt trees:		2	
Total Number Large Trees:				16			
Median Tree Canopy Height Measurements	Canopy:	22.00	Sub-canopy:	12.00	Emergent:		

Number of ecologically dominant layer species regenerating:	100

Part I - Tree canopy cover, Shrub canopy cover

Tree canopy cover 70	сапору.	31.30%	12.50%					
Tree canopy cover %	Canopy:	51.50%	Sub-canopy:	36.00%	Emergent:			
rarti- free canopy cover, simulo canopy cover								

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present *If trees are in the same layer and continuous along the transect you can group them

Part J - Site Context Score

ATTRIBUTE	Size of Patch	Connectedness	Context	Distance to Permanent Water	Ecological Corridors
DESCRIPTION	4 - 101-200ha	3 - 50%-75% connection	2 - >10% to 30% remna		3 - Within (whole or part)
SCORE	7	4	2		6

Case Reference	EPBC2020-8646	
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.
Total Area	78.811	

Tota	Area	78.811					
		Habitat Quality Attributes					
Pa	art	Assessment Unit Area (ha)					
		Regional Ecosystems					
		Bioregion					
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating) Native plant species richness					
		- Trees					
		- Shrubs					
		- Grasses					
		- Forbs					
		3. Tree canopy height					
	tes	- Canopy Layer					
	Site Condition Attributes	- Sub-Canopy Layer					
1	on At	- Emergent Layer					
	nditi	4. Tree canopy cover					
	te Co	- Canopy Layer					
	Si	- Sub-Canopy Layer					
		- Emergent Layer					
		5. Shrub canopy cover					
		6. Native perennial grass cover					
		7. Organic litter					
		8. Large trees					
		9. Coarse woody debris (Meters)					
		10. Weed cover					
	S	11. Size of patch (fragmented)					
	ribute	12. Connectedness (fragmented)					
2	Site Context Attributes	13. Context (fragmented)					
	Conte	14. Distance from water (intact)					
	Site (15. Ecological corridors					

				Assessme	ent Unit Numbe	er		
IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
13.95	13.95	10.28	10.28	7.655	7.655	3.347	3.347	3.347
12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland
100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00
5.00	5.00	0.00	2.00	2.00	2.00	0.00	2.00	4.00
4.00	4.00	2.00	2.00	2.00	2.00	0.00	4.00	2.00
6.00	6.00	6.00	6.00	6.00	6.00	4.00	4.00	6.00

Appendix F2: Koala habitat – summarised HQS data

3.2.2 Koala Impact Assessment Table

	-			· ·	· · ·	COND	5 TO 7																				
			12.11.24 Remnant						12.11.25 Remnant						E12.11.23 Remnant								12.3.11/20 Remna				
Benchmark					Average % Av	erage Benchmark															Benchmark						Average %
12.11.24	Raw Data % B	sencimark score	Raw Data % Be	incliniark score	Denchmark S	core 12.11.25	Naw Data % Bellti	illiark Score	Naw Data % Benchi	lark Score	benchmark 30	DIE 12.11.23	Raw Data % B	eliclimark score	NAW DAIA 76 BEIL	chinark score	Denchmark SC	DIE 12.3.11	Raw Data % Bent	.IIIIIark Score	12.3.20 Naw	Data % Bellch	mark score	12.3.11 Ra	aw Data % Benci	nark score	benchmark
10'	100	100.0	5 100.0	100.0	100.0	5 100	75	75.0 3	100	100.0 5	87.5	5 1	.00 100	100.0 5	100	100.0 5	100.0	5 10	0 33	33.0 3	100	100	100.0 5	100	100	100.0 5	77.7
10	8	80.0 2.5	.5 6	60.0 2.5	5 70.0	2.5 7	13	185.7 5			142.9	5	8 9		7		100.0	5	7 2	28.6 2.5	4	10	250.0 5	1 1	10	142.9 5	140.5
1	6	75.0 2.5	.5 5		5 68.8	2.5 8	5		6	75.0 2.5	68.8	2.5	12 3	25.0 2.5	4	33.3 2.5		2.5	7 0	0.0 0	4	5	125.0 5	7	7	100.0 5	75.0
	3	33.3 2.5	.5 3		.5 33.3	2.5 9	4		3	33.3 2.5	38.9	2.5	5 4	80.0 5	4	80.0 2.5		2.5 1	2 0	0.0	2	2	100.0 5	12	3	25.0 2.5	41.7
17	7		.5 8			2.5 13	10		9		73.1	2.5	15 6	40.0 2.5	5		36.7	2.5 2	5 3	12.0 0	8	4		25	8		31.3
2f	22		5 22.0			5 22	20		22			5	29 21	72.4 5	24			5 2	3 18	78.3 5	16	16		23	22		91.
10	10	100.0	5 10.0	100.0	5 100.0	5 9	10	111.1 5	8		100.0	5	10 7	70.0 5	12	120.0 5	95.0	5	8 8	100.0 5	8	10	125.0 5	8	12	150.0 5	125.
15	16.0	88.9	5 16.0	88.9	5 88.9	5 15.5	15.0	96.8 5	15	96.8 5	96.8	5 1	9.5 14	71.8 5	18	92.3 9	82.1	5 15.5	5 13	83.9 5	12	13	108.3 5	15.5	17	109.7 5	100.
77	2 55	76.4	5 66.3	92.1	5 84.2	5 40	36.4	91.0 5	45.9	114.8 5	102.9	5	63 55.8	88.6 5	39.5	62.7 5	75.6	5 5	6 18	32.1 2	70	13	18.6 2	56	51.5	92.0 5	47.6
42	11	25.6 2	2 16.3	37.9	2 31.7	2 5	52.3	1046.0 3	32	640.0 3	843.0	3	8 6	75.0 5	10	125.0 5	100.0	5 3	3 8	24.2 2	20	83	415.0 3	33	36	109.1 5	182.
57.5	33	57.4	5 41.3	71.8	5 64.6	5 22.5	44.4	197.1 5	39.0	173.1 5	185.1	5 3	5.5 30.9	87.0 5	24.75	69.7 5	78.4	5 44.5	5 13	29.2 2	45	48	106.7 5	44.5	43.75	98.3 5	78.:
, ž	6.9	98.6	5 6.6	94.3	96.4	5 4	15.8	395.0 3	16.7	417.5 3	406.3	3	12 15	125.0 5	9.5	79.2 5	102.1	5 2	0 0	0.0 0	15	7.8	52.0 5	20	12.5	62.5 5	38.2
39	4.2	10.8	1 6.6	16.9	1 13.8	1 20	16.4	82.0 3	2.2	11.0 1	46.5	1	21 6.4	30.5 1	11.4	54.3 3	42.4	1 4	4 0	0.0 0	20	5.0	25.0 1	44	31.2	70.9 3	32.0
45	95.8	212.9	3 93.4	207.6	3 210.2	3 65	83.6	128.6 5	95.4	146.8 5	137.7	5	56 81.2	145.0 5	75	133.9 5	139.5	5 3	7 12	32.4 3	30	77	256.7 3	37	36.4	98.4 5	129.2
3.7	11	33.3	5 30.0	90.9 10	0 62.1	10 23	38	165.2 15			217.4	15	14 38	271.4 15	24	171.4 15	221.4	15 3	0 2	6.7 5	165	31	18.8 5	30	16	53.3 10	26.3
546	541	99.1	5 470.0	86.1	92.6	5 100	470	470.0 2	1260 1	260.0 2	865.0	2 4	80 855	178.1 5	1270	264.6 2	221.4	2 55	5 20	3.6 0	890	200.0	22.5 2	555	60	10.8 2	12.3
, c	3	10	10 5.0		5 4.0	10 0	2	10	1	10	1.5	10	0 10	5	2	10	6.0	5	0 95	0	o	10	5	5 0	25	5	43.3
			5		4	5		10		10		10.0		- 5		10		7.5		1	-		1	4 +			
		10	10	10	.0	10		10		10		10.0		10		10		10	_	1			1	4 +		10	,
				69										81		85										75	
		100		100		100		100		100	10	00		100		100	1	00		100			100			100	
		2.07		2.07		2.22		2.51		2.51	2.	51		2.43			2	34		0.68			1.67			2.25	
											Ave	rage					Ave	rage									
	Valu	ue Score	Value	Score			Value	Score	Value	Score	Average scr	nre	Vali	ue Score	Value	Score			Value	Score		Value	Score		Value	Score	Average
-	Valid	Score	Value	3.016	1		vuide		YUIUC		3.0		Valid	5.0.0	- Cuide		30		- value	2010		Fuide	2000		Tuiuc		
		49 5	5	13.24	2 31.1	5		443.88 10		28.07 5	236.0	10	1 1	28.07 5		443.88 10	235.98	10		74.45	5		70.44 5	1 1		70.44 5	71.78
						-																		1			
		0.0	1	6.63	3.3			14.95		48.23	31.6			21.79		30.84	26.31			0.00			0.00	1 1		0.00	0.00
		100.0 2	2	93.37	2 96.7	2				22.16 2	53.6	2					59.42	2		100.00	2		100.00 2	1 1		94.64 2	98.21
																1 1								1 1			
		4.27		1.56	2.9			23.25		20.95	22.1			19.58		30.91	25.25			2.70			3.18			12.75	6.21
		57.85 2	2	58.84	2 58.3	2		71.54 4			70.5	4		70.87 4		61.22 4	66.05	4		38.85	2		72.86 2			79.60 4	63.77
		6	6	6	6	6		6		6		6		6		6		6		4			4			6	
		5	5		5	5		5		5		5		5		5		5		5			5	1 1		5	
		5	5		5	5		5		5		5		5		5		5		0			1			4	
		7	7		7	7		10		10		10		10		10		10		4			10			10	
																1 1											1
/	l .	32		29							39	9.5		37		42			1				29	1 1		36	/
/ /	l .	56						56								56	4	i6	1	56			56	1 1		56	
		1.71		1.55		L.63		2.25		1.98	2.	12		1.98		2.25	2	12		0.70			1.55			1.93	
March de 18							Pl-1					Wasterday of						Wasta taren	21					ant	PI-	$\overline{}$	$\overline{}$
	—	PIUL I	PIC				PIOL	See	PIOL 4	Icana			·y	FIOLS	PIOL	Contro			PIO			PIOL			PIOL	- Same	
J.25/11a		score		score	_	core 0.25/na		score		score	300	0.23/na		Score		score	30	ore 0.23/na		score			Score			Score	
		10		10		10		10		10		10		10		10		10		10			10	1 1		10	i .
_		10				10		10		10		10		10		10		10		15	_		10	1 1		- 3	
1.20		20	an an	2		20 0.46		20		20		20 0	22	20		20		20 120		30	_		30	1 1		20	
			~			5 0.40		30		~		5 0.	5	30		~		5	-	~	_		5	1 1		7	
		60	1	60	1	60		60		60		55		60		60		30		60			60	1		60	
/										70														1 1			4
		3.43		5.45				3,43		3.43				3.43		3.43				3.43			3.43			3.43	
IAU-1	IAU-2	IAU-3 IAU-4 RE											1														
			Final																								
Remnant																											
2.2	2 2.51	2.34 1.59	9 2.16																								
1.67	2.12	2.12 1.39	9 1.81																								
3.43	3.14	3.43 3.43	3.36																								
7.28	7.76	7.88 6.41	1 7.33																								
27.9	20.56	15.31 10.04	73.81																								
73.81	73.81	73.81 73.81	1																								
0.378	0.279																										
2.75	2.16	1.64 0.87	7.42																								
	C	مامان		-t:	r	/ ! -	72	04 h =	0 7	F4 C	7 6-																
ssme	ent Gu	ıide. aua	antum	of im	pact fo	or Koala	a = 73.5	81 ha	x 0.7 =	= 51.6	7 ha																
ssme	ent Gu	ıide, qua	antum	of im	pact fo	or Koala	a = 73.	81 ha	x 0.7 =	= 51.6	7 ha																
	12.11.24 100 11 11 12 12 11 11 17 14 15 13 34 43 35 544 11 11 17 17 18 12 11 11 17 18 18 18 18 18 18 18 18 18 18 18 18 18	12.1.24 Raw Data % 8 8 6 8 6 9 3 1 1 1 1 1 1 1 1 1											Martin M	Martine Mart	Marine M	Second S	Section Sect	Martin	Martin Part	Part	Part	1	1	Martin	Martin	Section Sect	Mart Mart

^{*} Absence of threats re-scored using BAAM threat scoring table applied at offset sites

^{**} Stocking rate scoring amended from original impact habitat quality assessment to match offset scoring method

Appendix G: Impact Site Survey Data

Appendix G1: GHFF habitat

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.11.24 ASSESSMENT UNIT 1 (IAU1-AU1)

	Ì								
	Property	Impact A	ea Coomera Connector Stag	e 1	Date		23/03/202		
	Assessment Unit:	Assessment U		RE		Bioregion			
	IAU1-AU1 12.11.24	11.6	6	12.11.24		Southeast C	ueensland		
	Landscape Photo- Please attach or insert	: north, south, east and west ph	otos in the spaces provided	from row 231-355 below a	and include details such a	s Time and Mapping Coor	linates in the following row.		
Datum			Zor	ne	Eas	sting	Northing		
WGS 84		0m Mark	56	i	533	3569	6912270		
GDA 94	▼	50m Mark	Zor	ne	Eas	sting	Northing		
		SOIII Walk	56			3563	6912323		
	Plot bearing		35	6	Recorders		TR / SS		
		at. 1 1.1	and Location (including detai						
Part D - Native	Species Richness: (*list species belov pecies Scientific Name		ia, Corymbia intermedia and Tree sp Lophostemon confertus	d Angophora leiocarpa dor	minant. Flora Field Sheet 8 Common Name	B22.			
	Scientific Name Scientific Name		Angophora leiocarpa		Common Name				
	Scientific Name Scientific Name		Eucalyptus siderophloia Corymbia intermedia		Common Name Common Name	-			
	Scientific Name				Common Name	1			
			Eucalyptus tereticornis						
	Scientific Name		Eucalyptus tindaliae		Common Name				
	Scientific Name Scientific Name		Corymbia citriodora		Common Name	 			
	Scientific Name		corymoid citriodora		Common Name				
	Scientific Name				Common Name	 			
	Scientific Name				Common Name				
			Chrush on	acias richnoss					
Total number of sp			Snrub sp	ecies richness:	6				
Total number of sp	Scientific Name		Acacia disparrima		Common Name				
	Scientific Name		Acacia melanoxylon		Common Name				
	Scientific Name		Jagera pseudorhus		Common Name				
	Scientific Name		Syzygium luehmannii		Common Name				
	Scientific Name		Alphitonia excelsa		Common Name				
	Scientific Name		Breynia oblongifolia		Common Name				
	Scientific Name				Common Name				
	Scientific Name				Common Name				
	Scientific Name				Common Name				
	Scientific Name				Common Name				
					ı				
			Grass sp	ecies richness:					
Total number of sp	pecies				3				
	Scientific Name		Cymbopogon refractus		Common Name				
	Scientific Name		Oplismenus aemulus		Common Name				
	Scientific Name		Ottochloa gracillima		Common Name				
	Scientific Name				Common Name				
	Scientific Name		-	•	Common Name				
	Scientific Name		-	-	Common Name				
	Scientific Name			-	Common Name				
	Scientific Name								
					Common Name				
	Scientific Name				Common Name				
	Scientific Name Scientific Name								
					Common Name Common Name				
	Scientific Name		Forbs and others (non g	rass ground) species richn	Common Name Common Name				
Total number of sp	Scientific Name			rass ground) species richn	Common Name Common Name ess:				
Total number of sp	Scientific Name Decies Scientific Name		Lepidosperma laterale	rass ground) species richn	Common Name Common Name ess: 7 Scientific Name				
Total number of sp	Scientific Name secies Scientific Name Scientific Name		Lepidosperma laterale Pteridium esculentum	rass ground) species richn	Common Name Common Name ess: 7 Scientific Name Scientific Name				
Total number of sp	Scientific Name Scientific Name Scientific Name Scientific Name		Lepidosperma laterale Pteridium esculentum Lomandra longifolia	rass ground) species richn	Common Name Common Name ess: 7 Scientific Name Scientific Name Scientific Name				
Total number of sp	Scientific Name secies Scientific Name Scientific Name Scientific Name Scientific Name		Lepidosperma laterale Pteridium esculentum Lomandra longifolia Lobelia purpurascens	rass ground) species richn	Common Name Common Name ess: 7 Scientific Name Scientific Name Scientific Name				
Total number of sp	Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientifi Name Scientifi Name		Lepidosperma laterale Pteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia	rass ground) species richn	Common Name Common Name ess: 7 Scientific Name Scientific Name Scientific Name Scientific Name				
Total number of sp	Scientific Name		Lepidosperma laterale Pteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia Geodorum densiflorum	rass ground) species richn	Common Name Common Name ess: 7 Scientific Name				
Total number of sp	Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientifi Name Scientifi Name		Lepidosperma laterale Pteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia	rass ground) species richn	Common Name Common Name ess: 7 Scientific Name Scientific Name Scientific Name Scientific Name				
	Scientific Name		Lepidosperma laterale Pteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia Geodorum densiflorum	rass ground) species richn	Common Name Common Name ess: 7 Scientific Name				
Part E - Non-Na	Scientific Name		Lepidosperma laterale Pteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia Geodorum densiflorum	rass ground) species richn	Common Name Common Name ess: 7 Scientific Name				
Part E - Non-Na	Scientific Name)	Lepidosperma laterale Pteridium esculentum Lomandra pungufolia Lobelia pungurosens Goodenia rotundifolia Geodorum densiflorum Eustrephus latifolius	rass ground) species richn	Common Name Common Name Ess: 7 Scientific Name				
Part E - Non-Na	Scientific Name)	Lepidosperma laterale Pteridium esculentum Lomandra longifolia Lomelia propuroscens Goodenia rotundifolia Geodorum densiflorum Eustrephus latifolius Lantana camara	rass ground) species richn	Common Name Common Name common Name sess: 7 Scientific Name Common Name				
Part E - Non-Na	Scientific Name		Lepidosperma laterale Peteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia Geodorum densifiorum Eustrephus latifolius Lantana camara Schefflera actinophylia	rass ground) species richn	Common Name Common Name Sess: 7 Scientific Name Common Name Common Name				
Part E - Non-Na	Scientific Name		Lepidosperma laterale Pteridium esculentum Pteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia Geodorum densiflorum Eustrephus latifolius Lantana camara Schefflera actinophylia Aspararagus aethiopicus	rass ground) species richn	Common Name Common Name ess: 7 Scientific Name Common Name Common Name				
Part E - Non-Na	Scientific Name Scientific Nam		Lepidosperma laterale Peteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia Geodorum densifiorum Eustrephus latifolius Lantana camara Schefflera actinophylia	rass ground) species richn	Common Name Common Name ess: 7 Scientific Name Common Name Common Name Common Name Common Name				
Part E - Non-Na	Scientific Name Scientific Nam		Lepidosperma laterale Pteridium esculentum Pteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia Geodorum densiflorum Eustrephus latifolius Lantana camara Schefflera actinophylia Aspararagus aethiopicus	rass ground) species richn	Common Name Common Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Common Name Common Name Common Name Common Name				
Part E - Non-Na	Scientific Name Common Name Common Name Common Name Common Name Common Name		Lepidosperma laterale Pteridium esculentum Pteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia Geodorum densiflorum Eustrephus latifolius Lantana camara Schefflera actinophylia Aspararagus aethiopicus	rass ground) species richn	common Name Common Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Common Name Common Name Common Name Common Name Common Name				
Part E - Non-Na	Scientific Name Common Name Common Name Common Name Common Name Common Name Common Name		Lepidosperma laterale Pteridium esculentum Pteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia Geodorum densiflorum Eustrephus latifolius Lantana camara Schefflera actinophylia Aspararagus aethiopicus	rass ground) species richn	Common Name Common Name Common Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Common Name				
Part E - Non-Na	Scientific Name Common Name		Lepidosperma laterale Pteridium esculentum Pteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia Geodorum densiflorum Eustrephus latifolius Lantana camara Schefflera actinophylia Aspararagus aethiopicus	rass ground) species richn	Common Name Common Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Common Name				
Part E - Non-Na	Scientific Name Common Name Common Name Common Name Common Name Common Name Common Name		Lepidosperma laterale Pteridium esculentum Pteridium esculentum Lomandra longifolia Lobelia purpurascens Goodenia rotundifolia Geodorum densiflorum Eustrephus latifolius Lantana camara Schefflera actinophylia Aspararagus aethiopicus	rass ground) species richn	Common Name Common Name Common Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Scientific Name Common Name				

Part F - Coarse Woody Dr	ehris: (*list lengths of i	ndividual logs in meters)

Total Length of Course Woody Debris (Meters):		541.00	
1	3.00	26	
2	2.40	27	
3	2.20	28	
4	2.00	29	
5	1.00	30	
6	2.60	31	
7	1.50	32	
8	4.20	33	
9	3.60	34	
10	1.80	35	
11	4.40	36	
12	16.00	37	
13	1.40	38	
14	4.40	39	
15	3.60	40	
16		41	
17		42	
18		43	
19		44	
20		45	
21		46	
22		47	
23		48	
24		49	
25		50	

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover)

	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Native perennial grass cover	5.00%	2.00%	5.00%	8.00%	1.00%	4.20%
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average

Part H- Number of large trees, tree canopy height, recruitment of woody perennial species

Part H- Number of large trees , tree canopy neight, re	ecruitment of woody perennal species.		
Eucalypt Large tree DBH benchmark used :	46	Non-Eucalypt Large tree DBH benchmark used:	20
Number of large eucalypt trees:	10	Number of large non eucalypt trees:	1
Total Number Large Trees:		11	
<u> </u>			

Median Tree Canopy Height Measurements	Canopy:	22.00	Sub-canopy:	10.00	Emergent:	

Part I - Tree canopy cover, Shrub canopy cover

Tree canopy cover %	Canopy:	55.00%	Sub-canopy:	11.00%	Emergent:	
Shrub canopy cover %				6.90%		

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present *if trees are in the same layer and continuous along the transect you can group them

ASSESSMENT UNITS	GHFF potential habitat within 20km radius (HA)	% GHFF potential habitat within 20km radius	Active GHFF camps within 20km	Level 3 or higher GHFF active camps within 20km
IAU-1 AU1	30570	24.51483561	15	2
IAU-1 AU2	29870	23.95348837	13	1
IAU-2 AU3	30290	24.29029671	18	5
IAU-2 AU4	31520	25.27666399	19	5
IAU-3 AU5	31770	25.47714515	19	5
IAU-3 AU6	31690	25.41299118	18	5
IAU-4 AU7	29310	23.50441059	11	1
IAU-4 AU8	29820	23.91339214	10	1
IAU-4 AU9	31900	25.58139535	18	4

Case Reference	EPBC2020-8646	
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.
Total Area	78.811	

							Assessm	ent Unit Numb	er		
		Habitat Quality Attributes	IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
Pa	art	Assessment Unit Area (ha)	11.66	11.66	10.045	10.045	7.655	7.655	3.347	3.347	3.347
		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
	Bioregion		Southeast Queensland	Southeast Queensland	Southeast Queensland						
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
		2. Native plant species richness									
		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
		3. Tree canopy height									
	tes	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
	Attributes	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
1		- Emergent Layer									
1	Condition	4. Tree canopy cover									
		- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
	Site	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
		- Emergent Layer									
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
	tes	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00

IAU-1 AU1	GHFF FOR AGING TREE FLOWER SCORE	GHFF FORAGING TREE SPECIES COUNT	GHFF SIGNIFICANT FORAGING TREE SPECIES COUNT
Lophosternon confertus	0.46	1	0
Angophora leiocarpa	0.35	1	0
Eucalyptus siderophloia	0.81	1	1
Corymbia intermedia	0.86	1	1
Eucalyptus tereticornis	0.88	1	1
Eucalyptus tindaliae	0	0	0
Lophostemon suaveolens	0	0	0
Corymbia citriodora	0.65	1	1
TOTAL	4.01	6	4
AVERAGE	0.50125		
ATTRIBUTE SCORE	5	15	10

IAU-E-UAU	GHFFFORAGING TREE FLOWER SCORE	TEABUNDANCE
Lophostemon confertus	0.46	27
Angophora leiocarpa	0.35	8
Eucalyptus siderophloia	0.81	13
Corymbia intermedia	0.86	20
Eucalyptus tereticomis	0.88	2.
Eucalyptus tindaliae	0	
Lophosten on av@o1ens	D	
Corymbia dtriodora	0.65	4
GHFF FORAGING TREE COU	JNT/HA	148
%BENCHMARK		n.5.6007961
GHFFSIGNIACANT FORAG	ING TREE COUNT/HA	78
%BENCHMARK		66.82109765

 $\label{lem:control_control_control} $$ denotes GHFF difft/foraging tre@sp@CJies per Eby & Law<2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & Law (2008) $$ denotes si.grnificant GHFF diet/foraging u e spec.ies $$ PCF Eby & PCF$

	12.11Sa/12.1124								
	rel.a:tlve rn,e,-	%,jleo.	nurnbers;ltes;	weighted ffN	-	'Kmver	aire t	ota., stem a	al/e
			13		lOOJ	,S			
Eucal ptu, w,daU••	D.42						D.147	244	35.86
Eu<>l pn.,, aeb,a	D.33	0.26	.S.91	1 .155	as.842	is.	D.OSS!1	244	20.935
l:ucali,ipu.1s:Cilmea	0.E	D. 1	14.00	E0.875			0.1.Sis	244	37.2
Euealyptus >Jd.ero_phrola	C,24	(17	IIU	10.44	168.01	<	□.16l1	244	4□.99
Coryml,I• , ntermedJa	Cl.12	0.78	1,.94	9.51	1 111.685	8.	Cl.11l6	244	IU.R?
Eu⇔l pru, proplnq""	()_D	0'!5	!i.US	S 1	1 2LOID	S	0.021	244	S.1
Corymhl• amodora	IU'.16	026	5.	1.fi	1 15.00Ji	ii	D.0150>	244	3.1!00
Eura1 pm5m:laoi::o'i"'S	D_IIII	11.26	5 S.'18	341!	2□-810)4	D.02□8	244	S.075
ArJBophar.atelocarpa	D1;t	11.22	2 ::i.D	S Z.61	13.206	6	D.0132	244	3.220!
lafJflostemon mnfertus	O.IE	0.22	S.05	1305	6.603	3	O.oo£6	244	1.£1
Eucat prns re-llcomls:	(U:l	11.2'5	S.II'i!	I 5.65:	5 33.&li	9	0.0038	244	8.247
Eucalypiu, reslnofera	D_III	! 11.B	2.93	:1.4	/1 10105	52	11.0101	244	2.537
l'.arymhla !lanryl	[1.03	OC!I	2.00	13(?	; 2.Jlli35	;"	D_ 27	244	0.658
[uratyprusse.eana	004	11.C!I	"1-J11	L14	1.60,		D_OB;	24	0.878
AlJBophor.awoods ▶ ena	О.	(11),1	O.	1.74	4 L600!	!!	0.0016	244	0.390
COrymbla •"""liarls	0.02	11.04	0.92	0.8	7 11.800-	4	D.OOCE	244	0.195
Eucali,iprus-iiimencildes-	0.01	Ocl14	0.92	0.43	0.4002	2	0.0004	244	0.097
Eueal prn, helldon.J"	(101	11.04	D.92	2 0.4!5	5 0.400:	:1	0.0004	244	0.097
BEH:CH GH r FIIIIA.GE	I.2BD2ia								
BE.NCHGHFF SIGNIFICANT	ll&n!iD								

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.11.24 ASSESSMENT UNIT 1 (IAU1-AU2)

Part C - Site Data						
Property	Impact A	rea Coomera Connector Sta	ge 1	Date	19.4.21	
Assessment Unit:	Assessment Ur	nit Area (ha)	RE		Bioregion	Number
IAU1-AU2 12.11.24	11.6	6	12.11.24		Southeast C	ueensland
Landscape Photo- Please attach or inse	ert north, south, east and west p	hotos in the spaces provide	d from row 231-355 below a	and include details such as	Time and Mapping Coord	linates in the following row.
						1
<u>Datum</u>	0m Mark		one		sting	Northing
WGS 84	OIII Wark		56		454	6913599
GDA 94	50m Mark	Zo	one		sting	Northing
					3436	6913645
Plot bearing		3	134	Recorders		TR & BS
	an 1 1 1 1					
			ails of discrete polygons with		+ D40	
	Eucalyptus sideropiliolo	i, copriosternon comercus a	and Corymbia intermedia do	omininant. Flora neiu snee	t B10.	
Part D - Native Species Richness: (*list species below	v)					
		Tree s	pecies richness:			
Total number of species				6		
Scientific Name		Corymbia intermedia		Common Name		
Scientific Name		Eucalyptus tereticornis		Common Name		
Scientific Name		Lophostemon confertus	-	Common Name		
Scientific Name		Eucalyptus siderophloia		Common Name		
Scientific Name		Corymbia citriodora		Common Name		
Scientific Name		Angophora leiocarpa		Common Name		
Scientific Name		Allocasuarina littoralis		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
	1	Shrub	species richness:			
Total number of species				5	1	
Scientific Name	C	upaniopsis anacardioides		Common Name		
Scientific Name Scientific Name		Acacia melanoxylon		Common Name		
		Acacia disparrima		Common Name		
Scientific Name Scientific Name		Alphitonia excelsa Allocasuarina littoralis		Common Name Common Name		
Scientific Name		Allocusuurina littorulis		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
		Grass s	species richness:			
Total number of species				3		
Scientific Name		Entolasia stricta		Common Name		
Scientific Name		Ottochloa gracillima		Common Name		
Scientific Name		Themeda triandra		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name	<u> </u>			Common Name	<u> </u>	
		Forbs and athers (grass ground) species richn	acc:		
Total number of masics	I	Forus and others (non	i grass ground) species richn			
Total number of species Scientific Name	,	Desmodium rhytidophyllum		8 Scientific Name		Eustrephus latifolius
Scientific Name Scientific Name	<u> </u>	Lomandra longifolia		Scientific Name		zasacpnas iaajonas
Scientific Name		Goodenia rotundifolia		Scientific Name		
Scientific Name		Dianella caerulea		Scientific Name		
Scientific Name		Pteridium esculentum		Scientific Name		
Scientific Name		Glycine clandestina		Scientific Name		
Scientific Name		Marsdenia rostrata		Scientific Name		
					•	
Part E - Non-Native Plant Cover: (*list species below	r)					
Total percentage cover within plot				5.00%		
Scientific Name		Asparagus aethiopicus		Common Name		
Scientific Name		Ochna serrulata		Common Name		
Scientific Name		Syagrus romanzoffiana		Common Name		
Scientific Name		Schinus terebinthifolius	-	Common Name		
Scientific Name		Passiflora subpeltata		Common Name		
Scientific Name		Lantana camara		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name	•	

Part I - Tree canopy cover, Shrub canopy cover
Tree canopy cover %
Shrub canopy cover %

Canopy:

Total Length of Course Woody Debris (Meters):				470.00		
1		5.00		26		
2		1.00		27		
3		3.00		28		
4		10.00		29		
5		0.50		30		
6		2.50		31		
7		4.00		32		
8		8.00		33		
9		1.50		34		
10		5.00		35		
11		5.00		36		
12		1.50		37		
13				38		
14				39		
15				40		
16				41		
17				42		
18				43		
19				44		
20				45		
21				46		
22				47		
23				48		
24				49		
25				50		
G - Native perennial grass cover, organic litter: (*provide percentage cover w	ithin each quadrat, and p	ovide average cover)			
· · · · · · · · · · · · · · · · · · ·	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Native perennial grass cover	2.00%	5.00%	1.00%	15.00%	10.00%	6.60%
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Organic Litter	98.00%	95.00%	99.00%	85.00%	90.00%	93.40%
t H- Number of large trees , tree canopy height,	recruitment of woody peren	nial species:				
				Non- Eucalypt Large		
Eucalypt Large tree DBH benchmark used :	46			tree DBH benchmark used:		20
Number of large eucalypt trees:	28			Number of large non eucalypt trees:		2
Number Large Trees:				30		
		22.00	C. b	10.00		
	Canopy:	22.00	Sub-canopy:	10.00	Emergent:	
an Tree Canopy Height Measurements						

ASSESSMENT UNITS	GHFF potential habitat within 20km radius (HA)	% GHFF potential habitat within 20km radius	Active GHFF camps within 20km	Level 3 or higher GHFF active camps within 20km
IAU-1 AU1	30570	24.51483561	15	2
IAU-1 AU2	29870	23.95348837	13	1
IAU-2 AU3	30290	24.29029671	18	5
IAU-2 AU4	31520	25.27666399	19	5
IAU-3 AU5	31770	25.47714515	19	5
IAU-3 AU6	31690	25.41299118	18	5
IAU-4 AU7	29310	23.50441059	11	1
IAU-4 AU8	29820	23.91339214	10	1
IAU-4 AU9	31900	25.58139535	18	4

Sub-canopy:

16.30%

6.60%

Emergent:

66.30%

Case Reference	EPBC2020-8646	
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.
Total Area	78.811	

Habitat Quality Attributes							Assessm	ent Unit Numbe	er		
ı		Habitat Quality Attributes	IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
P	art	Assessment Unit Area (ha)	11.66	11.66	10.045	10.045	7.655	7.655	3.347	3.347	3.347
		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
		Bioregion	Southeast Queensland	Southeast Queensland	Southeast Queensland						
		Recruitment of woody perennial species (Number of									
ı		ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
ı		2. Native plant species richness									
1		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
		3. Tree canopy height									
	tes	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
	tribu	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
		- Emergent Layer									
1	ditio	4. Tree canopy cover									
		- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
	Sit	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
		- Emergent Layer									
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	REGROWTH 12.3.11 12.3.20 3.347 3.347 12.3.11 12.3.20 REGROWTH 12.3.10 REGROWTH 12.3.10 REGROWTH REGROWTH Southeast Queensland Queensland Queensland 100.00% 100.00% 125.00% 125.00% 12	70.91%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
	tes	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00

IAU-1 AU2	GHFF FORAGING TREE FLOWER SCORE	GHFF FORAGING TREE SPECIES COUNT	GHFF SIGNIFICANT FORAGING TREE SPECIES COUNT
Corymbia intermedia	0.86	1	1
Eucalyptus tereticornis	o.88	1	1
Lophostemon confertus	0.46	1	0
Eucalyptus siderophloia	0.81	1	1
Corymbia citriodora	0.65	1	1
Angophora leiocarpa	0.35	1	0
Allocasuarina littoralis	0	0	0
TOTAL	4.01	6	4
AVERAGE	0.572857143		
SCORE	8	15	10

IAU-1 AU2	GHFF FORAGING TREE FLOWER SCORE	T1 ABUNDANCE		
Corymbia intermedia	0.86	6		
Eucalyptus tereticornis	0.88	7		
Lophostemon confertus	0.46	6		
Eucalyptus siderophloia	0.81	19		
Corymbia citriodora	0.65	2		
Angophora leiocarpa	0.35	5		
Allocasuarina littoralis	0	0		
GHFF FORAGING TREE COU	JNT/HA	90		
% BENCHMARK	70.2977814			
GHFF SIGNIFICANT FORAG	ING TREE COUNT/HA	68		
% BENCHMARK		58.25429026		
	denotes GHFF diet/foraging tree	species per Eby & Law (2008)		
	denotes significant GHFF diet/fo	raging tree species per Eby & Law (2008		

	12.11.5a/12.11.24							
	relative cover	%sites	number sites	weighted cov	total cover	% cover	ave totat stem	ave
			23	43.5	1000.5			
Eucalyptus tindaliae	0.42	0.35	8.05	18.27	147.0735	0.147	244	35.868
Eucalyptus crebra	0.33	0.26	5.98	14.355	85.8429	0.0858	244	20.9352
Eucalyptus carnea	0.25	0.61	14.03	10.875	152.57625	0.1525	244	37.21
Eucalyptus siderophloia	0.24	0.7	16.1	10.44	168.084	0.168	244	40.992
Corymbia intermedia	0.22	0.78	17.94	9.57	171.6858	0.1716	244	41.8704
Eucalyptus propinqua	0.06	0.35	8.05	2.61	21.0105	0.021	244	5.124
Corymbia citriodora	0.06	0.26	5.98	2.61	15.6078	0.0156	244	3.8064
Eucalyptus microcorys	0.08	0.26	5.98	3.48	20.8104	0.0208	244	5.0752
Angophora leiocarpa	0.06	0.22	5.06	2.61	13.2066	0.0132	244	3.2208
Lophostemon confertus	0.03	0.22	5.06	1.305	6.6033	0.0066	244	1.6104
Eucalyptus tereticornis	0.13	0.26	5.98	5.655	33.8169	0.0338	244	8.2472
Eucalyptus resinifera	0.08	0.13	2.99	3.48	10.4052	0.0104	244	2.5376
Corymbia henryi	0.03	0.09	2.07	1.305	2.70135	0.0027	244	0.6588
Eucalyptus seeana	0.04	0.09	2.07	1.74	3.6018	0.0036	244	0.8784
Angophora woodsiana	0.04	0.04	0.92	1.74	1.6008	0.0016	244	0.3904
Corymbia tessellaris	0.02	0.04	0.92	0.87	0.8004	0.0008	244	0.1952
Eucalyptus acmenoides	0.01	0.04	0.92	0.435	0.4002	0.0004	244	0.0976
Eucalyptus helidonica	0.01	0.04	0.92	0.435	0.4002	0.0004	244	0.0976
BENCH GHFF FORAGE	128.0268							
BENCH GHFF SIGNIFICANT	116.7296							

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.11.25 ASSESSMENT UNIT 2 (IAU2-AU3)

Part C - Site Data								
Property	Impact A	rea Coomera Connector Stag	ge 1	Date		4/07/2021		
	· ·		,		I.	407/2021		
Assessment Unit:	Assessment Ur	nit Area (ha)	RE		Bioregion	Number		
IAU2-AU3 12.11.25	10.0	45	12.11.25		Southeast Q	ueensland		
Landscape Photo- Please attach or inse	rt north, south, east and west p	hotos in the spaces provided	from row 231-355 below	and include details such a	s Time and Mapping Coor	dinates in the following row.		
_		_		_				
<u>Datum</u>	0m Mark	Zo			sting	Northing		
WGS 84		5		534834 Easting		6906637		
GDA 94	50m Mark	Zo 5			4796	Northing 6906650		
Plot bearing		28		Recorders	4750	TR		
· iot scaling				necoracio	I.			
	Site description a	and Location (including deta	ils of discrete polygons wit	hin the assessment unit)				
		, C. henryii, Eucalyptus seea			C11.			
Part D - Native Species Richness: (*list species belov	v)							
	T	Tree sp	ecies richness:					
Total number of species				13				
Scientific Name		Corymbina intermedia		Scientific Name		Lophostemon suaveolens		
Scientific Name		Eucalyptus propinqua		Scientific Name		Lophostemon confertus		
Scientific Name		Eucalyptus crebra		Scientific Name		Allocasuarina littoralis		
Scientific Name Scientific Name		Eucalyptus siderophloia		Common Name Common Name	-			
Scientific Name Scientific Name	 	Eucalyptus carnea Corymbia henryi		Common Name Common Name				
Scientific Name		Eucalyptus microcorys		Common Name				
Scientific Name		Eucalyptus tereticornis		Common Name				
Scientific Name		Eucalyptus seeana		Common Name				
Scientific Name		Eucalyptus pilularis		Common Name				
		Shrub s	pecies richness:					
Total number of species				5				
Scientific Name		Acacia leiocalyx		Common Name				
Scientific Name		Acacia disparrima		Common Name				
Scientific Name		Breynia oblongifolia		Common Name				
Scientific Name	Cupaniopsis anacardioides			Common Name				
Scientific Name		Allocasuarina littoralis		Common Name				
Scientific Name				Common Name				
Scientific Name				Common Name				
Scientific Name				Common Name				
Scientific Name Scientific Name				Common Name Common Name				
Section Counc		Common realic						
		Grass s	pecies richness:					
Total number of species				4				
Scientific Name				Common Name				
Scientific Name		Themeda triandra		Common Name				
Scientific Name		Imperata cylindrica		Common Name				
Scientific Name		Cymbopogon refractus		Common Name				
Scientific Name		Entolasia stricta		Common Name				
Scientific Name				Common Name				
Scientific Name				Common Name				
Scientific Name Scientific Name				Common Name Common Name				
Scientific Name				Common Name				
		Forbs and others (non	grass ground) species richn	ess:				
Total number of species		·		10				
Scientific Name		Geodorum densiflorum		Scientific Name	C	hrysocephalum apiculatum		
Scientific Name		Pteridium esculentum		Scientific Name		Goodenia rotundifolia		
Scientific Name		Lomandra fiiformis		Scientific Name Glycine clandestina		Glycine clandestina		
Scientific Name		Lepidosperma laterale		Common Name				
Scientific Name		Lobelia purpurascens			Common Name			
Scientific Name	D	esmodium rhytidophyllum		Common Name				
Scientific Name	Scientific Name Eustrephus latifolius Common Name							
Part E - Non-Native Plant Cover: (*list species below	/) I			2.00%				
Total percentage cover within plot Scientific Name		Asparagus aethiopicus		Common Name				
Scientific Name		Paspalum spp.		Common Name				
Scientific Name	Gi	omphocarpus physocarpus		Common Name				
Scientific Name		Passiflora subpeltata		Common Name Common Name				
Scientific Name		Schefflera actinophylla		Common Name				
Scientific Name		Lantana camara		Common Name				
Scientific Name	Se	nna pendula var. glabrata		Common Name				
Scientific Name				Common Name				
Scientific Name				Common Name				

Tree canopy cover %

Total Length of Course Woody Debris (Meters):				470.00		
1		4.00		26		
2		2.00		27		
3		1.00		28		
4		3.00		29		
5		10.00		30		
6		2.00		31		
7		5.00		32		
8		0.50		33		
9		1.50		34		
10		2.00		35		
11		4.00		36		
12		2.00		37		
13		1.00		38		
14		6.00		39		
15		3.00		40		
16				41		
17				42		
18				43		
19				44		
20				45		
21				46		
22				47		
23				48		
24				49		
25				50		
G - Native perennial grass cover, organic litter: (*						
	Quadrat 1	Quadrat 2	Quadrat 3	75	Quadrat 5	Average
Native perennial grass cover	40.00%	10.00%	2.00%	0.00%	30.00%	16.40%
			1			-
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Urganic Litter						
Organic Litter	60.00%	90.00%	98.00%	100.00%	70.00%	83.60%
			98.00%	100.00%	70.00%	83.60%
Organic Litter			98.00%	<u>'</u>	70.00%	83.60%
t H- Number of large trees , tree canopy height,		nial species:	98.00%	Non- Eucalypt Large	70.00%	
-			98.00%	<u>'</u>	70.00%	83.60%
t H- Number of large trees , tree canopy height,		nial species:	98.00%	Non- Eucalypt Large tree DBH benchmark	70.00%	
rt H- Number of large trees , tree canopy height, Eucalypt Large tree DBH benchmark used :		nial species:	98.00%	Non-Eucalypt Large tree DBH benchmark used: Number of large non	70.00%	20
t H- Number of large trees , tree canopy height, Eucalypt Large tree DBH benchmark used : Number of large eucalypt trees:		nial species:	98.00%	Non- Eucalypt Large tree DBH benchmark used: Number of large non eucalypt trees:	70.00%	20
t H- Number of large trees , tree canopy height, Eucalypt Large tree DBH benchmark used : Number of large eucalypt trees:		nial species:	98.00%	Non- Eucalypt Large tree DBH benchmark used: Number of large non eucalypt trees:	70.00%	20
t H- Number of large trees , tree canopy height, Eucalypt Large tree DBH benchmark used : Number of large eucalypt trees: Number Large Trees:	recruitment of woody pereni	nial species: 46 31		Non-Eucalypt Large tree DBH benchmark used: Number of large non eucalypt trees: 38		20
t H- Number of large trees , tree canopy height, Eucalypt Large tree DBH benchmark used : Number of large eucalypt trees: Number Large Trees:	recruitment of woody perent	nial species: 46 31		Non-Eucalypt Large tree DBH benchmark used: Number of large non eucalypt trees: 38		20

Note: Only assess Emergent (E) or Subcanopy (S) layers if the benchmark document stipulates that layers are present *If trees are in the same layer and continuous along the transect you can group them

36.40%

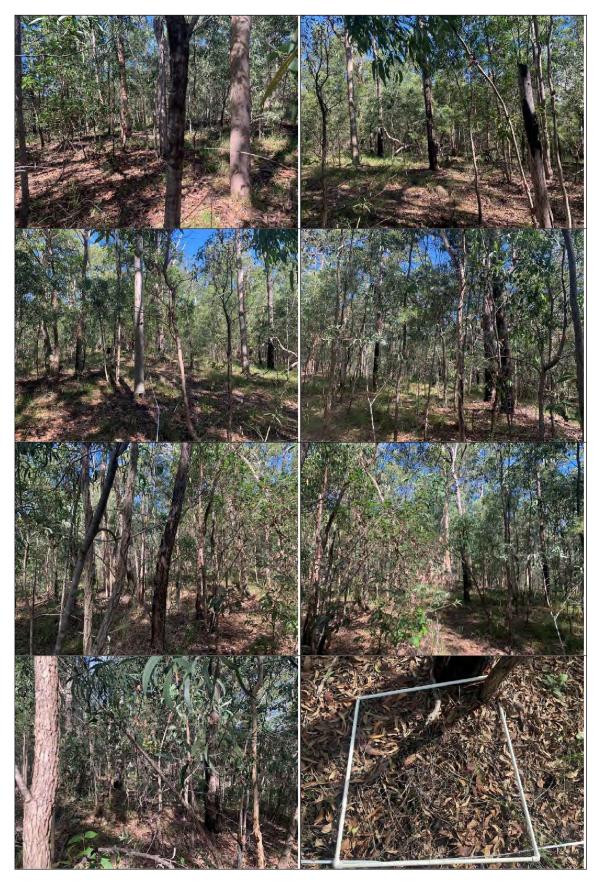
52.30%

15.80%

Case Reference	EPBC2020-8646						
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.					
Total Area	78.811						

			Assessment Unit Number								
		Habitat Quality Attributes	IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
P	art	Assessment Unit Area (ha)	11.66	11.66	10.045	10.045	7.655	7.655	3.347	3.347	3.347
		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
		Bioregion	Southeast Queensland	Southeast Queensland	Southeast Queensland						
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
		Native plant species richness									
		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
		3. Tree canopy height									
	tes	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
	Attributes	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
1		- Emergent Layer									
_	Condition	4. Tree canopy cover									
	e Cor	- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
	Site	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
		- Emergent Layer									
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
	tes	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00

IAU-2 AU3	GHFF FORAGING TREE FLOWER SCORE	GHFF FORAGING TREE SPECIES COUNT	GHFF SIGNIFICANT FORAGING TREE SPECIES COUNT	
Corymbia intermedia	o.86	1	1	
Eucalyptus propinqua	0.34	1	0	
Eucalyptus crebra	0.65	1	1	
Eucalyptus carnea	0	0	0	
Corymbia henryi	0.54	1	0	
Eucalyptus microcorys	0	0	o	
Eucalyptus tereticornis	0.88 1		1	
Eucalyptus seeana			1	
Eucalyptus pilularis	0.67	1	1	
Lophostemon suaveolens	0	0	0	
Lophostemon confertus	0.46	1	0	
Eucalyptus siderophloia	0.81	1	1	
Allocasuarina littoralis	0	0	0	
TOTAL	5-99	9	6	
AVERAGE	0.460769231			
SCORE	5	20	15	



ASSESSMENT UNITS	GHFF potential habitat within 20km radius (HA)	% GHFF potential habitat within 20km radius	Active GHFF camps within 20km	Level 3 or higher GHFF active camps within 20km
IAU-1 AU1	30570	24.51483561	15	2
IAU-1 AU2	29870	23.95348837	13	1
IAU-2 AU3	30290	24.29029671	18	5
IAU-2 AU4	31520	25.27666399	19	5
IAU-3 AU5	31770	25.47714515	19	5
IAU-3 AU6	31690	25.41299118	18	5
IAU-4 AU7	29310	23.50441059	11	1
IAU-4 AU8	29820	23.91339214	10	1
IAU-4 AU9	31900	25.58139535	18	4

IAU-2 AU3	GHFF FORAGING TREE FLOWER SCORE	T1 ABUNDANCE
Corymbia intermedia	o.86	50
Eucalyptus propinqua	0.34	0
Eucalyptus crebra	0.65	16
Eucalyptus carnea	0	4
Corymbia henryi	0.54	6
Eucalyptus microcorys	0	1
Eucalyptus tereticornis	o.88	7
Eucalyptus seeana	0.78	4
Eucalyptus pilularis	0.67	1
Lophostemon suaveolens	0	4
Lophostemon confertus	0.46	0
Eucalyptus siderophloia	0.81	8
Allocasuarina littoralis	0	0
GHFF FORAGING TREE COL	184	
% BENCHMARK	126.2168955	
GHFF SIGNIFICANT FORAG	172	
% BENCHMARK	313.9832055	

	12.11.5K/12.11.25		ave stem density	26
	relative cover	frequency	ave stem density	
Eucalyptus crebra	0.32	0.33	27.8784	
Corymbia henryi	0.29	0.92	70.4352	
Eucalyptus carnea	0.2	0.83	43.824	
Eucalyptus siderophloia	0.13	0.5	17.16	
Eucalyptus tindaliae	0.13	0.33	11.3256	
Corymbia intermedia	0.05	0.5	6.6	
Corymbia citriodora	0.03	0.17	1.3464	
Eucalyptus fibrosa	0.29	0.17	13.0152	
Eucalyptus microcorys	0.05	0.17	2.244	
Eucalyptus seeana	0.04	0.17	1.7952	
Lophostemon confertus	0.06	0.17	2.6928	
Angophora leiocarpa	0.02	0.08	0.4224	
Angophora woodsiana	0.1	0.08	2.112	
Eucalyptus dura	0.36	0.08	7.6032	
Eucalyptus helidonica	0.15	0.08	3.168	
Eucalyptus major	0.01	0.08	0.2112	
Eucalyptus propinqua	0.1	0.08	2.112	
Eucalyptus tereticornis	0.02	0.08	0.4224	
BENCH GHFF FORAGE	145.7808			
BENCH GHFF SIGNIFICANT	54.78			

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.11.25 ASSESSMENT UNIT 2 (IAU2-AU4)

Part C - Site Da	ta							
	Property	Impact Area Coomera Connector Stage 1			Date 8.4.21			
	Assessment Unit:	Assessment Ur	nit Area (ha)	RE	Bioregion Number			
	IAU2-AU4 12.11.25	10.0	45	12.11.25	Southeast Queensland			
	Landscape Photo- Please attach or inser	rt north, south, east and west p	hotos in the spaces provide	d from row 231-355 below a	and include details such a	s Time and Mapping Coord	inates in the following row.	
Datum		Om Mark				sting	Northing	
WGS 84				56		4205	6907702	
GDA 94	⊽	50m Mark	Zo	one		sting	Northing	
	Plot bearing		1	45	Recorders	4229	6907663 TR & BS	
	riot bearing		r.	45	Recorders		11 Q D3	
		Site description	and Location (including deta	ails of discrete polygons with	hin the assessment unit)			
		one description		henryii. Flora field sheet C				
				,				
Part D - Nativ	e Species Richness: (*list species below	1)	Tree or					
Total number of	enacios		Tree sp	oecies richness:	7			
Total liulibei of	Scientific Name		Corymbia henryi		Common Name			
	Scientific Name		Corymbia intermedia		Common Name			
	Scientific Name		Eucalyptus carnea		Common Name			
	Scientific Name		Eucalyptus seeana		Common Name			
	Scientific Name		Lophostemon confertus		Common Name			
	Scientific Name		Eucalyptus crebra		Common Name			
	Scientific Name		Eucalyptus pilularis		Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
			Shrub s	pecies richness:				
Total number of					6			
	Scientific Name Scientific Name		Alphitonia excelsa Allocasuarina littoralis		Common Name Common Name			
	Scientific Name		Acacia disparrima		Common Name			
	Scientific Name	lei	otospermum polygalifolium		Common Name			
	Scientific Name		upaniopsis anacardioides		Common Name			
	Scientific Name		Callistemon salignus		Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
			0	and a debase				
Total number of	sneries		Grass s	pecies richness:	3			
Total Hamber of	Scientific Name		Cymbopgon refractus		Common Name			
	Scientific Name		Entolasia stricta		Common Name			
	Scientific Name		Imperata cylindrica		Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
			Forbs and others (non	grass ground) species richne	ess:			
Total number of	species		(8 8, -p	9			
	Scientific Name		Lepidosperma laterale		Common Name		Parsonsia straminea	
	Scientific Name		Geodorum densiflorum		Common Name		Glycine clandestina	
	Scientific Name		Eustrephus latifolius		Common Name			
	Scientific Name	Lomandra filiformis			Common Name			
	Scientific Name	Desmodium rhytidophyllum			Common Name			
	Scientific Name	Goodenia rotundifolia			Common Name			
	Scientific Name		Lobelia purpurascens		Common Name			
Part F - Non M	Native Plant Cover: (*list species below	1						
	ative Plant Cover: (*list species below,				1.00%			
.012	Scientific Name		Lantana camara		Common Name			
	Scientific Name		Passiflora subpeltata		Common Name			
	Scientific Name	r dodytora oduperated			Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name				Common Name			
	Scientific Name Scientific Name				Common Name Common Name			
	SCIENTING INGINE				Common Name	1		

art F - Coarse Woody Debris: (*list lengths of individu	ual logs in meters)		
Total Length of Course Woody Debris (Meters):		1260.00	
1	2.50	26	10.00
2	0.50	27	5.00
3	6.50	28	2.00
4	5.50	29	8.00
5	4.00	30	2.00
6	2.00	31	3.00
7	2.00	32	5.00
8	1.00	33	2.00
9	1.00	34	
10	2.00	35	
11	5.00	36	
12	11.00	37	
13	4.50	38	
14	1.00	39	
15	8.00	40	
16	5.00	41	
17	1.50	42	
18	4.00	43	
19	1.00	44	
20	2.00	45	
21	3.00	46	
22	8.00	47	
23	2.00	48	
24	3.00	49	
25	300	F0	_

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover)								
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average		
Native perennial grass cover	1.00%	1.00%	2.00%	2.00%	5.00%	2.20%		
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average		
Organic Litter	98.00%	95.00%	96.00%	95.00%	93.00%	95.40%		
Part H- Number of large trees , tree canopy height, r	ecruitment of woody perenr	nial species:						
				Non- Eucalypt Large				
Eucalypt Large tree DBH benchmark used :	46			tree DBH benchmark used:	20			
Number of large eucalypt trees:		58		Number of large non	4			
				eucalypt trees:	<u> </u>			
otal Number Large Trees:				62				
Median Tree Canopy Height Measurements	Canopy:	22.00	Sub-canopy:	8.00	Emergent:			
Number of ecologically dominar	nt layer species regenerating:		100					
Part I - Tree canopy cover, Shrub canopy cover						_		
ree canopy cover %	Canopy:	45.90%	Sub-canopy:	32.00%	Emergent:			
hrub canopy cover %	16.70%							

ASSESSMENT UNITS	GHFF potential habitat within 20km radius (HA)	% GHFF potential habitat within 20km radius	Active GHFF camps within 20km	Level 3 or higher GHFF active camps within 20km
IAU-1 AU1	30570	24.51483561	15	2
IAU-1 AU2	29870	23.95348837	13	1
IAU-2 AU3	30290	24.29029671	18	5
IAU-2 AU4	31520	25.27666399	19	5
IAU-3 AU5	31770	25.47714515	19	5
IAU-3 AU6	31690	25.41299118	18	5
IAU-4 AU7	29310	23.50441059	11	1
IAU-4 AU8	29820	23.91339214	10	1
IAU-4 AU9	31900	25.58139535	18	4

Case Reference EPBC2020-8646 Project Name MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM ENT.

Assessment Unit Area (ha) Regional Ecosystems Bioregion 1. Recruitment of woody perennial species ecologically dominant layers regenerating) 2. Native plant species richness - Trees - Shrubs - Grasses - Forbs 3. Tree canopy height - Canopy Layer - Sub-Canopy Layer - Emergent Layer 4. Tree canopy cover - Canopy Layer - Emergent Layer 5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters) 10. Weed cover							
Regional Ecosystems Bioregion 1. Recruitment of woody perennial species ecologically dominant layers regenerating) 2. Native plant species richness - Trees - Shrubs - Grasses - Forbs 3. Tree canopy height - Canopy Layer - Sub-Canopy Layer - Emergent Layer 4. Tree canopy cover - Canopy Layer - Sub-Canopy Layer	Part		Habitat Quality Attributes				
1. Recruitment of woody perennial species (Number of ecologically dominant layers regenerating) 2. Native plant species richness - Trees - Shrubs - Grasses - Forbs 3. Tree canopy height - Canopy Layer - Sub-Canopy Layer - Emergent Layer 4. Tree canopy cover - Canopy Layer - Sub-Canopy Layer -			Assessment Unit Area (ha)				
1. Recruitment of woody perennial species (Number of ecologically dominant layers regenerating) 2. Native plant species richness - Trees - Shrubs - Grasses - Forbs 3. Tree canopy height - Canopy Layer - Sub-Canopy Layer - Emergent Layer 4. Tree canopy cover - Canopy Layer - Sub-Canopy Layer - Sub			Regional Ecosystems				
2. Native plant species richness - Trees - Shrubs - Grasses - Forbs 3. Tree canopy height - Canopy Layer - Sub-Canopy Layer - Emergent Layer 4. Tree canopy cover - Canopy Layer - Sub-Canopy Layer - Sub-Canopy Layer - Sub-Canopy Layer - Canopy Layer - Canopy Layer - Canopy Layer - Sub-Canopy Layer - Emergent Layer 5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)			Bioregion				
Trees - Shrubs - Grasses - Forbs 3. Tree canopy height - Canopy Layer - Sub-Canopy Layer - Emergent Layer - Canopy Lay							
- Shrub canopy cover 1 - Shrub canopy Layer - Canopy Layer - Emergent Layer - Canopy Layer - Ca			2. Native plant species richness				
- Grasses - Forbs 3. Tree canopy height - Canopy Layer - Sub-Canopy Layer - Emergent Layer 4. Tree canopy cover - Canopy Layer - Emergent Layer 5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)			- Trees				
3. Tree canopy height - Canopy Layer - Sub-Canopy Layer - Emergent Layer 4. Tree canopy cover - Canopy Layer - Sub-Canopy Layer - Sub-Canopy Layer - Sub-Canopy Layer - Sub-Canopy Layer - Emergent Layer 5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)			- Shrubs				
3. Tree canopy height - Canopy Layer - Sub-Canopy Layer - Emergent Layer 4. Tree canopy cover - Canopy Layer - Sub-Canopy Layer - Sub-Canopy Layer - Sub-Canopy Layer - Sub-Canopy Layer - Emergent Layer 5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)			- Grasses				
- Canopy Layer - Sub-Canopy Layer - Emergent Layer 4. Tree canopy cover - Canopy Layer - Sub-Canopy Layer - Emergent Layer 5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)			- Forbs				
- Sub-Canopy Layer - Emergent Layer 4. Tree canopy cover - Canopy Layer - Sub-Canopy Layer - Sub-Canopy Layer - Emergent Layer 5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)			3. Tree canopy height				
- Emergent Layer 5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)		Ee	- Canopy Layer				
- Emergent Layer 5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)		tribu	- Sub-Canopy Layer				
- Emergent Layer 5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)		on At	- Emergent Layer				
- Emergent Layer 5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)	1	diti	4. Tree canopy cover				
- Emergent Layer 5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)		e Cor	- Canopy Layer				
5. Shrub canopy cover 6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)		Sit	- Sub-Canopy Layer				
6. Native perennial grass cover 7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)			- Emergent Layer				
7. Organic litter 8. Large trees 9. Coarse woody debris (Meters)			5. Shrub canopy cover				
8. Large trees 9. Coarse woody debris (Meters)			6. Native perennial grass cover				
9. Coarse woody debris (Meters)			7. Organic litter				
			8. Large trees				
10. Weed cover			9. Coarse woody debris (Meters)				
			10. Weed cover				
11. Size of patch (fragmented)		tes	11. Size of patch (fragmented)				

	Assessment Unit Number								
IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11	
11.66	11.66	10.045	10.045	7.655	7.655	3.347 12.3.11	3.347 12.3.20	3.347	
12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	REGROWTH	REGROWTH	12.3.11	
Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	
100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%	
80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%	
75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%	
33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%	
41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%	
84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%	
100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%	
76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%	
25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%	
98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%	
10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%	
212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%	
33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%	
99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%	
3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%	
10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00	

IAU-2 AU4	GHFF FORAGING TREE FLOWER SCORE	GHFF FORAGING TREE SPECIES COUNT	GHFF SIGNIFICANT FORAGING TREE SPECIES COUNT
Corymbia henryi	0.54	1	0
Corymbia intermedia	o.86	1	1
Eucalyptus carnea	0	0	0
Eucalyptus seeana	0.78	1	1
Lophostemon confertus	0.46	1	0
Eucalyptus crebra	0.65	1	1
Eucalyptus pilularis	0.67	1	1
TOTAL	3.96	6	4
AVERAGE	0.565714286		
SCORE	8	15	10

IAU-2 AU4	GHFF FORAGING TREE FLOWER SCORE	T1 ABUNDANCE		
Corymbia henryi	0.54	53		
Corymbia intermedia	o.86	5		
Eucalyptus carnea	0	21		
Eucalyptus seeana	0.78	2		
Lophostemon confertus	0.46	0		
Eucalyptus crebra	0.65	7		
Eucalyptus pilularis	0.67	2		
GHFF FORAGING TREE COU	NT/HA	138		
% BENCHMARK		94.66267163		
GHFF SIGNIFICANT FORAGI	NG TREE COUNT/HA	32		
% BENCHMARK		58.4154801		
	denotes GHFF diet/foraging tree	species per Eby & Law (2008)		
	denotes significant GHFF diet/foraging tree species per Eby & Law			

	12.11.5K/12.1	1.25		ave stem density	264
	relative cover		frequency	ave stem density	
Eucalyptus crebra		0.32	0.33	27.8784	
Corymbia henryi		0.29	0.92	70.4352	
Eucalyptus carnea		0.2	0.83	43.824	
Eucalyptus siderophloia		0.13	0.5	17.16	
Eucalyptus tindaliae		0.13	0.33	11.3256	
Corymbia intermedia		0.05	0.5	6.6	
Corymbia citriodora		0.03	0.17	1.3464	
Eucalyptus fibrosa		0.29	0.17	13.0152	
Eucalyptus microcorys		0.05	0.17	2.244	
Eucalyptus seeana		0.04	0.17	1.7952	
Lophostemon confertus		0.06	0.17	2.6928	
Angophora leiocarpa		0.02	0.08	0.4224	
Angophora woodsiana		0.1	0.08	2.112	
Eucalyptus dura		0.36	0.08	7.6032	
Eucalyptus helidonica		0.15	0.08	3.168	
Eucalyptus major		0.01	0.08	0.2112	
Eucalyptus propinqua		0.1	0.08	2.112	
Eucalyptus tereticornis		0.02	0.08	0.4224	
BENCH GHFF FORAGE	145	.7808			
BENCH GHFF SIGNIFICANT		54.78			

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.11.23 ASSESSMENT UNIT 3 (IAU $_3$ -AU $_5$)

Part C - Site Data							
Property	Impact A	rea Coomera Connector Sta	ge 1	Date	8.4.21		
riopeity	ппрастя		o	Jac	0.4.21		
Assessment Unit:		Assessment Unit Area (ha) RE		Bioregion Number			
IAU3-AU5 12.11.23	7.65	7.655 12.11.23		Southeast Queensland			
Landscape Photo- Please at	ttach or insert north, south, east and west p	hotos in the spaces provide	d from row 231-355 below	and include details such a	s Time and Mapping Coord	dinates in the following row.	
<u>Datum</u>	0m Mark	Zo	one	Eas	sting	Northing	
WGS 84	OM Wark	9	66	534	4087	6907769	
GDA 94		Zo	one	Eas	sting	Northing	
N. C.	50m Mark			534	4097	6907720	
Plot bea	aring	1	70	Recorders		TR & BS	
	Site description	and Location (including deta	ils of discrete polygons with	in the assessment unit)			
		ed by Eucalyptus pilularis a					
Part D - Native Species Richness: (*list sp	pecies below)						
		Tree s _i	pecies richness:				
Total number of species				9			
Scientific Name		Eucalyptus pilularis		Common Name			
Scientific Name		Corymbia intermedia		Common Name			
Scientific Name		Corymbia henryi		Common Name			
Scientific Name		Eucalyptus carnea		Common Name			
Scientific Name		Eucalyptus tindaliae		Common Name			
Scientific Name		Eucalyptus seeana		Common Name			
Scientific Name		Angophora leiocarpa		Common Name			
Scientific Name		Eucalyptus crebra		Common Name	i e		
Scientific Name		Lophostemon confertus		Common Name	1		
Scientific Name		Eophostemon conjectus		Common Name			
Scientific Name				Common Name			
		Shrub s	species richness:				
Total number of species				3			
Scientific Name		Allocasuarina littoralis		Common Name			
Scientific Name		Acacia disparrima		Common Name			
Scientific Name		Alphitonia excelsa		Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name	Name		
Scientific Name				Common Name			
Scientific Name				Common Name			
	•						
		Grass s	pecies richness:				
Total number of species			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4			
Scientific Name		Entolasia stricta		Common Name			
Scientific Name		Cymbopogon refractus		Common Name			
Scientific Name		Ottochla gracillima		Common Name			
Scientific Name		Cynodon dactlyon		Common Name			
Scientific Name		Cyriodoir ductiyori		Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
		Forbs and others (non	grass ground) species richn	ess:			
Total number of species				6			
Scientific Name		Lomandra longifolia		Common Name			
Scientific Name		Lomandra filiformis		Common Name			
Scientific Name		Lobelia purpurascens		Common Name			
Scientific Name		Lepidosperma laterale		Common Name			
Scientific Name		Goodenia rotundiflora		Common Name			
Scientific Name		Geodorum densiflorum		Common Name			
Scientific Name				Common Name			
Selement name				311101110	1		
Part E - Non-Nativo Blant Cover (*!:-t	acias balaw)						
Part E - Non-Native Plant Cover: (*list spe Total percentage cover within plot				10.00%			
		Lantage come					
Scientific Name		Lantana camara		Common Name			
Scientific Name		Paspalum spp.		Common Name			
Scientific Name		Ageratina adenophora		Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			
Scientific Name				Common Name			

Part F - Coarse Wood	y Debris: (*	list lengths	of individual lo	gs in meters)

Total Length of Course Woody Debris (Meters):	855.00			
1	6.00	26		
2	9.00	27		
3	4.50	28		
4	4.00	29		
5	1.00	30		
6	4.00	31		
7	3.00	32		
8	4.00	33		
9	1.00	34		
10	10.00	35		
11	4.00	36		
12	3.00	37		
13	1.00	38		
14	6.00	39		
15	4.00	40		
16	15.00	41		
17	3.00	42		
18	2.00	43		
19	1.00	44		
20		45		
21		46		
22		47		
23		48		
24		49		
25		50		

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover)

		Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
	Native perennial grass cover	5.00%	0.00%	20.00%	5.00%	2.00%	6.40%
Ξ							
		Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
	Organic Litter	95.00%	50.00%	75.00%	90.00%	96.00%	81.20%

Part H- Number of large trees , tree canopy height, recruitment of woody perennial species:

Eucalypt Large tree DBH benchmark used :	47	Non- Eucalypt Large tree DBH benchmark used:	27		
Number of large eucalypt trees:	35	Number of large non eucalypt trees:	3		
Total Number Large Trees:	38				

	Median Tree Canopy Height Measurements	Canopy:	21.00	Sub-canopy:	7.00	Emergent:	
-	Number of ecologically domina	nt layer species regenerating:				100	

Part I - Tree canopy cover, Shrub canopy cover

Tree canopy cover %	Canopy:	55.80%	Sub-canopy:	6.00%	Emergent:		
Shrub canopy cover %		15.00%					

ASSESSMENT UNITS	GHFF potential habitat within 20km radius (HA)	% GHFF potential habitat within 20km radius	Active GHFF camps within 20km	Level 3 or higher GHFF active camps within 20km
IAU-1 AU1	30570	24.51483561	15	2
IAU-1 AU2	29870	23.95348837	13	1
IAU-2 AU3	30290	24.29029671	18	5
IAU-2 AU4	31520	25.27666399	19	5
IAU-3 AU5	31770	25.47714515	19	5
IAU-3 AU6	31690	25.41299118	18	5
IAU-4 AU ₇	29310	23.50441059	11	1
IAU-4 AU8	29820	23.91339214	10	1
IAU-4 AU9	31900	25.58139535	18	4

Case Reference	EPBC2020-8646	
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.
Total Area	70 911	

							Assessm	ent Unit Numbe	er		
		Habitat Quality Attributes	IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
P	Part	Assessment Unit Area (ha)	11.66	11.66	10.045	10.045	7.655	7.655	3.347	3.347	3.347
		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
		Bioregion	Southeast Queensland	Southeast Queensland	Southeast Queensland						
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
		2. Native plant species richness									
		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
		3. Tree canopy height									
	tes	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
	Attributes	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
1		- Emergent Layer									
_	Condition	4. Tree canopy cover									
	e Con	- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
	Site	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
		- Emergent Layer									
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
	tes	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00

IAU3- AU5	GHFF FORAGING TREE FLOWER SCORE	GHFF FORAGING TREE SPECIES COUNT	GHFF SIGNIFICANT FORAGING TREE SPECIES COUNT
Eucalyptus pilularis	0.67	1	1
Corymbia intermedia	o.86	1	1
Corymbia henryi	0.54	1	
Eucalyptus carnea	0	0	0
Eucalyptus tindaliae	0	0	0
Eucalyptus seeana	0.78	1	1
Angophora leiocarpa	0.35	1	0
Eucalyptus crebra	0.65	1	1
Lophostemon confertus	0.46	1	0
TOTAL	4.31	7	4
AVERAGE	0.478888889		
SCORE	5	20	10

IAU3- AU5	GHFF FORAGING TREE FLOWER SCORE	T1 ABUNDANCE		
Eucalyptus pilularis	0.67	11		
Corymbia intermedia	o.86	24		
Corymbia henryi	0.54	11		
Eucalyptus carnea	0	3		
Eucalyptus tindaliae	0	8		
Eucalyptus seeana	0.78	7		
Angophora leiocarpa	0.35	9		
Eucalyptus crebra	0.65	5		
Lophostemon confertus	0.46	2		
Allocasuarina littoralis	0	0		
GHFF FORAGING TREE COL	JNT/HA	138		
% BENCHMARK	% BENCHMARK			
GHFF SIGNIFICANT FORAG	ING TREE COUNT/HA	94		
% BENCHMARK	% BENCHMARK			

	12.11.23		ave stem density	264
	relative cover	frequency	ave stem density	
Eucalyptus pilularis	0.47	_	1200	
Eucalyptus microcorys	0.24	0.33	20.9088	
Eucalyptus tindaliae	0.22	0.67	38.9136	
Corymbia intermedia	0.17	0.83	37.2504	
Angophora woodsiana	0.05	0.33	4.356	
Corymbia gummifera	0.01	0.33	0.8712	
Eucalyptus resinifera	0.06	0.33	5.2272	
Lophostemon confertus	0.05	0.33	4.356	
Eucalyptus propinqua	0.03	0.17	1.3464	
Eucalyptus siderophloia	0.02	0.17	0.8976	
Syncarpia glomulifera	0.08	0.17	3.5904	
BENCH GHFF FORAGE	176.748			
BENCH GHFF SIGNIFICANT	166.6896			

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: ${\tt 12.11.23}$ ASSESSMENT UNIT ${\tt 3}$ (IAU ${\tt 3}$ -AU6)

Part C - Site Data						
Property	Impact A	rea Coomera Connector Stag	e 1	Date	19.4.21	
Assessment Unit:	Assessment Ur	ment Unit Area (ha) RE		Bioregion Number		
IAU3-AU6 12.11.23	7.65	5	12.11.23		Southeast C	Queensland
Landscape Photo- Please attach or inse	rt north, south, east and west pl	hotos in the spaces provided	from row 231-355 below a	and include details such as	Time and Mapping Coor	dinates in the following row.
<u>Datum</u>		Zor	ne	Eas	ting	Northing
WGS 84	0m Mark	56		534		6907041
GDA 94		Zor		Eas		Northing
□ I	50m Mark			534		6907003
Plot bearing		11	6	Recorders		TR & BS
		and Location (including detail				
	Dominated by Euca	lyptus pilularis. Small draina	age line around the 80m m	ark. Flora field sheet CC1	3.	
						l
Part D - Native Species Richness: (*list species below	v)					
	<u>, </u>	Tree sp	ecies richness:			
Total number of species				7		
Scientific Name		Eucalyptus pilularis		Common Name		
Scientific Name		Corymbia intermedia		Common Name		
Scientific Name		Lophostemon confertus		Common Name		
Scientific Name		Lophostemon suaveolens		Common Name		
Scientific Name		Melaleuca quinquenervia		Common Name		
Scientific Name		Allocasuarina littoralis		Common Name		
Scientific Name		Acacia disparrima		Common Name		
Scientific Name				Common Name	ļ	
Scientific Name				Common Name		
Scientific Name				Common Name		
		Should a	pecies richness:			
Total number of species		Siliub S	pecies riciness.	4		
Scientific Name		Melaleuca bracteata		Common Name		
Scientific Name		Melaleuca salicina		Common Name		
Scientific Name		Alphitonia excelsa		Common Name		
Scientific Name		Hovea acutifolia		Common Name		
Scientific Name		·		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
		Grass s	pecies richness:			
Total number of species Scientific Name		Entolasia stricta		4 Common Name	ſ	
Scientific Name Scientific Name		Themeda triandra		Common Name		
Scientific Name		Cymbopogon refractus		Common Name		
Scientific Name		Imperata cylindrica		Common Name		
Scientific Name		, , , , , , , , , , , , , , , , , , , ,		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
		Forbs and others (non	grass ground) species richn			
Total number of species		(midenania ()		5	ſ	
Scientific Name		Lepidosperma laterale		Common Name		
Scientific Name Scientific Name		Dianella caerulea		Common Name		
Scientific Name Scientific Name		Lobelia purpurascens Lomandra longifolia		Common Name		
Scientific Name		Goodenia rotundifolia		Common Name		
Scientific Name		oodema rotanajona		Common Name		
Scientific Name				Common Name		
Part E - Non-Native Plant Cover: (*list species below	1)					
Total percentage cover within plot				2.00%		
Scientific Name	Se	enna pendula var. glabrata		Common Name		
Scientific Name		Passiflora suberosa		Common Name		
Scientific Name		Lantana camara		Common Name		
Scientific Name		Paspalum spp.		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name	-	
Scientific Name				Common Name		
Scientific Name	1			Common Name	ı	

Part F - Coarse Woody Debris: (*list ler	gths of individual logs in meters)
--	------------------------------------

Total Length of Course Woody Debris (Meters):		1270.00	
1	14.00	26	
2	15.00	27	
3	24.00	28	
4	1.00	29	
5	2.00	30	
6	6.00	31	
7	4.00	32	
8	10.00	33	
9	20.00	34	
10	3.00	35	
11	2.00	36	
12	1.00	37	
13	3.00	38	
14	8.00	39	
15	2.00	40	
16	0.50	41	
17	1.50	42	
18	3.00	43	
19	2.00	44	
20	3.00	45	
21	2.00	46	
22		47	
23		48	
24		49	
25	_	50	

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover)

J		Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Ì	Native perennial grass cover	2.00%	40.00%	5.00%	0.00%	10.00%	11.40%
J	Organic Litter	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average

Part H- Number of large trees , tree canopy height, recruitment of woody perennial species:

Eucalypt Large tree DBH benchmark used :	47	Non- Eucalypt Large tree DBH benchmark used:	27
Number of large eucalypt trees:	19	Number of large non eucalypt trees:	5
Total Number Large Trees:		24	

Median Tree Canopy Height Measurements	Canopy:	24.00	Sub-canopy:	12.00	Emergent:	
Number of ecologically deminer					100	

Part I - Tree canopy cover, Shrub canopy cover

Tree canopy cover %	Canopy:	39.50%	Sub-canopy:	10.00%	Emergent:	
Shrub canopy cover %				9.50%		

ASSESSMENT UNITS	GHFF potential habitat within 20km radius (HA)	%GHFF potential habitat within 20km radius	Active GHFF camps within 20km	Level 3 or higher GHFF active camps within 20km
IAU-1 AU1	30570	24.51483561	15	2
IAU-1 AU2	29870	23.95348837	13	1
IAU-2 AU3	30290	24.29029671	18	5
IAU-2 AU4	31520	25.27666399	19	5
IAU-3 AU5	31770	25.47714515	19	5
IAU-3 AU6	31690	25.41299118	18	5
IAU-4 AU ₇	29310	23.50441059	11	1
IAU-4 AU8	29820	23.91339214	10	1
IAU-4 AU9	31900	25.58139535	18	4

Case Reference EPBC2020-8646 Project Name MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM ENT. Table Loss.

TOTAL ALE		/8.811
		Habitat Quality Attributes
Part		Assessment Unit Area (ha)
		Regional Ecosystems
		Bioregion
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)
		2. Native plant species richness
		- Trees
		- Shrubs
		- Grasses
		- Forbs
		3. Tree canopy height
	ສ	- Canopy Layer
	ribut	- Sub-Canopy Layer
	Site Condition Attributes	- Emergent Layer
1	ditio	4. Tree canopy cover
	S	- Canopy Layer
	Site	- Sub-Canopy Layer
		- Emergent Layer
		5. Shrub canopy cover
		6. Native perennial grass cover
		7. Organic litter
		8. Large trees
		9. Coarse woody debris (Meters)
		10. Weed cover
	ses	11. Size of patch (fragmented)
	2	,

IAU1-AU1	IAU1-AU2	IAU2-AU3	IAU2-AU4	Assessm IAU3-AU5	ent Unit Numbe	IAU4-AU7	IAU4-AU8	IAU4-AU9
12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	REGROWTH 12.3.11	REGROWTH 12.3.20	REMNANT 12.3.11
11.66	11.66	10.045	10.045	7.655	7.655	3.347	3.347	3.347
12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland
100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00

IAU3- AU5	GHFF FORAGING TREE FLOWER SCORE	GHFF FORAGING TREE SPECIES COUNT	GHFF SIGNIFICANT FORAGING TREE SPECIES COUNT
Eucalyptus pilularis	0.67	1	1
Corymbia intermedia	o.86	1	1
Corymbia henryi	0.54	1	
Eucalyptus carnea	0	0	0
Eucalyptus tindaliae	0	0	0
Eucalyptus seeana	0.78	1	1
Angophora leiocarpa	0.35	1	0
Eucalyptus crebra	0.65	1	1
Lophostemon confertus	0.46	1	0
TOTAL	4.31	7	4
AVERAGE	0.478888889		
SCORE	5	20	10

IAU3- AU5	GHFF FORAGING TREE FLOWER SCORE	T1 ABUNDANCE
Eucalyptus pilularis	0.67	11
Corymbia intermedia	o.86	24
Corymbia henryi	0.54	11
Eucalyptus carnea	0	3
Eucalyptus tindaliae	0	8
Eucalyptus seeana	0.78	7
Angophora leiocarpa	0.35	9
Eucalyptus crebra	Eucalyptus crebra 0.65 5	
Lophostemon confertus	0.46	2
Allocasuarina littoralis	0	0

GHFF FORAGING TREE COUNT/HA

138

% BENCHMARK

78.07726254

GHFF SIGNIFICANT FORAGING TREE COUNT/HA

94

% BENCHMARK

56.39224043

	12.11.23		ave stem density	264
	relative cover	frequency	ave stem density	
Eucalyptus pilularis	0.47	1	124.08	
Eucalyptus microcorys	0.24	0.33	20.9088	
Eucalyptus tindaliae	0.22	0.67	38.9136	
Corymbia intermedia	0.17	0.83	37.2504	
Angophora woodsiana	0.05	0.33	4.356	
Corymbia gummifera	0.01	0.33	0.8712	
Eucalyptus resinifera	0.06	0.33	5.2272	
Lophostemon confertus	0.05	0.33	4.356	
Eucalyptus propinqua	0.03	0.17	1.3464	
Eucalyptus siderophloia	0.02	0.17	0.8976	
Syncarpia glomulifera	0.08	0.17	3.5904	
BENCH GHFF FORAGE	176.748			
BENCH GHFF SIGNIFICANT	166.6896			

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.3.11/20 ASSESSMENT UNIT 4 (IAU4-AU7)

Part C - Site Data	1						
	Property	Impact Ar	ea Coomera Connector Stag	re 1	Date	21.4.21	
	· · · · · · · · · · · · · · · · · · ·			,		21.4.21	
	Assessment Hole	A	in A (b)	or.	Bioregion Number		Number
	Assessment Unit:	Assessment Un		RE			
IAU	4-AU7 REGROWTH 12.3.11	3.34	<u>'</u>	12.3.11 REGROWTH		Southeast Q	ueensiand
						=	
Landscape Photo- Please attach or insert north, south, east and west photos in the spaces provided from row 231-355 below and include details such as Time and Mapping Coordinates in the following row.							
<u>Datum</u>			Zor	ne	East	ing	Northing
WGS 84		0m Mark	51		532		6917493
GDA 94			Zoi		East		Northing
GDA 34	V	50m Mark	51		532		6917528
	Plot bearing				Recorders		TR
		Site description a	and Location (including detail	ils of discrete polygons with	in the assessment unit)		
			Gum with weed lower strata				
							1
David D. Madii	C						
Part D - Native	Species Richness: (*list species belov	N)	Troops	pecies richness:			
T-4-1			rree s	pecies riciness.	2		
Total number of sp	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				common rame		
			Shruh s	species richness:			
Total number of sp	pecies		-		0		
	Scientific Name		Eucalyptus tereticornis		Common Name		
	Scientific Name		Eucalyptus siderophloia		Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
			Grass s	pecies richness:			
Total number of sp	pecies				0		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name	<u> </u>			Common Name		
		1	Forbs and others (non	grass ground) species richne			
Total number of sp					3	1	
	Scientific Name		cyperus spp		Common Name		
	Scientific Name		Parsonsia straminae		Common Name		
	Scientific Name		Lomandra longifolia		Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
	Scientific Name				Common Name		
Dort E. Non No	ative Plant Cover: (*list species below	A					
	percentage cover within plot				95.00%		
. Ctar	Scientific Name		Singapore daisy		Common Name		
	Scientific Name		Blue Billygoat Weed		Common Name		
	Scientific Name		Columbian Waxweed		Common Name		
	Scientific Name		Cobblers Pegs		Common Name		
	Scientific Name		Devils Fig		Common Name		
	Scientific Name		Cocos Palm		Common Name		
	Scientific Name		Pigeon Grass		Common Name		
	Scientific Name		Balloon Cotton		Common Name		
	Scientific Name		Latana		Common Name		
	Scientific Name		Silverleaf Desmodium		Common Name		

Total Length of Course Woody Debris (Meters):		20.00	
1	0.50	26	
2	1.50	27	
3		28	
4		29	
5		30	
6		31	
7		32	
8		33	
9		34	
10		35	
11		36	
12		37	
13		38	
14		39	
15		40	
16		41	
17		42	
18		43	
19		44	
20		45	
21		46	
22		47	
23		48	
24		49	
25		50	

Part G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover)

	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Native perennial grass cover	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Organic Litter	5.00%	5.00%	15.00%	0.00%	35.00%	12.00%

Part H- Number of large trees , tree canopy height, recruitment of woody perennial species:

Tart is Number of large areas, area camply height, rectainment of woody perchinal species.					
Eucalypt Large tree DBH benchmark used :	49	Non- Eucalypt Large tree DBH benchmark used:	36		
Number of large eucalypt trees:	2	Number of large non eucalypt trees:	0		
Total Number Large Trees:		2			

Number of ecologically dominant layer species regenerating:	33

Median Tree Canopy Height Measurements Canopy: 18.00 Sub-canopy: 8.00 Emergent:

Part I - Tree canopy cover, Shrub canopy cover

Fait 1- free carropy cover, Siriub carropy cover						
Tree canopy cover %	Canopy:	18.00%	Sub-canopy:	8.00%	Emergent:	
Shrub canopy cover %	0.00%					

ASSESSMENT UNITS	GHFF potential habitat within 20km radius (HA)	%GHFF potential habitat within 20km radius	Active GHFF camps within 20km	Level 3 or higher GHFF active camps within 20km
IAU-1 AU1	30570	24.51483561	15	2
IAU-1 AU2	29870	23.95348837	13	1
IAU-2 AU3	30290	24.29029671	18	5
IAU-2 AU4	31520	25.27666399	19	5
IAU-3 AU5	31770	25.47714515	19	5
IAU-3 AU6	31690	25.41299118	18	5
IAU-4 AU7	29310	23.50441059	11	1
IAU-4 AU8	29820	23.91339214	10	1
IAU-4 AU9	31900	25.58139535	18	4

Case Reference	EPBC2020-8646	
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.
Total Area	70 011	

		Habitat Quality Attributes		
Р	art	Assessment Unit Area (ha)		
		Regional Ecosystems		
		Bioregion		
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)		
		2. Native plant species richness		
		- Trees		
		- Shrubs		
		- Grasses		
		- Forbs		
		3. Tree canopy height		
	tes	- Canopy Layer		
	tribu	- Sub-Canopy Layer		
1	Site Condition Attributes	- Emergent Layer		
_	ndiţi	4. Tree canopy cover		
	S e	- Canopy Layer		
	Sit	- Sub-Canopy Layer		
		- Emergent Layer		
		5. Shrub canopy cover		
		6. Native perennial grass cover		
		7. Organic litter		
		8. Large trees		
		9. Coarse woody debris (Meters)		
		10. Weed cover		
	tes	11. Size of patch (fragmented)		

	Assessment Unit Number							
				Assessm	ent Unit Numb			
IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
11.66	11.66	10.045	10.045	7.655	7.655	3.347	3.347	3.347
12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland
100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00

IAU4- AU7	GHFF FORAGING TREE FLOWER SCORE	GHFF FORAGING TREE SPECIES COUNT	GHFF SIGNIFICANT FORAGING TREE SPECIES COUNT
Eucalyptus tereticornis	o.88	1	1
Eucalyptus siderophloia	0.81	1	1
TOTAL	1.69	2	2
AVERAGE	0.845		
SCORE	10	5	5

IAU4- AU7	GHFF FORAGING TREE FLOWER SCORE	T1 ABUNDANCE
Eucalyptus tereticornis	o.88	70
Eucalyptus siderophloia	0	
GHFF FORAGING TREE COL	JNT/HA	140
% BENCHMARK		59.16439588
GHFF SIGNIFICANT FORAG	140	
% BENCHMARK	63.02195685	

12.3.11	ave stem density	284	
	relative cover	frequency	ave stem density
Eucalyptus tereticornis	0.52	0.71	104.8528
Eucalyptus siderophloia	0.29	0.64	52.7104
Melaleuca quinquenervia	0.25	0.29	20.59
Corymbia intermedia	0.23	0.64	41.8048
Lophostemon suaveolens	0.21	0.43	25.6452
Angophora leiocarpa	0.06	0.36	6.1344
Corymbia tessellaris	0.08	0.21	4.7712
Corymbia citriodora	0.03	0.14	1.1928
Angophora woodsiana	0.18	0.07	3.5784
Eucalyptus seeana	0.05	0.07	0.994
Eucalyptus tindaliae	0.01	0.07	0.1988
BENCH GHFF FORAGE	236.6288		
BENCH GHFF SIGNIFICANT FORAGE	222.1448		

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.3.11/20 ASSESSMENT UNIT 4 (IAU4-AU8)

Part C - Site Data						
	Impact A	ron Coomorn Connector Stag	0.1	Date		
Property	IIIIpact A	rea Coomera Connector Stag	e i	Date	21.4.21	
Assessment Unit:	Assessment Ur		RE		Bioregion	
IAU4-AU8 REGROWTH 12.3.20	3.34	/	12.3.20 REGROWTH		Southeast Q	ueensland
Landscape Photo- Please attach or inser	t north couth past and wast n	hatas in the spaces provided	from your 221 255 below	and include details such	os Timo and Manning Coor	dinates in the following your
Lanuscape Prioto- Please attach of hiser	t north, south, east and west p	notos in the spaces provided	110111 10W 231-333 DEIOW 6	and include details such	as time and Mapping Cool	uniates in the following row.
<u>Datum</u>		Zor	ie.	Fa	sting	Northing
WGS 84	0m Mark	56			2982	6914745
GDA 94		Zor			sting	Northing
™	50m Mark	56			3030	6914753
Plot bearing		63		Recorders		TR
	Site description a	nd Location (including detail	s of discrete polygons with	nin the assessment unit)		
		minated with Swamp Oak ar				
Part D - Native Species Richness: (*list species below	A					
raitb-wative species niciliess. (list species below	<u>') </u>	Tree en	ecies richness:			
Total number of species		Tree sp	ecies riciniess.	10		
Scientific Name		Eucalyptus tereticornis		Common Name		
Scientific Name		Casuarina glauca		Common Name		
Scientific Name		Corymbia tessellaris		Common Name		
Scientific Name		Acacia disparrima		Common Name		
Scientific Name		Alphitonia excelsa		Common Name		
Scientific Name		Lophostemon confertus		Common Name		
Scientific Name		Corymbia intermeida		Common Name		
Scientific Name		Angophora leiocarpa		Common Name		
Scientific Name		Melaleuca quinquenervia		Common Name		
Scientific Name		Eucalyptus siderophloia		Common Name		
		Shrub sp	pecies richness:			
Total number of species				5		
Scientific Name		Breynia oblongifolia		Common Name		
Scientific Name Scientific Name		Acacia podalyriifolia Acacia leiocalyx		Common Name Common Name		
Scientific Name		Callistemon salignus		Common Name		
Scientific Name	('upaniopsis anacardioides		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
		Grass sp	ecies richness:			
Total number of species Scientific Name		Themeda triandra		2 Common Name		
Scientific Name		Entolasia stricta		Common Name		
Scientific Name		Entologia Stricta		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
		Forbs and others (non g	grass ground) species richn			
Total number of species Scientific Name		Parsonsia straminae		4 Common Name		
Scientific Name Scientific Name		Lomandra longifolia		Common Name		
Scientific Name		Eustrephus latifolius		Common Name		
Scientific Name		Lobelia purpurascens		Common Name		
Scientific Name		,.,.,.		Common Name		
Scientific Name				Common Name		
Scientific Name				Common Name		
Part E - Non-Native Plant Cover: (*list species below)					
Total percentage cover within plot				10.00%		
Scientific Name		Zig zag wattle		Common Name		rhodes grass
Scientific Name		wattle		Common Name		singapore daisy
Scientific Name Scientific Name		lantana passionflower		Common Name		Elastic grass
Scientific Name Scientific Name		passionflower		Common Name		
Scientific Name Scientific Name		asparagus fern cocos palm		Common Name		
Scientific Name		slash pine		Common Name		
Scientific Name		уисса		Common Name		
Scientific Name		pigeon grass		Common Name		
Scientific Name		paspalum/vasey grass		Common Name		

Part I - Tree canopy cover, Shrub canopy cover Tree canopy cover % Shrub canopy cover %

	Part F - Coarse Woody Debris: (*list lengths of individual logs in meters)						
250			100		-		
1.00							
4							
\$ 1.00 30 30 31 32 32 33 34 34 34 34 34							
6							
1.00							
8 3.00 33 34 34 34 34 34 34	1						
9 34 35 36 37 37 37 37 37 37 37							
10 35 36 37 37 37 37 37 38 38 38			3.00				
11							
12 37 38 38 39 39 39 39 39 39							
13 38 39 39 39 39 39 39 3							
14							
15							
16							
17							
18							
19							
20							
21							
22 23 34 48 24 49 25 art G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover) art G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover) art G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover) Average Quadrat 1 Quadrat 2 Quadrat 3 Quadrat 4 Quadrat 5 Average Organic Litter Quadrat 1 Quadrat 2 Quadrat 3 Quadrat 4 Quadrat 5 Average 65.00% 85.00% 90.00% 75.00% 70.00% 77.00% Part H - Number of large trees , tree canopy height, recruitment of woody perennial species: Non- Eucalypt Large tree DBH benchmark used: 30 Number of large non eucalypt trees: 31							
23 48 49 49 49 49 49 49 49 49 49 49 49 49 49							
24 25 26 27 28 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20							
art G - Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover) Average Native perennial grass cover Part H - Number of large tree DBH benchmark used: Number of large eucalypt trees: 23 Number of large eucalypt trees: 24 Soud average cover) Quadrat 1 Quadrat 2 Quadrat 3 Quadrat 4 Quadrat 5 Average Quadrat 5 Average Quadrat 1 Quadrat 2 Quadrat 3 Quadrat 4 Quadrat 5 Average 77.00% 77.00% 77.00% Non-Eucalypt Large Tree DBH benchmark used: Non-Eucalypt Large Tree DBH benchmark Quadrat 5 Average Non-Eucalypt Large Tree DBH benchmark Quadrat 5 Average 77.00% 77.00% Non-Eucalypt Large Tree DBH benchmark Quadrat 5 Average 77.00% 77.00% Non-Eucalypt Large Tree DBH benchmark Quadrat 5 Average 77.00% 77.00% 80 Non-Eucalypt Large Tree DBH benchmark Quadrat 5 Average 77.00% 77.00% 80 Non-Eucalypt Large Tree DBH benchmark Quadrat 5 Average 77.00% 77.00% 80 Non-Eucalypt Large Tree DBH benchmark Quadrat 5 Average 77.00% 77.00% 77.00% 80 Non-Eucalypt Large Tree DBH benchmark Quadrat 5 Average Non-Eucalypt Large Tree DBH benchmark Quadrat 4 Quadrat 5 Average Non-Eucalypt Large Tree DBH benchmark Quadrat 4 Quadrat 5 Average Non-Eucalypt Large Tree DBH benchmark Quadrat 4 Quadrat 4 Quadrat 4 Quadrat 4 Quadrat 4 Quadrat 9 Quadrat 4 Quadrat 9 Quadrat 1 Quadrat 9 Quadrat 1 Quadrat 9 Quadrat 1 Quadrat 1 Quadrat 1 Quadrat 1 Quadrat 1 Quad							
Average Native perennial grass cover, organic litter: (*provide percentage cover within each quadrat, and provide average cover) Quadrat 1							
Native perennial grass cover Quadrat 1 Quadrat 2 Quadrat 3 Quadrat 4 Quadrat 5 Average	25				50		
Native perennial grass cover 5.00% 5	Part G - Native perennial grass cover, organic litter: (*	provide percentage cover v	vithin each quadrat, and	orovide average cover)			
Urganic Litter Quadrat 1 Quadrat 2 Quadrat 3 Quadrat 4 Quadrat 5 Average 65.00% 85.00% 90.00% 75.00% 70.00% 77.00% Part H- Number of large trees , tree canopy height, recruitment of woody perennial species: Non-Eucalypt Large tree DBH benchmark used: 30 Non-Eucalypt Large tree DBH benchmark used: 30 Number of large eucalypt trees: 31 Number of large non eucalypt trees: 31						Quadrat 5	Average
Part H- Number of large trees , tree canopy height, recruitment of woody perennial species: Eucalypt Large tree DBH benchmark used : 30 Non-Eucalypt Large tree DBH benchmark used : 43 Number of large enon eucalypt trees: 45 45 45 45 45 45 45 45	rvative perenniai grass cover	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%
Part H- Number of large trees , tree canopy height, recruitment of woody perennial species: Eucalypt Large tree DBH benchmark used : 30 Non-Eucalypt Large tree DBH benchmark used : 43 Number of large enon eucalypt trees: 45 45 45 45 45 45 45 45	•		•	•	•	•	
Part H- Number of large trees, tree canopy height, recruitment of woody perennial species: Eucalypt Large tree DBH benchmark used: Number of large eucalypt trees: 23 Number of large non eucalypt trees: 31 32 33 34 35 36 37 30 30 30 30 30 30 30 30 30		Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Eucalypt Large tree DBH benchmark used: 10	Organic Litter	65.00%	85.00%	90.00%	75.00%	70.00%	77.00%
Eucalypt Large tree DBH benchmark used: 10							
Eucalypt Large tree DBH benchmark used: Number of large eucalypt trees: 23 Number of large non eucalypt trees: 30 Number Large Trees: 31 Second Number Large Trees: 31	rait n- Number of large trees , tree canopy height, r	ecruitment of woody perer	imai species:		Non- Fucalent Large		
Number of large eucalypt trees: otal Number Large Trees: 31	Eucalypt Large tree DBH benchmark used :	30			tree DBH benchmark	30	
	Number of large eucalypt trees:		23		Number of large non eucalypt trees:		8
Redian Tree Canopy Height Measurements Canopy: 16.00 Sub-canopy: 10.00 Emergent:	otal Number Large Trees:				31		
fedian Tree Canopy Height Measurements Canopy: 16.00 Sub-canopy: 10.00 Emergent:							
	Median Tree Canopy Height Measurements	Canopy:	16.00	Sub-canopy:	10.00	Emergent:	
					•		
Number of ecologically dominant layer species regenerating:							

ASSESSMENT UNITS	GHFF potential habitat within 20km radius (HA)	% GHFF potential habitat within 20km radius	Active GHFF camps within 20km	Level 3 or higher GHFF active camps within 20km
IAU-1 AU1	30570	24.51483561	15	2
IAU-1 AU2	29870	23.95348837	13	1
IAU-2 AU3	30290	24.29029671	18	5
IAU-2 AU4	31520	25.27666399	19	5
IAU-3 AU5	31770	25.47714515	19	5
IAU-3 AU6	31690	25.41299118	18	5
IAU-4 AU7	29310	23.50441059	11	1
IAU-4 AU8	29820	23.91339214	10	1
IAU-4 AU9	31900	25.58139535	18	4

Canopy:

13.00% Sub-canopy: 83.00% Emergent: 7.80%

Case Reference	EPBC2020-8646					
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT				
Total Area	78.811					

			Assessment Unit Number				er				
		Habitat Quality Attributes	IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
P	Part	Assessment Unit Area (ha)	11.66	11.66	10.045	10.045	7.655	7.655	3.347	3.347	3.347
		Regional Ecosystems	12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
		Bioregion	Southeast Queensland	Southeast Queensland	Southeast Queensland						
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)	100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
		2. Native plant species richness									
		- Trees	80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
		- Shrubs	75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
		- Grasses	33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
		- Forbs	41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
		3. Tree canopy height									
	tes	- Canopy Layer	84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
	Attributes	- Sub-Canopy Layer	100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
1	on A	- Emergent Layer									
1	d iti	4. Tree canopy cover									
	Site Condition	- Canopy Layer	76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
	Sit	- Sub-Canopy Layer	25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
		- Emergent Layer									
		5. Shrub canopy cover	98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
		6. Native perennial grass cover	10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
		7. Organic litter	212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
		8. Large trees	33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
		9. Coarse woody debris (Meters)	99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
		10. Weed cover	3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
	tes	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00
	tes	11. Size of patch (fragmented)	10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	

IAU4- AU8	GHFF FOR AGING TREE FLOWER SCORE	GHFF FORAGING TREE SPECIES COUNT	GHFF SIGNIFICANT FORAGING TREE SPECIES COUNT
Eucalyptus tereticornis	0.88	1	1
Casuarina glauca	0	0	0
Corymbia tessellaris	0.4	1	0
Alphitonia excelsa	0	0	0
Lophostemon confertus	0.46	1	0
Corymbia intermedia	0.86	1	1
Angophora leiocarpa	0.35	1	0
Melaleuca quinquenervia	0.88	1	1
Eucalyptus siderophloia	0.81	1	1
TOTAL	4.64	7	4
AVERAGE	0.51555556		
SCORE	8	20	10

IAU4- AU8	GHFF FORAGING TREE FLOWER SCORE	T1 ABUNDANCE	
Eucalyptus tereticornis	0.88	23	
Casuarina glauca	0	8	
Corymbia tessellaris	0.4	8	
Alphitonia excelsa	0	o	
Lophostemon confertus	0.46	2	
Corymbia intermedia	0.86	4	
Angophora leiocarpa	0.35	o	
Melaleuca quinquenervia	0.88	o	
Eucalyptus siderophloia	0.81	7	
Acacia	0	0	
GHFF FORAGING TREE COU	INT/HA	88	
% BENCHMARK	37.18904884		
GHFF SIGNIFICANT FORAGI	68		
% BENCHMARK	30.61066476		

12.3.11	ave stem density	284	
	relative cover	frequency	ave stem density
Eucalyptus tereticornis	0.52	0.71	104.8528
Eucalyptus siderophloia	0.29	0.64	52.7104
Melaleuca quinquenervia	0.25	0.29	20.59
Corymbia intermedia	0.23	0.64	41.8048
Lophostemon suaveolens	0.21	0.43	25.6452
Angophora leiocarpa	0.06	0.36	6.1344
Corymbia tessellaris	0.08	0.21	4.7712
Corymbia citriodora	0.03	0.14	1.1928
Angophora woodsiana	0.18	0.07	3.5784
Eucalyptus seeana	0.05	0.07	0.994
Eucalyptus tindaliae	0.01	0.07	0.1988
BENCH GHFF FORAGE	236.6288		
BENCH GHFF SIGNIFICANT FORAGE	222.1448		

HABITAT ASSESSMENT FIELD OBTAINED DATA: REMNANT RE: 12.3.11/20 ASSESSMENT UNIT 4 (IAU4-AU9)

Part C - Site	Data								
	Property	Impact A	rea Coomera Connector Sta	ge 1	Date	29-4-21			
						20 4 22			
	Assessment Unit:	Assessment Unit Area (ha) RE		Bioregion Number					
	IAU4-AU9 REMNANT 12.3.11	3.34	7	12.3.11		Southeast C	ueensland		
	Landscape Photo- Please attach or inser	rt north, south, east and west p	hotos in the spaces provided	d from row 231-355 below a	and include details such a	s Time and Mapping Coor	dinates in the following row.		
<u>Datum</u>		0m Mark	Zo	ne	Eas	sting	Northing		
WGS 84	_	UM IVIARK	5	6	53:	3689	6909494		
GDA 94	<u> </u>	50m Mark	Zo	ne	Easting		Northing		
	<u></u>	JOHI Walk	5	6	53:	3711	6909579		
	Plot bearing				Recorders		TR & KK		
		Site description a	and Location (including deta	ils of discrete polygons with	nin the assessment unit)				
	Proximate to Coombabah Creek. Subject to minor ponding. Blue Gum and Swamp Oak co-dominant species with Wattle regrowth also common.								
l							ļ		
Part D - Na	ative Species Richness: (*list species below	v)							
			Tree sp	pecies richness:					
Total number	r of species				10				
	Scientific Name		Eucalyptus tereticornis		Common Name				
	Scientific Name		Eucalyptus microcorys		Common Name				
	Scientific Name		Casuarina glauca		Common Name				
	Scientific Name		Eucalyptus siderophloia		Common Name				
	Scientific Name		Acacia disparrima		Common Name				
	Scientific Name		Acacia melanoxylon		Common Name				
	Scientific Name		Callistemon salignus		Common Name				
	Scientific Name	٨	Melaleuca quinquenervia		Common Name				
	Scientific Name		Lophostemon confertus		Common Name				
	Scientific Name		Myrsine variabilis		Common Name				
			,						
			Shruh s	pecies richness:					
Total number	r of energies		511140 5	pecies namess.	7				
Total Humber	Scientific Name		Ficus watkinsiana		Common Name				
	Scientific Name		Breynia oblongifolia		Common Name				
	Scientific Name		Macaranga tanarius		Common Name				
	Scientific Name		Glochidion sumatranum		Common Name				
	Scientific Name		Cryptocarya triplinervis		Common Name				
	Scientific Name		otospermum polygalifolium						
	Scientific Name		upaniopsis anacardioides		Common Name Common Name				
	Scientific Name		upuniopsis unucuruioides		Common Name				
	Scientific Name				Common Name				
	Scientific Name				Common Name				
	Scientific Name				Common Name				
			Grace	pecies richness:					
Total number	r of energies		0.0333	pecies ricinicss.	3				
Total Humber	Scientific Name		Oplismenus aemulus		Common Name				
	Scientific Name		Ottochloa gracillima		Common Name				
	Scientific Name		Themeda triandra		Common Name				
	Scientific Name		memeda trianara		Common Name				
	Scientific Name				Common Name				
	Scientific Name				Common Name				
	Scientific Name				Common Name				
	Scientific Name				Common Name				
	Scientific Name				Common Name				
	Scientific Name				Common Name				
			Forbs and others (non	grass ground) species richno	ess:				
Total number	r of species			, . , . ,	8				
	Scientific Name		Goodenia rotundifolia		Scientific Name		Persicaria attenuata		
	Scientific Name		Maclura cochinchinensis		Scientific Name	p	seuderanthemum variabile		
	Scientific Name		Parsonsia straminea		Common Name	· ·			
	Scientific Name		Lobelia purpurascens		Common Name				
	Scientific Name		Lomandra longifolia		Common Name				
	Scientific Name	Lomandra longifolia Hardenbergia violacea		Common Name					
	Scientific Name		Smilax australis		Common Name				
Part E - No	on-Native Plant Cover: (*list species below	r)							
	Total percentage cover within plot				25.00%				
	Scientific Name		Mangifera indica		Scientific Name		Solanum nigrum		
	Scientific Name		Lantana camara		Scientific Name		Asparagus virgatus		
	Scientific Name		Passiflora suberosa		Common Name				
	Scientific Name		Ageratina adenophora		Common Name				
	Scientific Name	Se	enna pendula var. glabrata		Common Name				
	Scientific Name		Ageratum houstonianum		Common Name				
	Scientific Name		Setaria sphacelata		Common Name				
	Scientific Name		Senecio madagascariensis		Common Name				
	Scientific Name		Cuphea carthagenensis		Common Name				
	Scientific Name		Colonus *		Common Name				

Part I - Tree canopy cover, Shrub canopy cover Tree canopy cover % Shrub canopy cover %

Total Length of Course Woody Debris (Meters): 60.00						
1		1.00		26		
2		4.00		27		
3		1.00		28		
4				29		
5				30		
6				31		
7				32		
8				33		
9				34		
10				35		
11				36		
12				37		
13				38		
14				39		
15				40		
16				41		
17				42		
18				43		
19				44		
20				45		
21				46		
22				47		
23				48		
24				49		
25				50		
G - Native perennial grass cover, organic litter: (*nrovido norcentago cover	within each guadrat, and n	rovido avorago covorl			
u - wative perenniai grass cover, organic nitter.	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Native perennial grass cover	40.00%	5.00%	96.00%	0.00%	15.00%	31.20%
					•	
	Quadrat 1	Quadrat 2	Quadrat 3	Quadrat 4	Quadrat 5	Average
Organic Litter	15.00%	75.00%	2.00%	10.00%	80.00%	36.40%
t H- Number of large trees , tree canopy height,	recruitment of woody nere	nnial species:				
	l l l l l l l l l l l l l l l l l l l	species.		Non- Eucalypt Large		
Eucalypt Large tree DBH benchmark used :	49			tree DBH benchmark used:		36
Number of large eucalypt trees:		14		Number of large non eucalypt trees:		2
Number Large Trees:				16		

ASSESSMENT UNITS	GHFF potential habitat within 20km radius (HA)	% GHFF potential habitat within 20km radius	Active GHFF camps within 20km	Level 3 or higher GHFF active camps within 20km
IAU-1 AU1	30570	24.51483561	15	2
IAU-1 AU2	29870	23.95348837	13	1
IAU-2 AU3	30290	24.29029671	18	5
IAU-2 AU4	31520	25.27666399	19	5
IAU-3 AU5	31770	25.47714515	19	5
IAU-3 AU6	31690	25.41299118	18	5
IAU-4 AU7	29310	23.50441059	11	1
IAU-4 AU8	29820	23.91339214	10	1
IAU-4 AU9	31900	25.58139535	18	4

Sub-canopy:

36.00% 12.50% Emergent:

51.50%

Canopy:

Case Reference	EPBC2020-8646				
Project Name	MERA CONNECTOR. IMPACT SITE KOALA HABITAT QUALITY ASSESSM	ENT.			
Total Area	70.014				

Part		Habitat Quality Attributes			
		Assessment Unit Area (ha)			
		Regional Ecosystems			
		Bioregion			
		Recruitment of woody perennial species (Number of ecologically dominant layers regenerating)			
		2. Native plant species richness			
		- Trees			
		- Shrubs			
		- Grasses			
		- Forbs			
		3. Tree canopy height			
	S	- Canopy Layer			
	Site Condition Attributes	- Sub-Canopy Layer			
	n Att	- Emergent Layer			
1	ditio	4. Tree canopy cover			
	Con	- Canopy Layer			
	Site	- Sub-Canopy Layer			
		- Emergent Layer			
		5. Shrub canopy cover			
		6. Native perennial grass cover			
		7. Organic litter			
		8. Large trees			
		9. Coarse woody debris (Meters)			
		10. Weed cover			
	tes	11. Size of patch (fragmented)			

	Assessment Unit Number							
IAU1-AU1 12.11.24	IAU1-AU2 12.11.24	IAU2-AU3 12.11.25	IAU2-AU4 12.11.25	IAU3-AU5 12.11.23	IAU3-AU6 12.11.23	IAU4-AU7 REGROWTH 12.3.11	IAU4-AU8 REGROWTH 12.3.20	IAU4-AU9 REMNANT 12.3.11
11.66	11.66	10.045	10.045	7.655	7.655	3.347	3.347	3.347
12.11.24	12.11.24	12.11.25	12.11.25	12.11.23	12.11.23	12.3.11 REGROWTH	12.3.20 REGROWTH	12.3.11
Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland	Southeast Queensland
100.00%	100.00%	75.00%	100.00%	100.00%	100.00%	33.00%	100.00%	100.00%
80.00%	60.00%	185.71%	100.00%	56.25%	43.75%	28.57%	250.00%	142.86%
75.00%	62.50%	62.50%	75.00%	27.27%	36.36%	0.00%	125.00%	100.00%
33.33%	33.33%	44.44%	33.33%	100.00%	100.00%	0.00%	100.00%	25.00%
41.18%	47.06%	76.92%	69.23%	33.33%	27.78%	12.00%	50.00%	32.00%
84.62%	84.62%	90.91%	100.00%	67.74%	77.42%	78.26%	100.00%	95.65%
100.00%	100.00%	111.11%	88.89%	70.00%	120.00%	100.00%	125.00%	150.00%
76.39%	92.08%	91.00%	114.75%	111.60%	79.00%	32.14%	18.57%	91.96%
25.58%	37.91%	1046.00%	640.00%	54.55%	90.91%	24.24%	415.00%	109.09%
98.57%	94.29%	395.00%	417.50%	83.33%	52.78%	0.00%	52.00%	62.50%
10.77%	16.92%	82.00%	11.00%	106.67%	190.00%	0.00%	25.00%	70.91%
212.89%	207.56%	128.62%	146.77%	145.00%	133.93%	32.43%	256.67%	98.38%
33.33%	90.91%	165.22%	269.57%	135.71%	85.71%	6.67%	18.79%	53.33%
99.08%	86.08%	470.00%	1260.00%	178.13%	264.58%	3.60%	22.47%	10.81%
3.00%	5.00%	2.00%	1.00%	10.00%	2.00%	95.00%	10.00%	25.00%
10.00	10.00	5.00	5.00	5.00	2.00	0.00	0.00	7.00

IAU4- AU9	GHFF FORAGING TREE FLOWER SCORE	GHFF FORAGING TREE SPECIES COUNT	GHFF SIGNIFICANT FORAGING TREE SPECIES COUNT
Eucalyptus tereticornis	0.88	1	1
Eucalyptus microcorys	0	0	0
Casuarina glauca	0	0	0
Eucalyptus siderophloia	0.81	1	1
Callistemon salignus	0	0	0
Melaleuca quinquenervia	0.88	1	1
Lophostemon confertus	0.46	1	0
Myrsine variabilis	0	o	0
TOTAL	3.03	4	3
AVERAGE	0.37875		
SCORE	5	10	10

IAU4- AU9	GHFF FORAGING TREE FLOWER SCORE	T1 ABUNDANCE
Eucalyptus tereticornis	o.88	23
Eucalyptus microcorys	0	1
Casuarina glauca	0	0
Eucalyptus siderophloia	0.81	33
Callistemon salignus	0	0
Melaleuca quinquenervia	o.88	0
Lophostemon confertus	0.46	0
Myrsine variabilis	0	0
Acacia	0	0
GHFF FORAGING TREE COL	JNT/HA	112
% BENCHMARK	47.3315167	
GHFF SIGNIFICANT FORAG	112	
% BENCHMARK		50.41756548

12.3.11	ave stem density	284	
	relative cover	frequency	ave stem density
Eucalyptus tereticornis	0.52	0.71	104.8528
Eucalyptus siderophloia	0.29	0.64	52.7104
Melaleuca quinquenervia	0.25	0.29	20.59
Corymbia intermedia	0.23	0.64	41.8048
Lophostemon suaveolens	0.21	0.43	25.6452
Angophora leiocarpa	0.06	0.36	6.1344
Corymbia tessellaris	0.08	0.21	4.7712
Corymbia citriodora	0.03	0.14	1.1928
Angophora woodsiana	0.18	0.07	3.5784
Eucalyptus seeana	0.05	0.07	0.994
Eucalyptus tindaliae	0.01	0.07	0.1988
BENCH GHFF FORAGE	236.6288		
BENCH GHFF SIGNIFICANT FORAGE	222.1448		

Appendix G2: GHFF habitat – summarised HQS data

3.2.3 Grey-headed Flying-fox Impact Assessment Table

Part													1.0															
Set 19 1	REY-HEADED FLYING-FOX	<u>н</u>	ABI	ГАТ	QUA	LITY	Y SCORE	= 7.3	8	ROUI	NDS 1	TO 7,	/10															
The state of the s	ment Unit - Regional Ecosystem				IAU-1 R	RE12.11.24 F	Remnant					IAU-	-2 RE12.11.25 Remnant					IAU-3 RE12	.11.23 Remnant						IAU-	-4 RE 12.3.11/20 Remnant		
		Ponchmark	4.	Plot 1				Avorago %	Avorago Ror	nchmark	Plot 3		Plot 4	Avora	uno % Avorano P	onchmark	Plot 5			Avorago 9	Average	Ronchmark	Plot 7	Ronchmark			Plot 9	Avorago %
**************************************		12.11.24	Raw Data	% Benchma	ark Score	Raw Data	% Benchmark Score	benchmark	Score 12.	.11.25 Raw Da	ata % Benchma	ark Score	Raw Data	Score bench	mark Score 1	2.11.23	Raw Data	Score Ra	aw Data % Benchmark Score	benchmari	k Score	12.3.11 Raw Data	% Benchmark	Score 12.3.20	Raw Data %	6 Benchmark Score 12.3.11	Raw Data % Benchmark Score	benchmark
The section of the contribution of the contrib					_																							
Separate sep		10	JO 10	J0 1/	100.0	100.0	0 100.0	5 100.0	5	100	75	75.0	3 100 100.	.0	87.5	100			100 100.0	10	0.0	100 3	33.0	100	100		100 100.0	5 77
*** The state of t		1	10	8	80.0 2.5		6 60.0 2	.5 70.0	2.5	7	13 1	185.7	5 7 100.	.0	142.9		9 112.		87.5 2	10	0.0		28.6	2.9	10	250.0 9	10 142.9	5 140
*** *** *** *** *** *** *** *** *** **			8	6	75.0 2.5			.5 68.8	2.5	8			2.5 6 75	.0 2.5	68.8 2.9	12							0.0			125.0 5		5 75
A PRIMATION NO PRI			9	3	33.3 2.5	3			2.5	9					38.9 2.9		4 80.0			9 8	0.0 2.9	12	0.0	4	1 1			2.5 41
See the second of the property		1	17			8			2.5	13					73.1 2.5	19						25	12.0	d :	4			2.5 31
The state of the s	canopy height	2	26 7			22.0		5 84.6	5	22	20	90.9	5 22 100.	.0	95.5	29	21 72.		24 82.8	7	7.6	2 1	78.3	9 16	16 16	100.0 5 23		5 91
Secretary of the control of the cont			10 *	10 1	100.0	10.0	0 100.0	100.0	5	q	10 1	111.1			100.0	10					5.0		100.0	4 .	1 10			5 125
**************************************	canopy height (average of emergent canopy sub-canopy)	1	18 16	10	88.9 5			9 88.9	5	15.5			5 15 96	.8	96.8	19.5	14 71				21	159 1	83.9	1	1		17 109.7	5 100
Secretary and Se		7	72 5						-	40						69	55.8 88.0			7	5.6	56 1	32.1	70	1			5 47
The state of the s		- /	43 1			16.3	3 37.9	1	2	5	52.3 10	046.0					751			10	nd d	3	24.2	20	M 8			5 182
The state of the s		67	7.5			41.2	2 71.0		-	-						20.0	20.0 97.0	1 1				44.0 1	20.2	1 4	10 40			5 78
Separate programment of the field of the fie		37	7 6			66			1	22.3 A	15.8	895.0			406.3	17						20	29.2	1 1	7.5			5 38
The state of the control of the cont		7	39 4			6.6			1	20						21						44	0.0	2	5.0			3 32
The first proper			4E 0E						3	60				····		54						27 1	22.4	2 2	M 27			5 129
*** *** *** *** *** *** *** *** *** **	ther of large trees (ha)	7	33 1	11	33.3	30.0	0 909 1		10	23	38 1	165.2 1	15 62 269			1/			24 171.4 1			31	52.4	161	N /1			10 26
The section of the se		5/	46 5/	41	99.1 5	470.0	0 861		- 5	100						490						550 2	3.6	1 89	200.0			2 12
See Contact of Contact		-	0	3	10	470.0	0	52.0	10	100	3	1	10 1	10	10 10	704	10	1 1	1279 207.9	1	60	334	5.0	4	4 10	12.5		5 43
1	Hadive plant cover	+'	-	1	- 10	3.0	0	4.0	A	Ü		-	1		A	- 1	10	_	1 -	1				,	1		23	43
**************************************		1	+	Value	Score		Value Score	Average			Value	Score	Value	Score Avor	Average Score		Value	Score	Value	Averses	Score		Value	Score	v	falue Score	Value Score	e Average
*** *** *** *** *** *** *** *** *** **	ity and availability of GHEF Habitat: Foraging Habitat Tree Species Flower Scores	+	+	-aiue	05 6		0.57	Average 0 CA	∞ue 9		value	0.46	yaiuc no	57 AVE	052 07		Value 0.4	Score	value Store	Aveidge	45		0.00	10				5 Average
**************************************	ity and availability of GHEF Habitat: Foraging Habitat Tree Species Pichage	-	+	+	6 45		0.57	0.34	10			9 7	20	~ 1	7.5 20.4		0.44	20	0.44	al "			0.63	-	1	7 20		10 4
Schellen Service Servi		1	-	+	4 10	1	4	6.0	10			2 4	10	7 1	7 20.0			1 10		7	20 40			- 1	1	, 24 4 10	4	10 3
See Control 1989 1999 1999 1999 1999 1999 1999 199				4	4 10		4 2	4.0	10			403.5	15	4 19	3.0 13		·	404		4	3.3 14		1	40.5			3	
See		4		A Z										96.5														
Control Cont		4		A Z																								
Figure F	Site Condition Score - out of 4	4		A Z	2.58		2.68		2.83			3.18		2.97	3.28			3.11	2.77		2.78			1.25		2.82	2.6	62
Fig. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Context			Value	Score		Value Score	Average	Average Score		Value	Score	Value	Score Aver	Average Score		Value	Score	Value Score	Average	Average		Value	Score	v	alue Score	Value Score	e Average
The control co	of patch (ha)			+	10		1	0	10				2		1					1				(1
**************************************		-		+	- 10		1 '	1					7	1 1	1			1		1	- 1	<u> </u>	l	1	1	1		-1
The section of the se	No. active GHEE camps within 20km			-	15 10		13 1	0 14.0	10			18 1	10 1	19 10	18.9 10		10	10	18 1	1	89 10		11	10		10 10	18	10 13
Part	PXT			-				1									_											
See Manage Control Con	% GHFF forceging habitat within 20 km	-	-	2	25.51 2		23.95	2 24.7	2			24 29	25.2	28	24.9		25.41		25.41	, ,	54		23.5			23.91 2	25.58	4 24
Fig. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ogical Corridors	+	+		5.52		23.33	4 2-11					6				23.5		25.43		-		200	1	+	25.52	25.50	7
As a first in stands in the collection of three circles of the collection of three circles of three circles of the collection of three circles		+	+	+				1	- 4				9					-		1	-			1	+ + +			1
See Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					2 4		1	2 15	3			5 1	10	5 10	50 10			10		d	50 10					1 3	40	8
Color and Store St		+	-	+	-		-	2 20	- 1			1 :	5	1 1						2	-			7.0		* .	4.5	1
See Content Soor - out of 3	ance of threats				3.5			1	1			,		3.2	1									2		3.		
Sistemate from event of 3		/	A 7	1										37.5														
**************************************				4																								
Fig. 1. The properties of the					IAU-1 R	RE12.11.24 F	Remnant					IAU-	-2 RE12.11.25 Remnant					IAU-3 RE12	.11.23 Remnant						IAU-	-4 RE 12.3.11/20 Remnant		
damon of large frees 3 3 11 33 3 4 30 0 9.0 8 6.2 1 6 23 38 16.5 2 10 6 26.6 1 227 4 1 3 4 271 4 1 3 4 171 221 4 1 3 5 1 6 1 5 3 18.8 2 3 1.6 5.3 3 6 1 6 2 7 7 1 7 8 7 8 7 8 7 8 7 8 8 7 8 8 8 8 8	in Charling Date (CCD) 88	Benchmark	K Daw Date	Plot 1	ad. Cases	Dav. Data	Plot 2	Average	Average Ber	nchmark	Plot 3	ut. Caara	Plot 4	Lcase Aver	age Average B	enchmark	Plot 5	Canan Do	Plot 6	Average	Average	Benchmark		Benchmark	Raus Data 9/	Plot 8 Benchmark		Average
O GAFF Biological Pressuross 1		12.11.24	Naw Data	76 Belicilila	.ik Score	Raw Data	% Benchmark Score		300F 12.	.11.25 Raw Da				Score	Score 2	2.11.23					Score	12.3.11 RdW Ddtd	% Denchinark	3core 12.3.20	RdW Ddld 76			=
Total SRR score (and 420 Max SRR score) with 45 Max SRR score (out of 3) Au		37	ś3 1	.1 .7	33.3 4	30.0	0 90.9	8 62.1	6	23	38 1	165.2 1	10 62 269.	.6 10	217.4 10	14	38 271.4	10	24 171.4	22	1.4 10	30	6.7	169	55 31	18.8 2 30	16 53.3	6 26
SRR Score (out of 3) Au Au Au Au Au Au Au A		40)			14		18		16			20	10	20	20			20	18		20					12	16	6
IAU-1 REILAIZ REILAI			4	A Z			20					20		20	20			20			20			20				
Region R	SRR Score (out of 3	3)	4	A Z	2.10		2.70		2.40			3.00		3.00	3.00			3.00	2.70		3.00			1.24		1.80	2.4	40
Rel 1,11 Rel 1,11 Rel Rel 1,11 Rel Rel 1,11 Rel 1,11 Rel 1,11 Rel																												
habitat quality score (weighted) Remnant Remnant <t< td=""><td></td><td>IAU-1</td><td>IAU-2</td><td>IAU-3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		IAU-1	IAU-2	IAU-3																								
Conditionscore (out of 3) 28 328 278 279 280 279 280 280	habitat quality score (weighted)					Final																						
Context Score (out of 3) 1.96 2.01 1.196 2.01 1.196 2.01 1.196 2.01 1.196 2.01 1.196 2.01 1.196 2.01 1.196 2.01 2.01 2.01 2.02 2.02 2.02 1.030 2.03				28		2.80	2																					
240 3.00 3.00 3.00 1.91 2.58 3.00				96		1.00	1																					
tat Assessment Unit area (hg) 23.2 20.0 15.3 1 10.0 68.76 1.5 1 10.0 1		2.90	40 27																									
act Assessment Unit area (ha) 23.2 20.9 15.31 10.04 68.76 10 impact area (ha) for this MNES 6.87 6.87 6.87 6.87 6.87 6.87 6.87 6.87		7.4	10 07																									
Impact area (ha) for this MNES							5																					
Veighting 0.339 0.292 0.223 0.146																												
		08.70	20 03.7	2 08	0.70 00.70																							
							2																					

From the Offset Assessment Guide, quantum of impact for Grey-headed Flying-fox = 68.76 ha x 0.7 = 48.13 ha

^{**} Absence of threats re-scored using BAAM threat scoring table applied at offset sites

^{**} Stocking rate scoring adjusted to match offset scoring method - excludes abundance of foraging canopy trees and abundance of significant canopy foraging trees originally included in impact site HQA

Appendix H: Tabooba BioCondition Data

		T	·	T		T	T	T				1	1		
Broad title	Attribute	AU1 472-473	AU1 474-475	AU2 470-471	AU2 683-684	AU2 685-686	AU2 734-735	AU3 687-688	AU3 756-757	AU4 680-681	AU4 747-748	AU5 736-737	AU5 751-752	AU6 745-746	AU6 754-755
LOCATION	Site ID	472-473 6/05/2022	474-475 2 6/05/2022	470-471 6/05/2022	683-684 17/03/2022	685-686 17/03/2022	734-735 6/05/20	687-688 17/03/202	756-757 2 7/05/2022	680-681 17/03/2022	747-748	736-737 2 6/05/202	751-752 2 7/05/202	745-746 2 7/05/2022	754-755 7/05/2022
	Observers	DF & LW	DF & LW	DF & LW	DF & LW	DF & LW	DF & LW	DF & LW	DF & LW	DF & LW	DF & LW	DF & LW	DF & LW	DF & LW	DF & LW
	Location Datum	Tabooba MGA94/GDA Zone 58	Tabooba MGA94/GDA Zone 59	Tabooba MGA94/GDA Zone 57	Tabooba MGA94/GDA Zone 56	Tabooba MGA94/GDA Zone 56	Tabooba MGA94/GDA Zone 60	Tabooba MGA94/GDA Zone 56	Tabooba MGA94/GDA Zone 66	Tabooba MGA94/GDA Zone 56	Tabooba MGA94/GDA Zone 63	Tabooba MGA94/GDA Zone 61	Tabooba MGA94/GDA Zone 64	Tabooba MGA94/GDA Zone 62	Tabooba MGA94/GDA Zone 65
	Plot Origin Zone					·									
	Plot Origin easting Plot Origin northing														
	Plot Centre Zone Plot Centre easting														
	Plot Centre northing														
	Plot bearing Plot allignment description	35	0 30	270	210	210	3	27	30	150	33	0 210	270	60	30
	Locality description														
REGIONAL ECOSYSTEM & TREE HEIGHTS	Habitat description	Remnant Eucalyptus crebra, E tereticornis and Angophora	Remnant Eucalyptus crebra and E tereticornis open forest	Advanced regrowth Eucalyptus crebra and E. tereticornis subsp	Advanced regrowth open forest dominated by Eucalyptus tereticornis	Advanced regrowth open forest with occasional emergent	Advanced regrowth open Eucalyptus crebra forest	Young regrowth open forest with occasional emergent relictual trees.	Young regrowth open forest of Eucalyptus crebra and E tereticornis	Remnant open forest dominated by Eucalyptus melliodora,	Remnant Eucalyptus tereticornis subs basaltica, E. melliodora and E.	sp Advanced regrowth Eucalyptus eugeniodes , E. tereticornis subsp	Advanced regrowth open forest of Eucalyptus tereticornis subsp	Cleared paddock (previously 12.8.16)	Cleared paddock (previously 12.8.16)
		subvelutina open forest		basaltica open forest	subsp. basaltica , Eucalyptus crebra and Corymbia intermedia	relictual trees. Dominant species include Eucalyptus crebra.		Dominant species include Eucalyptus		Eucalyptus tereticornis subsp. basaltica, Eucalyptus eugeniodes,	eugenioides open forest	basaltica, Eucalyptus melanophloia open forest	basaltica and E. eugenioides		
					,	Eucalyptus tereticornis, Corymbia tessellaris and		Corymbia tessellaris		Angophora subvelutina and Corymbia intermedia					
						Corymbia intermedia				Corymbia intermedia					
	Regional Ecosystem	43.045	42.045	12.8.16	42.045	12.8.16	12.8.16	12.8.16	42045	12.8.14	12.8.14	12.8.14	42044	12.8.16	12.8.16
	Tree canopy (EDL) height	12.8.16 15	12.8.16	12.8.10	12.8.16	12.0.16	12.6.16	10 1	12.8.16	12.8.14	12.8.14	5 12.8.14	12.8.14	0	0
	Tree sub canopy height Emergent height	8	10	5	8	3		4	3	10	!	5	6	0	0
SITE PHOTOS	Photo north from plot centre	Labelled	Labelled	Labelled	Labelled	Labelled	Labelled	Labelled	Labelled	Labelled	Labelled	Labelled	Labelled	Labelled	Labelled
	Photo south from plot centre Photo east from plot centre	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
	Photo west from plot centre	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
50x20m AREA 100x50m AREA	Coarse woody debris (m) (all logs >10cm diam; 0.5m long) List native species from EDL	1.8 Eucalyptus crebra	Eucalyptus crebra	17.5 Eucalyptus crebra	17.7 Eucalyptus tereticornis subsp.	9. Eucalyptus crebra	Eucalyptus crebra	7.9 27 Eucalyptus crebra	7 6.1 Eucalyptus crebra	12.8 Eucalyptus melliodora	0.5 Eucalyptus tereticornis subsp	Eucalyptus eugenioides	6 14.6 Eucalyptus eugenioides	na 0	na 0
		Eucalyptus tereticornis Angophora subvelutina	Eucalyptus tereticornis	Eucalyptus tereticornis subsp basaltica	basaltica Eucalyptus crebra	Eucalyptus tereticornis Corymbia tessellaris	Corymbia tessellaris Corymbia intermedia	Corymbia tessellaris Eucalyptus tereticornis	Eucalyptus tereticornis Corymbia tessellaris	Eucalyptus tereticornis subsp. basaltica	basaltica Eucalyptus melliodora	Eucalyptus tereticornis subsp. basaltica	Eucalyptus tereticornis subsp basaltica		
		3.			Corymbia intermedia	Corymbia intermedia	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,	Eucalyptus eugeniodes Angophora subvelutina	Eucalyptus eugenioides	Corymbia tessellaris Eucalyptus melanophloia	Angophora subvelutina Corymbia tessellaris		
				1						Corymbia intermedia		Corymbia intermedia	Eucalyptus crebra		
	Total number of native tree spp from EDL only List other native tree species not in EDL (tree = single stemmed and >2m)	Lophostemon confertus	3 Corymbia tessellaris	. Xanthorrhoea glauca	Allocasuarina torulosa	Xanthorrhoea glauca	Allocasuarina torulosa	3 Angophora subvelutina	3 Eucalyptus melanophloia	Allocasuarina torulosa	Brachychiton populneus	Angophora subvelutina	5 Melaleuca bracteata	Eucalyptus tereticornis (emergent)	0 na
	, , , , , , , , , , , , , , , , , , ,	Allocasuarina torulosa Melia azedarach	Brachychiton populneus Xanthorrhoea glauca		Eucalyptus melliodora		Xanthorrhoea glauca Eucalyptus tereticornis	Corymbia intermedia	Angophora subvelutina	Xanthorrhoea glauca Brachychiton populneus	Allocasuarina torulosa Dodonaea viscosa	Allocasuarina torulosa Xanthorrhoea glauca	Allocasuarina torulosa Xanthorrhoea glauca	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			Allocasuarina torulosa							, a populitus	Lophostemon confertus Corymbia intermedia		goods		
											Angophora subvelutina				
	Total number of non-EDL species Total native tree spp richness (all tree species >2m + EDL) (Tree Richness)		4 6	1		2		3	2 2	3		9	3 8	1 0	0
	Total natiive tree spp from EDL recruiting		3	2		3		3	2	5	;	2	5	5 0	0
	Proportion of EDL Recruiting % Eucalypt large tree DBH	10	100 2 42	100	100	2	0 1	100 66.6666666 42 4	7 100	100	66.6666666	57 10 4 4	0 10	0 0	0 42
	Non-eucalypt large tree DBH	C	0	C		0	o e	0	0	0		0	0	0	0
	Number of large eucalypt trees Number of large non-eucalypt trees	9	7 0	4		5	0	0	0 0	11	1	0	0	0 0	0
50x10m AREA	Total large trees		5 7	4	Contract to	6	5	3	2	11	1	3	5	0	0
SUXIUIII AREA	List native shrub species	Allocasuarina torulosa Angophora subvelutina	Acacia decora Allocasuarina torulosa	Carymbia intermedia Carymbia tessellaris	Corymbia intermedia Eucalyptus tereticornis subsp.	Brachychiton populneus Corymbia intermedia	Xanthorrhoea glauca	Corymbia tessellaris Eucalyptus crebra	Corymbia tessellaris Eucalyptus crebra	Acacia implexa Brachychiton populneus	Acacia implexa Dodonaea viscosa	Acacia implexa Allocasuarina torulosa	Angophora subvelutina Bursaria spinosa	Corymbia intermedia	-
		Corymbia intermedia Eucalyptus crebra	Angophora subvelutina Breynia oblongifolia	Eucalyptus tereticornis subsp. basaltica	basaltica Xanthorrhoea glauca	Corymbia tessellaris Xanthorrhoea glauca		Grewia latifolia Xanthorrhoea glauca	Eucalyptus tereticornis subsp. basaltica	Eucalyptus melliodora Eucalyptus tereticornis subsp.	Eucalyptus eugenioides Eucalyptus tereticornis subsp.	Angophora subvelutina Corymbia tessellaris	Corymbia tessellaris Eucalyptus crebra		
		Eucalyptus tereticornis subsp. basaltica	Corymbia intermedia Eucalyptus crebra	Grewia latifolia Xanthorrhoea glauca						basaltica Grewia latifolia	Basaltica	Eucalyptus eugenioides Eucalyptus melanophloia	Eucalyptus eugenioides Eucalyptus tereticornis subsp.		
		Glochidion ferdinandi Lophostemon confertus	Eucalyptus tereticornis subsp. basaltica							Trema tomentosa Xanthorrhoea glauca		Eucalyptus tereticornis subsp. basaltica	basaltica Xanthorrhoea glauca		
		Trema tomentosa Xanthorrhoea glauca	Lophostemon confertus Trema tomentosa									Exocarpos strictus	,		
	Total number of native shrub species (Shrub Richness)	xuntnormoed gladea	a 10	5				1	1	7	,	Xanthorrhoea glauca	,	,	0
	List native grass species	Aristida gracilipes	Aristida benthamii	Bothriochloa macra	Aristida benthamii	Bothriochloa decipiens	Bothriochloa macra	Bothriochloa decipiens	Aristida gracilipes	Capillipedium spicigerum	Bothriochloa decipiens	Aristida gracilipes	Aristida gracilipes	Aristida gracilipes	Aristida gracilipes
		Capillipedium spicigerum Heteropogon contortus	Bothriochloa decipiens Capillipedium spicigerum	Capillipedium spicigerum Dichanthium setosum	Bothriochloa decipiens Heteropogon contortus	Heteropogon contortus Panicum effusum	Heteropogon contortus Panicum effusum	Capillipedium spicigerum Eragrostis sororia	Bothriochloa decipiens Bothriochloa macra	Dichanthium tenue Imperata cylindrica	Capillipedium spicigerum Dichanthium setosum	Bothriochloa macra Capillipedium spicigerum	Capillipedium spicigerum Eragrostis brownii	Bothriochloa macra Capillipedium spicigerum	Bothriochloa decipiens Bothriochloa macra
		Imperata cylindrica Oplismenus aemulus	Cymbopogon refractus Digitaria divaricatissima	Eriochloa crebra Heteropogon contortus	Imperata cylindrica Panicum effusum		Panicum simile Themeda triandra	Heteropogon contortus Imperata cylindrica	Capillipedium spicigerum Heteropogon contortus	Oplismenus aemulus Oplismenus imbecillis	Eragrostis brownii Heteropogon contortus	Digitaria divaricatissima Heteropogon contortus	Heteropogon contortus Imperata cylindrica	Dichanthium setosum Eragrostis sororia	Capillipedium spicigerum Eriochloa crebra
		Panicum effusum Panicum simile	Eragrostis sororia Heteropogon contortus	Panicum effusum Panicum simile	Panicum simile Poa labillardierei			Panicum effusum Themeda triandra	Imperata cylindrica Panicum effusum	Paspalidium distans Poa labillardierei	Imperata cylindrica Panicum effusum	Imperata cylindrica Panicum effusum	Imperata cylindrica Panicum effusum	Heteropogon contortus Imperata cylindrica	Heteropogon contortus Imperata cylindrica
		Poa labillardierei Sarga leiocladum	Imperata cylindrica Oplismenus aemulus	Sehima nervosa Themeda triandra	Themeda triandra				Themeda triandra	Sarga leiocladum Themeda triandra	Panicum simile Saraa leiocladum	Panicum simile Themeda triandra	Sarga leiocladum Themeda triandra	Panicum effusum Panicum simile	Panicum effusum Themeda triandra
		Themeda triandra	Panicum effusum								Themeda triandra			Themeda triandra	
	Total number of native grass species (Grass Richness)	10	Panicum queenslandicum	9	8	3		5	8	9	Apowollastonia spilanthoides	9	9	10	9
	List native forbs and other	Adiantum atroviride Apowollastonia spilanthoides	Apawollastonia spilanthoides Chamaecrista nomame	Apowollastonia spilanthoides Cheilanthes sieberi	Adiantum hispidulum Apowollastonia spilanthoides	Brunoniella australis Cheilanthes distans	Cheilanthes sieberi Cyanthillium cinereum	Cassytha pubescens Cheilanthes sieberi	Boerhavia dominii Cassytha pubescens	Ajuga australis Apowollastonia spilanthoides	Calotis cuneifolia	Adiantum atroviride Apowollastonia spilanthoides	Ajuga australis Apowollastonia spilanthoides	Centella asiatica Cheilanthes sieberi	Centella asiatica Cheilanthes sieberi
		Cheilanthes sieberi Coleus australis	Cheilanthes sieberi Coleus australis	Chrysocephalum apiculatum Crotalaria montana	Asperula charophyton Chrysocephalum apiculatum	Chrysocephalum apiculatum Cyanthillium cinereum	Cyperus cyperoides Desmodium rhytidophyllum	Chrysocephalum apiculatum Crotalaria lanceolata	Centella asiatica Cheilanthes sieberi	Asperula charophyton Chamaecrista nomame	Centella asiatica Cheilanthes sieberi	Cheilanthes distans Cheilanthes sieberi	Centella asiatica Cheilanthes sieberi	Crotalaria montana Cyanthillium cinereum	Cyperus cyperoides Desmodium varians
		Cyanthillium cinereum Cymbidium suave	Crassocephalum crepidioides Crotalaria montana	Cyanthillium cinereum Cyperus cyperoides	Crotalaria brevis Cyanthillium cinereum	Cyperus gracilis Daucus glochidiatus	Desmodium varians Gahnia aspera	Crotalaria montana Cyperus cyperoides	Chrysocephalum apiculatum Cyperus cyperoides	Crotalaria brevis Cyanthillium cinereum	Crotalaria montana Cyanthillium cinereum	Cyanthillium cinereum Cyperus cyperoides	Chrysocephalum apiculatum Cyanthillium cinereum	Cyperus cyperoides Desmodium rhytidophyllum	Dichondra repens Euphorbia dallachyana
		Cyperus gracilis Desmodium brachypodum	Cyanthillium cinereum	Cyperus gracilis Desmodium rhytidophyllum	Cyanthillium cinereum Cyclophyllum leptophyllum	Dichondra repens Euphorbia hirta	Galactia tenuiflora Glycine latifolia	Cyperus gracilis Desmodium rhytidophyllum	Desmodium varians Dichondra repens	Desmodium brachypodum Desmodium gunnii	Cyperus cyperoides Cyperus gracilis	Desmodium rhytidophyllum Desmodium varians	Cyperus cyperoides Cyperus gracilis	Desmodium varians Dichondra repens	Geranium gardneri Glycine latifolia
		Desmodium gunnii Desmodium rhytidophyllum	Cyperus gracilis Desmodium brachypodum	Desmodium varians Dianella brevipedunculata	Cyperus cyperoides Cyperus gracilis	Glycine latifolia Glycine tabacina	Glycine tomentella Indigofera linnaei	Desmodium varians Galactia tenuiflora	Euphorbia dallachyana Galactia tenuiflora	Desmodium rhytidophyllum Desmodium varians	Desmodium gunnii Desmodium rhytidophyllum	Dianella brevipedunculata Dianella longifolia	Desmodium gangeticum Desmodium gunnii	Digitaria didactyla Euphorbia dallachyana	Glycine stenophita Glycine stenophita
		Desmodium varians	Desmodium gunnii Desmodium rhytidophyllum	Dianella longifolia	Cyperus gracilis	Indigofera linnaei	Lespedeza juncea	Glycine latifolia	Glossocardia bidens	Dichondra repens	Desmodium varians	Gahnia aspera	Desmodium rhytidophyllum	Fimbristylis dichotoma	Hydrocotyle laxiflora
		Dianella longifolia Dichondra repens	Desmodium varians Dianella longifolia	Dichondra repens Euchiton sphaericum	Daucus glochidiatus Desmodium gunnii	Lespedeza juncea Panicum simile	Mentha satureioides Oxalis exilis	Indigofera linnaei Ipomoea plebeia	Glycine latifolia Glycine stenophita	Eremophila debilis Gahnia aspera	Dianella brevipedunculata Dianella caerulea	Galactia tenuiflora Glossocardia bidens	Desmodium varians Dianella brevipedunculata	Gahnia aspera Galactia tenuiflora	Hypericum gramineum Lespedeza juncea
		Einadia hastata Eustrephus latifolius	Dichondra repens Eustrephus latifolius	Galactia tenuiflora Glossocardia bidens	Desmodium rhytidophyllum Desmodium varians	Scleria mackaviensis Sida fibulifera	Phyllanthus similis Scleria mackaviensis	Lespedeza juncea Pterocaulon redolens	Glycine stenophita Glycine tomentella	Galactia tenuiflora Glycine tabacina	Dianella longifolia Dichondra repens	Glycine latifolia Glycine tomentella	Dianella caerulea Dianella longifolia	Geranium gardneri Glycine latifolia	Lobelia concolor Oxalis exilis
		Galactia tenuiflora Geranium gardneri	Gahnia subaequiglumis Galactia tenuiflora	Glycine latifolia Glycine tabacina	Dichondra repens Eustrephus latifolius		Vittadinia sulcata Zornia dyctiocarpa	Rhynchosia minima Vittadinia scabra	Hypericum gramineum Indigofera linnaei	Glycine tomentella Hardenbergia violacea	Digitaria didactyla Eremophila debilis	Indigofera hirsuta Indigofera linnaei	Dichondra repens Digitaria didactyla	Glycine latifolia Glycine stenophita	Phyllanthus similis Pigea stellarioides
		Glycine clandestina	Geranium gardneri	Indigofera linnaei	Galactia tenuiflora		zorna ayettocarpa	Victoria Scalia	Lobelia concolor	Lespedeza juncea	Euphorbia dallachyana	Lespedeza juncea	Eremophila debilis	Hydrocotyle laxiflora	Rumex brownii
		Ipomoea plebeia Lobelia purpurascens	Glossocardia bidens Glycine clandestina	Ipomoea plebeia Lespedeza juncea	Geranium gardneri Glossocardia bidens				Phyllanthus similis Pigea stellarioides	Lomandra longifolia Lomandra multiflora	Fimbristylis dichotoma Gahnia aspera	Lomandra multiflora Mentha satureioides	Euphorbia dallachyana Galactia tenuiflora	Hypericum gramineum Jasminum lineare	Schenkia australis Verbena africana
		Lomandra multiflora Oplismenus aemulus	Lespedeza juncea Lobelia purpurascens	Lomandra multiflora Mentha satureioides	Glycine tabacina Hydrocotyle laxiflora				Pimelea glauca Rumex brownii	Ranunculus plebeius Schenkia australis	Galactia tenuiflora Geranium gardneri	Oxalis exilis Phyllanthus similis	Geitonoplesium cymosum Geranium gardneri	Lagenifera sp. Lespedeza juncea	
		Oxalis exilis Pigea stellarioides	Lomandra multiflora Oplismenus aemulus	Oxalis exilis Rhynchosia minima	Lespedeza juncea Lobelia purpurascens				Schenkia australis Scleria mackaviensis	Scleria mackaviensis Swainsona galegifolia	Geranium homeanum Glycine latifolia	Rubus parviflorus Sarga leiocladum	Glycine clandestina Glycine latifolia	Lobelia concolor Mentha satureioides	
		Rubus parviflorus Scleria mackaviensis	Pigea stellarioides	Scleria mackaviensis Sida subspicata	Oxalis chnoodes Oxalis exilis				Tephrosia baueri Verbena africana	Tephrosia baueri? Verbena africana	Glycine latifolia Hydrocotyle laxiflora	Scleria mackaviensis Vittadinia sulcata	Glycine stenophita Glycine tomentella	Oxalis exilis Phyllanthus similis	
		Senecio quadridentatus Smilax australis	Rubus parviflorus Scleria mackaviensis	Tephrosia baueri Vittadinia sulcata	Oxalis exilis Plantago debilis				Zornia dyctiocarpa		Hydrocotyle laxiflora Hypericum gramineum	Zornia dyctiocarpa	Hydrocotyle laxiflora Hydrocotyle laxiflora	Phyllanthus similis Pigea stellarioides	
		Trema tomentosa	Senecio quadridentatus Sida subspicata	Zornia dyctiocarpa	Ranunculus plebeius						Jasminum lineare		Hypericum gramineum	Pimelea glauca	
		Verbena africana Vittadinia sulcata	Smilax australis Trema tomentosa		Scleria mackaviensis Viola betonicifolia						Lespedeza juncea Lobelia concolor		Lespedeza juncea Lobelia purpurascens	Rostellularia obtusa Schenkia australis	
			Verbena africana Vittadinia dissecta		Wahlenbergia communis						Mentha satureioides Oxalis exilis		Mentha satureioides Oxalis exilis	Scleria mackaviensis Verbena africana	
			Vittadinia sulcata								Phyllanthus similis Phyllanthus similis		Phyllanthus similis Picris angustifolia	Vittadinia sulcata Wahlenbergia communis	
											Pigea stellarioides Poa labillardierei		Pimelea linifolia Rhodanthe anthemoides	Zornia dyctiocarpa	
											Polygala sp.		Rhynchosia minima		
											Rhodanthe anthemoides Rostellularia obtusa		Schenkia australis Scleria mackaviensis		
											Schenkia australis Scleria mackaviensis		Sigesbeckia orientalis Swainsona galegifolia		
				1							Swainsona galegifolia Verbena africana		Tephrosia baueri Verbena africana		
											Vittadinia sulcata Wahlenbergia communis		Vittadinia sulcata Wahlenbergia communis		
											g.a commonts		Wahlenbergia gracilis		
	Total number of native forbs and other species (Forbs Richness)					,		10	,	~~			7		20
	rotarisamoci di native idias and ditier species (FUIDS MUINESS)	1 31	±1 34	29	32	. 1	I	10	' I	26	4	~	- 4	36	20

		AU1	AU1	AU2	AU2	AU2	AU2	AU3	AU3	AU4	AU4	AU5	AU5	AU6	AU6
Broad title	Attribute	Ageratna riparia Bidens pilosa C	Co Bidens pilosa Conyza bonariensis	(Ambrosia artemisiifolia Bidens pilos	683-684	685-686	Dichanthium annulatumLantana	c 687-688	Dichanthium annulatumEuphorbia hirta	680-681	Ambrosia artemisiifolia Aster subula	ti Bidens pilosa	Cirsium vulgareCrotalaria linifoliaDic	h Aster subulatusDichanthium annu	Alternanthera nodifloraAmbrosia a
	Non native species	Ageratina riparia	Bidens pilosa	Ambrosia artemisiifolia	Bidens pilosa Circium vulgara	Bidens pilosa Circium vulgara	Dichanthium annulatum	Ambrosia artemisiifolia	Dichanthium annulatum Euphorbia hirta	Ambrosia artemisiifolia	Ambrosia artemisiifolia	Bidens pilosa Caltic sinancis	Cirsium vulgare	Aster subulatus	Alternanthera nodiflora Ambrosia artemisiifolia
		Bidens pilosa Conyza bonariensis	Conyza bonariensis Crassocephalum crepidioides	Bidens pilosa Crassocephalum crepidioides	Cirsium vulgare Gomphocarpus physocarpus	Cirsium vulgare Crotalaria lanceolata	Lantana camara Macroptilium atropurpureum	Bidens pilosa Cirsium vulgare	Gomphocarpus physocarpus	Bidens pilosa Erigeron bonariensis	Aster subulatus Euphorbia hirta	Celtis sinensis Cirsium vulgare	Crotalaria linifolia Dichanthium annulatum	Dichanthium annulatum Euphorbia hirta	Ambrosia artemisirjolia Aster subulatus
		Crassocephalum crepidioides	Crotalaria linearis	Crotalaria linearis	Macroptilium lathyroides	Gomphocarpus physocarpus	Melinis repens	Euphorbia hirta	Macroptilium atropurpureum	Passiflora suberosa	Gomphocarpus physocarpus	Crotalaria linearis	Emilia sonchifolia	Gomphocarpus physocarpus	Chloris gayana
		Crotalaria linearis Euphorbia hirta	Euphorbia hirta Gomphocarpus physocarpus	Euphorbia hirta Lantana camara	Sigesbeckia orientalis Verbena litoralis	Malvastrum americanum Physalis angulata	Senecio madagascariensis Sonchus oleraceus	Senecio madagascariensis Sigesbeckia orientalis	Melinis repens Neonotonia wightii	Sigesbeckia orientalis Lantana camara	Macrotyloma Senecio madagascariensis	Dichanthium annulatum Lantana camara	Euphorbia hirta Gomphocarpus physocarpus	Polygala duarteana Senecio madagascariensis	Cyclophyllum leptophyllum Dichanthium annulatum
		Lantana camara	Lantana camara	Macroptilium atropurpureum	Digitaria didactyla	Senecio madagascariensis	Verbena littoralis	Tridax procumbens	Senecio madagascariensis	Verbena litoralis	Sida retusa	Macroptilium atropurpureum	Macroptilium atropurpureum	Sida retusa	Euphorbia hirta
		Macroptilium atropurpureum	Macroptilium atropurpureum	Malvastrum americanum	Melinis repens	Tridax procumbens		Lantana camara	Sida retusa		Tagetes minuta	Melinis repens	Malvastrum americanum	Verbena bonariensis	Gomphocarpus physocarpus
		Malvastrum americanum Melinis repens	Malvastrum americanum Melinis repens	Melinis repens Senecio madagascariensis	Lantana camara	Verbena litoralis Melinis repens			Tridax procumbens Verbena bonariensis		Verbena bonariensis Verbena littoralis	Senecio madagascariensis Sonchus oleraceus	Melinis repens Senecio madagascariensis	Verbena littoralis	Macroptilium atropurpureum Neonotonia wightii
		Passiflora suberosa	Passiflora suberosa	Solanum americanum		Sporobolus fertilis			Verbena littoralis		versena netorans	Tridax procumbens	Sida retusa		Senecio madagascariensis
		Passiflora subpeltata	Passiflora subpeltata	Sonchus oleraceus		Lantana camara						verbena littoralis	Tagetes minuta		Setaria sphacelata
		Solanum americanum Sonchus oleraceus	Physalis peruviana Solanum americanum	Sporobolus fertilis Tridax procumbens									Verbena bonariensis Verbena littoralis		Sida retusa Verbena bonariensis
		Verbena bonariensis	Verbena bonariensis	Verbena littoralis									VET DETIGNATION ON TO		Verbena littoralis
	Non native % cover	40	0 15	5	20	35	1	5 30	0 10	10	3	5 20	20	20	80
Five 1x1m plots	Plot 1 Native perenial ('decreaser') grass cover %	20	0 30	5	35	80		7	0 5	30				0	0
	Plot 1 Native other grass (if relevant) %	;	5 40	15	0	C	9	4	0 30	0	5	7	57	10	25
	Plot 1 Native forbs and other species %	•	4	6	11	9		3 2	5	0	1	2	2	0	0
	Plot 1 Native shrubs <1m % Plot 1 Non-native grass %			45	0	9	<u>'</u>	9	0	0		34	2	80	75
	Plot 1 Non-native forbs and shrubs %	55	5 20	9	35			6 1	0	10		3 2	33	0	0
	Plot 1 Litter %		6 10	20	15	0		4	0 10	0		1	ı	0	0
	Plot 1 Rock %	1	.0		0	5			0	0			2	0	0
	Plot 1 Bare ground %		1		0	5			0 50	0		1	1	10	0
	Plot 1 Cryptograms % Plot 1 Total %	100		400	0	0		10	0	0				0	0
	Plot 2 Native perenial ('decreaser') grass cover %	3	5 36	100	20	100	1	10	0	45	10	100	100	100	100
	Plot 2 Native other grass (if relevant) %		6	10	0		2	o °	0	0	·	10	10	10	0
	Plot 2 Native forbs and other species %		3	8	25		5	3	0	15			3	10	0
	Plot 2 Native shrubs <1m %		1		0				0	0		5		0	0
	Plot 2 Non-native grass %			60	0			9	5 10	0		20	2	65	95
	Plot 2 Non-native forbs and shrubs % Plot 2 Litter %	51	6	12	50]	3	4	-	30	1	11	·		
	Plot 2 Rock %	,		, 10	0		á		0 5	0		·	,	,	,
	Plot 2 Bare ground %				5		5	5	0 80	0			5 5	i s	5
	Plot 2 Cryptograms %				0	(o l		0	0				0	0
	Plot 2 Total %	100	0 100	100	100	100	10	0 10	100	100	10	100	100	100	100
	Plot 3 Native perenial ('decreaser') grass cover %	5	5 5	11	75	9	9	7 9	0	70	3	5 45	5 15	5	0
	Plot 3 Native other grass (if relevant) % Plot 3 Native forbs and other species %		1 30	19	0		4	0	25	0			5 70	5	0
	Plot 3 Native shrubs <1 m %	· ·	1	30	15	1			0	1		`l	1	,	0
	Plot 3 Non-native grass %	4	4	8	0	ì		6	0 60	0			7	85	85
	Plot 3 Non-native forbs and shrubs %	4	0	7	5	5	5	3	0	C		25	5	5	10
	Plot 3 Litter %		10	18	5	(0		0 4	10		80		C	0
	Plot 3 Rock %			7	0	0)		5	0			3	(0
	Plot 3 Bare ground % Plot 3 Cryptograms %				0			1	5	5		5		0	5
	Plot 3 Total %	10	00 10	0 100	100	100	10	10	0 100	100	10	0 10	0 100	100	100
	Plot 4 Native perenial ('decreaser') grass cover %		1	5	85	5 5	0		75 5	90		15 5	6 5	0	0
	Plot 4 Native other grass (if relevant) %	4	40 7	0 66	0)	0	5	0 50	0			20	5	0
	Plot 4 Native forbs and other species %			9	5	(2	10 5	5		10	5	0	0
	Plot 4 Native shrubs <1m %				0		3	30	0	0		10	-	0 20	0
	Plot 4 Non-native grass % Plot 4 Non-native forbs and shrubs %		55		,	4		3	30	0		0 19		10	95
	Plot 4 Litter %		9	9	5	1	0		5	5	3	0	4 10	0	0
	Plot 4 Rock %		1		0	C			0	0		7	,	0	0
	Plot 4 Bare ground %		!	5	0				0 10	0		15		15	5
	Plot 4 Cryptograms % Plot 4 Total %	40	10	2	0	10		10	0	0				0	0
	Plot 4 10tal % Plot 5 Native perenial ('decreaser') grass cover %	10	- 10 A	100	100	10	ď	9	70 10	100	10	10	7	100	100
	Plot 5 Native other grass (if relevant) %	2	20 25	27	o o	i i			0 50	0	4	0	6	50	0
	Plot 5 Native forbs and other species %	2	25 10	4	10	1	0	8 1	0	10			15	10	0
	Plot 5 Native shrubs <1m %		1	40	0		0		0	0		8	0	5	0
	Plot 5 Non-native grass % Plot 5 Non-native forbs and shrubs %		40	26	0			53	0 30	0		an .	<u>'</u>		95
	Plot 5 Non-native forbs and shrubs % Plot 5 Litter %	4	10	,	50	4	3	2	10 5	30			í]		5
	Plot 5 Rock %	· · · · · · · · ·	1]	0	ì]	5	0		1			
	Plot 5 Bare ground %		1		0)		6	0 4	ā				5	0
	Plot 5 Cryptograms %				0	0			0 1	C				C	0
	Plot 5 Total %	10	0 100	100	100	10	0 1	10	100	100	10	100	100	100	100
	Mean of all Plots Native perenial ('decreaser') grass cover % Mean of all Plots Native other grass (if relevant) %	10	27.	2 3.2	45	6	1	a (2	47	44	2	1	2	
	Mean of all Plots Native other grass (if relevant) % Mean of all Plots Native forbs and other species %	10	L6 1	10.6	1:	2		.6	9 3	7	"	5	514		,
	Mean of all Plots Native shrubs <1m %	1	0	0	0	0	18	2	0 0	12		1 12.4	4 d		0
	Mean of all Plots Non-native grass %	0	0.8	23.6	ď	1	1 15	.6	1 20	0		0 14.0	4	1 60	70
	Mean of all Plots Non-native forbs and shrubs %	4	14.	2 7	19	1	0 10	2	5 0	8	33	6.8	19.0	5	2
	Mean of all Plots Litter %	3	1.4 6.	2 10.8	5	1			1 3.8	5	1	3	1	0	
	Mean of all Plots Rock % Mean of all Plots Bare ground %		2	14	0	1	,	1	1	0		4.1	2	0	
	Mean of all Plots Cryptograms %		0	0.4	0	1	6	o	0 02	1 0		1.5	3	1	, n
100m Transect	Canopy Total (m)	44	.1 8	3 23.5	43.5	5	3	35 2	8 28	35	:	7 4	4 40.5	0	0
	Sub canopy total (m)	17	.5	. 6	7	'	11	5	7 3.5	14		0	5 10.5	0	0
	Emergent canopy total (m)		0	0	0	4	4	0	0	0		0	0	6	0
	Native Shrub total (m)		1	1.5	4.5	.]			0	3 -		1	2		
	Exotic Shrub total (m)	3	2.	1 1	18	1	1	0.	3.5	3	I .	o _l 3.	0.5	<u>'I</u>	0

Appendix I: Greenridge BioCondition Data

APPENDIX 2: BIOCONDITION SURVEY DATA

Broad title	Attribute	AU1 - RE 12.1.1 Remnant	AU1 - RE 12.1.1 Remnant	AU1 - RE 12.1.1 Remnant	AU2 - RE 12.1.1 Regrowth	AU2 - RE 12.1.1 Regrowth	AU3 - RE 12.1.1 Non-remnant	AU3 - RE 12.1.1 Non-remnant	AU4 - RE 12.3.20 Remnant	AU4 - RE 12.3.20 Remnant	AU4 - RE 12.3.20 Remnant	AU5 - RE 12.3.20 Regrowth	AU5 - RE 12.3.20 Regrowth	AU6 - RE 12.3.20 Non-remnant	AU6 - RE 12.3.20 Non-remnant
LOCATION	Site ID	836-837	840-841	962-963	844a-844b	956-957	958-959	970-971	931-932	964-965	966-967	974-975	923-924	972-973	960-961
	Date Observers	30/06/202 DF/LW/NW	2 1/07/202 DF/LW	2 27/07/2022 PL/EG	2 1/07/2022 DF/LW	14/07/202 DF/EG	14/07/2022 DF/EG	21/09/2022 NB/EG	14/07/202 DF/EG	2 27/07/2022 PL/EG	3/08/202 EG/LB	2 21/09/202 NB/EG	2 14/07/202 DF/EG	22 21/09/20 NB/EG	22 14/07/2022 DF/EG
DECIONAL ECOSISTEMA	Location	Coomera	Coomera	Coomera	Coomera Regrowth 12.1.1	Coomera	Coomera	Coomera Non-remnant 12.1.1	Coomera	Coomera	Coomera	Coomera	Coomera	Coomera Non-remnant 12.3.20	Coomera
REGIONAL ECOSYSTEM & TREE HEIGHTS	Habitat description	Remnant 12.1.1	Remnant 12.1.1	Remnant 12.1.1 Casuarina glauca forest	Regrowth 12.1.1	Regrowth 12.1.1	Non-remnant 12.1.1	Grassy paddock	Remnant 12.3.20	Remnant 12.1.1	Remnant 12.3.20	Regrowth 12.3.20 Dense regrowth of Melaluca and	Regrowth 12.3.20	Cleared, overgrown pasture	Non-remnant 12.3.20
	Regional Ecosystem	12.1.1	12.1.1	12.1.1	12.1.1	12.1.1	12.1.1	12.1.1	12.3.20	12.1.1	12.3.20	Casuarina 12.3.20	12.3.20	12.3.20	12.3.20
	Tree canopy (EDL) height		15	12 1	.8	0	10	3		18 1	3	25	11	6	0 8
	Tree sub canopy height Emergent height		7	4	5	5	3	0		5	:	15	7	3	0
SITE PHOTOS	Photo north from plot centre	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Photo south from plot centre Photo east from plot centre	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes Vac	Yes	Yes Yes	Yes	Yes	Yes	Yes Yes
	Photo west from plot centre	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
50x20m AREA	Coarse woody debris (m) (all logs >10cm diam; 0.5m long) Coarse woody debris (m/ha)	1	17	1.7 21: 47 21:		6	3.5	0	3	26 31.	16	.5	0	0	0 0
100x50m AREA	List native species from EDL	Casuarina glauca	Casuarina glauca	Casuarina glauca	Casuarina glauca	Casuarina glauca	Casuarina glauca	Casuarina glauca	Casuarina glauca	Melaleuca quinquenervia	Casuarina glauca	Melaluca quinquenervia	Casuarina glauca	0	Casuarina glauca
		Melaleuca quinquenervia Eucalyptus tereticornis	Eucalyptus tereticornis						Melaleuca quinquenervia		Eucalyptus tereticornis	Casuarina glauca	Eucalyptus tereticornis		
	Total number of native tree spp from EDL only		3	2	1	1	1	1 1		2		2	2	2	0 1
	List other native tree species not in EDL (tree = single stemmed and >2m)	Cupaniopsis anacardioides	Eucalyptus siderophloia Melaleuca salicina		Melaleuca salicina Myrsine variabilis				Acacia disparrima	Casuarina glauca	Melaleuca quinquenervia Corymbia intermedia	Acacia concurrens Melaleuca salicina	Melaleuca quinquenervia Glochidion ferdinandi		
											Lophostemon confertus Acacia disparrima	Glochidion sumanatrum Glochidion ferdinandi			
											Melaleuca salicina	Melaleuca sp.			
												Lophostemon suaveolons			
	Lantana cover estimate (%) Total number of non-EDL species		0	3	3		0			0	:	10	6	1	0
	Total native tree spp richness (all tree species >2m + EDL) (Tree Richness)		4	4	1	3	1	1		3 2		7	8	5	0 1
	Total native tree spp from EDL recruiting Proportion of EDL Recruiting %		2	1 1	1 1	1	1	1		1 1		2	2	2	0 1
	Proportion of EDL Recruiting % Eucalypt large tree DBH	na	na	na 10	na 10	na 1	na 10	na 100	na	na 10	na 10	na 1	na	na	na 100
	Non-eucalypt large tree DBH	:	29 :	29 29	9 29	9	29 2	29		30	3	:	30	30	30
	Number of large eucalypt trees Number of large non-eucalypt trees	Nd .	8	1 2	7	8 :	10	0	Tiel (52 69	IId	11d	4	5	0 0
50:10m 1051	Total large trees	Considerate	8	1 2	7	8	10	0	Commission of	52 69	2	9	8	5	0 0
50x10m AREA	List native shrub species	Casuarina glauca Eucalyptus tereticornis	Casuarina glauca Eucalyptus tereticornis		Casuarina glauca Maclura cochinchinensis		Ludwigia octovalvis		Casuarina glauca		Casuarina glauca Melaleuca quinquenervia	Casuarina glauca Alphitonia excelsa	Casuarina glauca Macular cochinchinensis		Urena lobata Casuarina glauca
		Melaleuca quinquenervia Ficus rubiginosa	Melaleuca salicina Maclura cochinchinensis		Melaleuca salicina Myrsine variabilis						Alphitonia excelsa Acacia disparrima	Ghlochidion sumanatrum Melaleuca quinquenervia	Casuarina glauca Eucalyptus tereticornis		
		Cupaniopsis anacardioides Acacia concurrens	Eucalyptus siderophloia										Alphitonia excelsa		
		Enchylaena tomentosa													
	Total number of native shrub species (Shrub Richness)		7	5	2	4	0	. 0		1		4	4	5	0 2
	List native grass species	Sporobolus virginicus	Sporobolus virginicus		Sporobolus virginicus	Sporobolus virginicus	Imperata cylindrica	Sporobolus virginicus	Phragmites australis		Ottochloa gracilima	Sporobolus virginicus	Imperata cylindrica		Imperata cylindrica
		Paspalum distichum Zoysia macrantha	Paspalum scrobiculatum Enteropogon acicularis		Paspalum scrobiculatum Paspalidium distans	Phragmites australis		Imperata cylindrica Phragmites australis	Sporobolus virginicus (infertile) Hemarthria uncinate (infertile)		Imperata cylindrica Unknown 1	Imperata cylindrica Grass 1	Ottochloa gracillima Capillipedium spicigerum		
		Einadia nutans	Paspalidium distans Paspalum distichum		Enteropogon acicularis						Unknown 2	Panicum simile Grass 2			
	Total number of native grass species (Grass Richness)		4	5	4	4	2	3		3		4	5	3	0 1
	List native forbs and other	Fimbristylis ferruginea	Fimbristylis ferruginea		Bacopa monnieri	Persicaria subsessilis	Persicaria subsessilis	Reed 1	Triglochin striatum	-	Lomandra hystrix	Reed 1	Parsonsia straminea	Convolvulus sp	Cyperus polystachyos
		Alternanthera nana Notothixos subaureus	Amyema cambagei Oxalis thompsoniae		Fimbristylis ferruginea Suaeda australis	Ranunculus inundatus Hydrocotyle verticillata	Ranunculus inundatus Juncus usitatus	Reed 2 Ranunculus inundatus	Parsonsia straminea Alternanthera denticulata		Commelina diffusa Parsonsia straminea	Forb 1 Forb 2	Centella asiatica Dianella longifolia	viola sp Parsonsia straminea	Polymeria Ranunculus
		Amyema cambagei Parsonsia straminea	Dianella brevipedunculata Commelina diffusa		Eclipta platyglossa Alternanthera nana	Alternanthera denticulata Juncus usitatus	Alternanthera Rumex brownii	Persicaria attenuata Amaranthus sp.	Centella asiatica		Pteridium esculentum Dianella sp.	Parsonsia straminea Convolvulus sp	Geitonoplesium cymosum Polymeria calycina		Centella asiatica Dianella brevipedunculata
		Cyperus polystachyos Juncus kraussii	Eustrephus latifolius		Parsonsia straminea Dianella brevipedunculata	Cyperaceae sp1 Eleocharis dulcis	Cyperaceae sp1 Cyperus polystachyos					viola sp Hydrocotyle acutifolia	Stephania japonica Cyperus polystachyos		
		Commelina diffusa			Dianella brevipeaunculata	Parsonsia straminea	Cyperaceae sp2					Forb 3	Cyperus polystacnyos		
						Gahnia clarkei Rumex brownii	Bacopa monnieri					Lobelia purpurascens Sedge 1			
						Baumea articulata Cyperaceae sp2						Reed 2 Dianella longifolia			
						Typha orientalis									
						Commelina sp Neoachmandra cunninghamii									
						Hydrocotyle acutifolia									
	Total number of native forbs and other species (Forbs Richness)		8	6	9	7	16	5		4	5	5	10	7	3 5
	Non native species	Salanum seaforthianum	Passiflora pallida Solanum americanum		Lantana camara Solanum seaforthianum	Cuphea carthagenensis Solanum nigrum	Setaria sphacelata Cuphea carthagenensis	Setaria sphacelata Chloris gayana	Baccharis halimifolia		Lantana camara Passiflora suberosa	Lantana camara Passiflora suberosa	Solanum seaforthianum Schinus terebinthifolius	Setaria sphacelata Senecio madagascariensis	Setaria sphacelata Baccharis halimifolia
			Lantana camara Asparagus aethiopicus		Asparagus aethiopicus Emilia sonchifolia	Tomato Biden pilosa	Eclipta prostrata Paspalum urvillei	Rumex crispus weed (forb)				Ageratum houstonianum Schinus terebinthifolius	Ageratum houstonianum Gomphocarpus physocarpus	Verbena sp Gomphocarpus physocarpus	Senecio madagascariensis Chloris gayana
					Sonchus oleraceus	Solanum seaforthianum	Balloon cotton	Gomphocarpus physocarpus				weed forb	Aster subulatus	Sida sp	Lantana camara
					Passiflora pallida Baccharis halimifolia	Eclipta prostrata Setaria	Aster subulatus Chloris gayana	Ambrosia artemisiifolia Solanum nigrum				Baccharis halimifolia Setaria sphacelata	Lantana camara Bidens pilosa	weed forb Chloris gayana	Cynodon dactylon Billy goat
					Ottochloa gracillima		Baccharis halimifolia	Malva parviflora Baccharis halimifolia					Emelina sonchifolia Cuphea carthagenensis		Cuphea Aster
								Verbena sp Cuphea carthagenensis					Senna pendula var. glabrata Solanum torvum		Solanum nigrum Solanum mauritianum
													Sidarhombifolia		Conyza bonariensis
													Paspalum mandiocanum Murraya paniculata		Spear thistle Solanum seaforthianum
													Passiflora suberosa Passiflora foetida		Solanum sp
													Verbena bonariensis		
	Non native % cover		0	0 2	10	2	1 6	0 75		1		5	5	10	95
	Plot 1 Native perennial ('decreaser') grass cover %		95	85 2	2 8	5	5	30		10 6	5	8	0	80	0 95
	Plot 1 Native other grass (if relevant) % Plot 1 Native forbs and other species %		0	0	0		0	0		0 (1	0	0	0	0
	Plot 1 Native forbs and other species % Plot 1 Native shrubs <1m %		0	0 1	0		0	0	·	0		0	0	0	0 5
	Plot 1 Non-native grass %		0	0	0		0 9	8 70		0		0	0	5	100 0
	Plot 1 Non-native forbs and shrubs % Plot 1 Litter %		5	1 15 6	18 1	5	90	0	:	10 (2	1 98	3	0
	Plot 1 Rock %		0	0	0		0	0		0		0	0	0	0
	Plot 1 Bare ground % Plot 1 Cryptograms %		0	9	5 0		0	0		0 1		0	0	0	0 0
	Plot 1 Total %	1	00 1	00 10	10	0 1	100	0 100	1	00 10	10	10	00 1	100	100
	Plot 2 Native perennial ('decreaser') grass cover % Plot 2 Native other grass (if relevant) %		90	95	5 1	0	25	0		12 5	j	75	10	85	0
	Plot 2 Native other grass (if relevant) % Plot 2 Native forbs and other species %		0	0	5	0	0	0		83		0	0	5	0
	Plot 2 Native shrubs <1m %		0	0	0		0	0		0	1	0	0	0	0
	Plot 2 Non-native grass % Plot 2 Non-native forbs and shrubs %		0	0	5 8	0	0 6	100 6		0		0	0	0	40 70 1 10
	Plot 2 Litter %		10	5 8	1	0	70 3	0		5	2	20	80	10	59 20
	Plot 2 Rock % Plot 2 Bare ground %		0	0	0		0	0		0	1	0	0	0	0 0
	Plot 2 Cryptograms %		0	0	0	0	0	0		0		0	0	0	0 0
	· · · · · · · · · · · · · · · · · · ·				<u></u>	·	-		·		-		-		

Broad title	Attributo	AU1 - RE 12.1.1 Remnant	AU1 - RE 12.1.1 Remnant	AU1 - RE 12.1.1 Remnant	AU2 - RE 12.1.1 Regrowth	AU2 - RE 12.1.1 Regrowth AU3 - R	PE 12 1 1 Non-remnant A	AU3 - RE 12.1.1 Non-remnant	ALIA - PE 12 2 20 Pempant	AU4 - RE 12.3.20 Remnant	AU4 - RE 12.3.20 Remnant	AU5 - RE 12.3.20 Regrowth	AU5 - RE 12.3.20 Regrowth	AU6 - RE 12.3.20 Non-remnant	AU6 - RE 12.3.20 Non-remnant
LOCATION	Site ID	836-837	840-841	962-963	844a-844b	956-957 958-959		70-971	931-932	964-965	966-967	974-975	923-924	972-973	960-961
LOCATION	Plot 2 Total %	830-837	100	100	00 10	330-337	100	100	331-332	204-303	100	10	323-324	m	100
	Plot 3 Native perennial ('decreaser') grass cover %		00	100		200	100	100	-	0	10	10		20	
	Plot 3 Native other grass (if relevant) %		90	0	5	1	0	0		9	4	2		20	o o
	Plot 3 Native forbs and other species %			0	-		0	0		15				25	
	Plot 3 Native shrubs <1m %		1	0	5			0]		1	3	
	Plot 3 Non-native grass %						10			0		1		22	0
	Plot 3 Non-native grass % Plot 3 Non-native forbs and shrubs %			0	0		10	10		0			<u> </u>	33	
	Plot 3 Litter %			30	/5		or			0	1			12	20
	Plot 3 Rock %		9	20	15 3	33		90		. //	3	6	1	12	•
	Plot 3 Bare ground %		0	0			0	0		0				0	
			0	0	3	1	U	0		0	1			0	
	Plot 3 Cryptograms % Plot 3 Total %		400	400	0		400	0		0					100
	Plot 4 Native perennial ('decreaser') grass cover %		100	100	10	100	100	100	1	100	0 10	10	9	ω	100
	Plot 4 Native other grass (if relevant) %		80	80	3	30	0	0		3	4			0	٩
	Plot 4 Native other grass (if relevant) % Plot 4 Native forbs and other species %			0		1	0	0		0				0	٩
	Plot 4 Native shrubs <1m %		0			1	20	0		6		1	<u>[</u>]	0	
	Plot 4 Native shrubs <1m % Plot 4 Non-native grass %		0			1	0	0			<u>'</u>	1		0	~
	Plot 4 Non-native grass % Plot 4 Non-native forbs and shrubs %					2	80	80			2			92	90 90
			40	-	2	0	0	0			1 .	1		9	5
	Plot 4 Litter % Plot 4 Rock %		40	40	62 3	50	0	20		95 31	5.	9	7	0	10 0
			٥	0	0		0	0		9			P	0	0
	Plot 4 Bare ground %		-	0	15 2	0	0	0		0		2	3	0	0
	Plot 4 Cryptograms %		0	0	0	0	0	0		0 0		,	0	0	0 0
	Plot 4 Total %		100	100 10	00 10	100	100	100	1	100	0 10	10	0 1	00	100
	Plot 5 Native perennial ('decreaser') grass cover %		45	90	40 1	5	0	1		59 10	6	5 1	0	0	0
	Plot 5 Native other grass (if relevant) %		0	0	0	0	0	0		0		9	•	0	0
	Plot 5 Native forbs and other species %		0	0	0	0	0	0		1 8	2	2	0	0	0
	Plot 5 Native shrubs <1m %		0	0	0	0	0	0		0	2	1	1	0	0
	Plot 5 Non-native grass %		0	0	0	0	40	20		0	0	1	1	50	65 100
	Plot 5 Non-native forbs and shrubs %		0	0	0	0	0	10		0	0	1	1	3	0
	Plot 5 Litter %		55	10	60 4	95	60	69		10	3	8	6	47	35 0
	Plot 5 Rock %		0	0	0	0	0	0		0	0			0	0
	Plot 5 Bare ground %		0	0	0 4	0	0	0		0		1	1	0	0
	Plot 5 Cryptograms %		0	0	0	0	0	0		0 0				0	٥
	Plot 5 Total %		100	100 10	00 10	100	100	100	1	00 10	0 10	10	0 1	00	100 10
	Mean of all Plots Native perennial ('decreaser') grass cover %		76	82	11 3	18	0	6.2	16	i.2 3:	1 61.	9.	2	37	0 1
	Mean of all Plots Native other grass (if relevant) %		0	0	0	이	0	0		0	9	o c	·	0	0
	Mean of all Plots Native forbs and other species %		0	0	4	이	5.2	0	35	i.8 25	9 0.	0.	2	9.6	0
	Mean of all Plots Native shrubs <1m %		0.2	0	0	0	1	0		1	2.	4 2.	2	0	0 1
	Mean of all Plots Non-native grass %		0	0	0	1	45.6	56		0		0.	2	36	79 5.
	Mean of all Plots Non-native forbs and shrubs %		0	0	23 2	2 1	13.2	2		0 0	0.	4 0.	6	3	0.2
	Mean of all Plots Litter %		23.8	18	57 2	4 80	35	35.8		47 31	3	85.	2 1	1.4	20.8
	Mean of all Plots Rock %		0	0	0	0	0	0		0			0	0	0 0
	Mean of all Plots Bare ground %		0	0	5 2	0	0	0		0 2	4.0	2.	8	0	0
	Mean of all Plots Cryptograms %	<u> </u>	0	0	0	0	0	0		0 0)	0	D	0	0 0
100m Transect	Canopy Total (m)		79.5	99.5	2.4 77.	82.5	0	0	99	.5 73.6	8.	5	7 4	1.5	0 12.5
	Sub canopy total (m)		3.5	3 11	1.6 2	0	0	0	:	15 8	3	4 2	2	3.5	0 0
	Emergent canopy total (m)		0	0	0	0	0	0		0 0	0			0	0 0
	Native Shrub total (m)		4	1 11	1.9 2.	0	0	0	(DS 7	1	1 5.	5	2	0 1
	Exotic Shrub total (m)		0	0 9	9.8	0	0	0		0 0	3			27	0 1
	Swamp oak canopy cover (m)			99.5 82	2.4 77.	5 82.5	0	0	84	1.5 20	4 4	5 24.	5 3	5.5	0 12.5
	Swamp oak canopy cover (% of canopy)		0	100	00 10	100	0	0	84	.9 32.6	54.:	2 43.	0 7	9.8	0 100
	Koala tree species canopy cover (m)			8.5	0	0	0	0		33 49.6	5	50.	5 1	2.5	0 0
	Koala tree species canopy cover (% of canopy)		0	8.5	0	0	0	0	33	1.2 67.4	4 60.:	2 88.	6 2	3.1	0 0

Appendix J: Offset HQS tables Coastal Swamp Oak TEC

GREENRIDGE AU1 RE 12.1.1 REMNANT START QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem							AU 1 - RE 12.1.1 R	emnant					
Site Reference	Benchmark			Site 836-837			Site 840-841			Site 962-963			
	12.1.1		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition					1		•			1	•		
Recruitment of woody perennial species in EDL		100	66.7	66.7	4	3 50.0	50.0	Ġ	100.0	100.0	d	72.2	
Native plant species richness - trees		1	4	400.0	į.	5 4.0	400.0	ė	1.0	100.0	į	300.0	
Native plant species richness - shrubs		1	7	700.0	ŧ	5.0			2.0	200.0	1	466.7	
Native plant species richness - grasses		2	4	200.0	į.	5 5.0	250.0	¢ .	4.0	200.0	1	216.7	
Native plant species richness - forbs		3	8	266.7	İ	5 6.0	200.0	4	9.0	300.0	1	255.6	
Tree canopy height		12	15	125.0	1	5 12.0			13.0	108.3	1	111.3	1
Tree subcanopy height		7	7	100.0		5 4.0	57.:		6.0			81.6	
Tree canopy height (average of emergent, canopy, sub-canopy)		9.5	11	115.8		9 8.0	84.	ž .	9.5	100.0	į.	100.0	
Tree canopy cover (EDL)		67	79.5		1	99.5			82.4		1	130.0	
Subcanopy cover		23	3.5			2 3.0	13.0	4	11.6	50.4	4	26.2	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	41.5	92.2	4	5 51.3			47.0	104.4	4	103.5	
Shrub canopy cover		9	4	80.0	ĺ	5 1.0	20.0	Ġ.	11.9	238.0	į.	112.7	
Native grass cover		85	76			3 82.0			11.0	12.9	ģ	66.3	
Organic litter		9	23.8			3 18.0	360.0	ġ.	57.0	1140.0	1	658.7	
Total large trees per hectare		92	16	17.4	l	5 2.0	2.	1	54.0	58.3	1	26.3	
Coarse woody debris (m/ha)		360	170	47.2	4	2 47.0	13.	1	219.0	60.8	4	40.4	
Non-native plant cover		C	0		1	.0 0.0	d .	1	20.0		l	6.3	1
Site Condition Score					61		i	61		i	62		61.0
MAX Site Condition Score					80		i	80		i	80		80
Site Context				Value	Score		Value	Score				Average	Average Score
Size of patch (ha)					l					l			
Remnant				781.3			781.			781.3		781.3	
Regrowth				105.0	1	LO	105.0	(1	4	105.0	1	105.0	1
Connectivity					i		i	i		i	i		
Remnant %				95.0	İ		91.	1		31.3	1	72.5	
Regrowth %					ŀ	9	1	•	1	19.3	4	19.2	
Context					ļ		ļ	•		•	ł		
Remnant %				68.7			62.			49.:	í	60.3	
Regrowth %				1.0	Í	4	1.0	Ġ.	4	1.3	į.	1.3	İ
Site Context Score					19			19		i	16		18.0
MAX Site Context Score					20			20			20		20
Total habitat quality score /100					80.00			80.00			78.00		79.00
MAX Habitat Quality Score					100			100		i	100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Fina
Habitat Quality Score (measured /100)	79.00	73.00	32.50	84.00	74.00	22.50	60.83
Habitat Quallity Score (max)	100	100	100	100	100	100	100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10	7.90	7.30	3.25	8.40	7.40	2.29	6.08
Size Weighting	1.00						
Weighted Habitat Quality Score	7.90	0.00	0.00	0.00	0.00	0.00	7.90

GREENRIDGE AU1 RE 12.1.1 REMNANT WITHOUT OFFSET QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem							AU 1 - RE 12.1.1	Remnant					
Site Reference	Benchr	mark		Site 836-837			Site 840-841			Site 962-963			
	12.1.1		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition							į						
Recruitment of woody perennial species in EDL		100	66.7	66.1	7	50.	C 50.	¢ .	100.0	100	i	72.2	
Native plant species richness - trees		1	4	400.0		4.	400.		1)			300.0	
Native plant species richness - shrubs		1	7	700.0	1 :	5.	500.		2.	200.	l	466.7	
Native plant species richness - grasses		2	4	200.0	4 :	5.	250.	4	4.	200.	:	216.7	
Native plant species richness - forbs		3	8	266.7	4 :	6.	200.	đ	9.	300.	•	255.6	
Tree canopy height		12	15	125.0	į :	12	100.	d	13.	108.	į	111.3	
Tree subcanopy height		7	7	100.0	į :	4.	57.	į	6.	85.	į	81.0	
Tree canopy height (average of emergent, canopy, sub-canopy)		9.5	11	115.8		8.	C 84.		9.	100.		100.0	
Tree canopy cover (EDL)		67	79.5	118.7	Ā :	99.	148.	d .	82.	123.	Í	130.0	
Subcanopy cover		23	3.5			3.			110			26.2	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	41.5	92.2	.	51.	113.	ġ.	47.	104.	4	103.5	
Shrub canopy cover		9	4	80.0		1.	20.	d	11.	238.	į	112.7	
Native grass cover		85	76	89.4	d :	82.	96.		11)	12.		66.3	
Organic litter		9	23.8	476.0	i :	18.	360.	d	57.		i	658.7	
Total large trees per hectare		92	16			2.		i	54.		1	26.1	
Coarse woody debris (m/ha)		360	170	47.3	4 :	47.			219.0			40.4	
Non-native plant cover		c	C			0.	d		20.	ŧ		6.3	
Site Condition Score					54		ļ	54		•	59		52.0
MAX Site Condition Score					80		į	80		İ	80		80
Site Context				Value	Score		Value	Score				Average	Average Score
Size of patch (ha)					•		l	l					
Remnant				781.3	3		781.	į		781.	į	781.3	
Regrowth				105.0	1 1	d	105.	1 1	d	105	1	105.0	1
Connectivity					l		I	l		l	I	1	
Remnant %				95.0	d		91.	1		31.	!	72.5	
Regrowth %					•	5	ļ	ł		19.	4	19.7	
Context					•			ł					
Remnant %				68.3	į.		62.	4		49.	į	60.1	
Regrowth %				1.0	di .	4	1.	ġ .	4	1	•	1.1	
Site Context Score					19			19			16		18.0
MAX Site Context Score					20			20			20		20
Total habitat quality score /100					73.00			73.00			75.00		70.00
MAX Habitat Quality Score					100			100			100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100) Habitat Quallity Score (max)	70.00 100	71.00 100	29.50 100	72.50 100	74.00 100	22.50 100	56.58 100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10 Size Weighting	7.00 1.00		2.95	7.25	7.40	2.29	5.66
Weighted Habitat Quality Score	7.00	0.00	0.00	0.00	0.00	0.00	7.00

GREENRIDGE AU1 RE 12.1.1 REMNANT WITH OFFSET QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem						,	AU 1 - RE 12.1.1 Re	mnant					
Site Reference	Benchmark			Site 836-837			Site 840-841			Site 962-963			
	12.1.1		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition											1		
Recruitment of woody perennial species in EDL		100	66.7	66.7	!	50.0	50.0	!	100.0	100.0		72.2	
Native plant species richness - trees		1	4	400.0		5 4.0	400.0		1.0	100.0		300.0	
Native plant species richness - shrubs		1	7	700.0	!	5 5.0	500.0		2.0	200.0		466.7	
Native plant species richness - grasses		2	4	200.0	;	5 5.0	250.0		4.0	200.0	i :	216.7	
Native plant species richness - forbs		3	8	266.7	!	5 6.0	200.0		9.0	300.0		255.6	
Tree canopy height		12	15	125.0	!	5 12.0	100.0		13.0	108.3		111.1	
Tree subcanopy height		7	7	100.0		3 4.0			6.0		1	81.0	
Tree canopy height (average of emergent, canopy, sub-canopy)		9.5	11		!	5 8.0			9.5			100.0	
Tree canopy cover (EDL)		67	79.5	118.7		5 99.5	148.5		82.4			130.0	
Subcanopy cover		23	3.5			3.0			11.6			26.2	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	41.5	92.2		5 51.3	113.9		47.0	104.4		103.5	
Shrub canopy cover		5	4	80.0		5 1.0	20.0		11.9	238.0		112.7	
Native grass cover		85	76	89.4		82.0	96.5		11.0	12.9		66.3	
Organic litter		5	23.8	476.0		18.0	360.0		57.0	1140.0		658.7	
Total large trees per hectare		92	16	17.4	10	2.0	2.2	10	54.0	58.7	1	26.1	
Coarse woody debris (m/ha)		360	170	47.2		47.0	13.1		219.0			40.4	
Non-native plant cover		0	0		10	0.0	į	10	20.0	•	1	6.7	1
Site Condition Score					75			75			73		70.0
MAX Site Condition Score					80		İ	80		İ	80		80
Site Context				Value	Score		Value	Score				Average	Average Score
Size of patch (ha)					l		į.			į.	į		
Remnant				781.3	i		781.3			781.3	į	781.3	
Regrowth				105.0	10)	105.0	10	· I	105.0	10	105.0	10
Connectivity					i		i			İ	i		
Remnant %				95.0	l		91.2	•		31.3	ł	72.5	
Regrowth %						5	ļ	9	il .	19.2	2	19.2	4
Context					!		į.	•		!	į		
Remnant %				68.7	i		62.5			49.1	1	60.1	
Regrowth %				1.0	4	1	1.0	4	l I	1.3	4	1.1	4
Site Context Score					19		i	19		i	16		18.0
MAX Site Context Score					20		!	20		ł	20		20
					1		ł			l			
Total habitat quality score /100					94.00	i e		94.00			89.00		88.00
MAX Habitat Quality Score					100		i	100		i	100		100

	AU1 RE 12.1.1	AU2 RE 12.1.1	AU3 RE 12.1.1	AU4 RE12.3.20	AU5 RE 12.3.20	AU6 RE 12.3.20	
Final habitat quality score (weighted)	Remnant	Regrowth	Non-remnant	Remnant	Regrowth	Non-remnant	Average/Fina
Habitat Quality Score (measured /100) Habitat Quallity Score (max)	88.00 100	89.00 100	69.00 100	91.50 100	88.00 100	86.00 100	85.29 100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10 Size Weighting	8.80 1.00	8.90	6.90	9.15	8.80	8.60	8.53
Weighted Habitat Quality Score	8.80	0.00	0.00	0.00	0.00	0.00	8.80

GREENRIDGE AU2 RE 12.1.1 REGROWTH START QUALITY FOR COASTAL SWAMP OAK TEC

START SCORE:

Assessment Unit - Regional Ecosystem			AU2 -	RE 12.1.1 Regr	owth				
Site Reference	Benchmark		Site 844a-844b			Site 956-957			
	12.1.1	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average %	Average Score
Site Condition	12.1.1	Naw Data	70 Delicilliark	Score	Naw Data	70 Deliciillark	JCOTE	Denember	Average Score
Recruitment of woody perennial species in EDL	100	100	100.0		100	100.0	į s	100.0	
Native plant species richness - trees			300.0		1	100.0	i 9	200.0	
Native plant species richness - shrubs		4	400.0		c c	0.0		200.0	
Native plant species richness - grasses		2	200.0		2	100.0	i 5	150.0	
Native plant species richness - forbs		7	233.3		16	533.3		383.3	
Tree canopy height	12	10	83.3		10	83.3		83.3	
Tree subcanopy height		9	71.4		3	42.9		57.1	
Tree canopy height (average of emergent, canopy, sub-canopy)	9.9	7.5	78.9		6.5	68.4		73.7	
Tree canopy cover (EDL)	67	77.5	115.7		82.5	123.1		119.4	
Subcanopy cover	23	22	95.7		q	0.0	1 (47.8	
Tree canopy cover (average of emergent, canopy, sub-canopy)	45	49.75	110.6		41.3	91.7		101.1	
Shrub canopy cover		2.5	50.0		Q	0.0		25.0	
Native grass cover	85	34			18	21.2	1	30.6	
Organic litter		24			80	1600.0	i s	1040.0	
Total large trees per hectare	92				20			19.6	
Coarse woody debris (m/ha)	360	. 6	1.7	•	39	9.7	i (5.7	
Non-native plant cover		2		10	1		10	1.5	10
Site Condition Score				59			47		57
MAX Site Condition Score				80			80		80
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)				İ			ł		
Remnant			883.3	1		884.3	4	883.8	
Regrowth			3.0	10	1	2.0	10	2.5	10
Connectivity				ļ			1		
Remnant %			44.5	•		6.0	į	25.2	
Regrowth %					1		(
Context				ļ			į.		
Remnant %			60.5			28.0		44.2	
Regrowth %			1.0	4		3.4		2.2	
Site Context Score				16			12		16
MAX Site Context Score				20			20		20
Total habitat quality score /100				75.00			59.00		73.00
				100			100		100
MAX Habitat Quality Score				100			100		

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100) Habitat Quallity Score (max)	79.00 100	73.00 100	32.50 100	84.00 100	74.00 100	22.50 100	60.83 100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10 Size Weighting	7.90	7.30 1.00	3.25	8.40	7.40	2.25	6.08
Weighted Habitat Quality Score	0.00	7.30	0.00	0.00	0.00	0.00	7.30

GREENRIDGE AU2 RE 12.1.1 REGROWTH WITHOUT OFFSET QUALITY FOR COASTAL SWAMP OAK TEC

START SCORE:

Assessment Unit - Regional Ecosystem			AU2 -	- RE 12.1.1 Regr	owth				
Site Reference	Benchmark		Site 844a-844b			Site 956-957		1	1
	12.1.1	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition			1	1		Î	1		
Recruitment of woody perennial species in EDL		.00 10	0 100.0	o i :	100			100.0	
Native plant species richness - trees		1	3 300.0	o !		100.0	9	200.0	{
Native plant species richness - shrubs		1	4 400.0	o !	5 (0.0	. (200.0	
Native plant species richness - grasses		2	4 200.0	ol :	5 2	100.0	i :	150.0	
Native plant species richness - forbs		3	7 233.3	3 !	1	533.3		383.3	!
Tree canopy height		12 1	0 83.3	3 !	1	83.3	i :	83.3	
Tree subcanopy height		7	5 71.4	4 !	5	42.9		57.1	
Tree canopy height (average of emergent, canopy, sub-canopy)		9.5 7.		9 !	6.5	68.4	i :	73.7	!
Tree canopy cover (EDL)		67 77.	5 115.7	7	82.5	123.1		119.4	
Subcanopy cover		23 2	2 95.	7 !	5 (0.0	d (47.8	:
Tree canopy cover (average of emergent, canopy, sub-canopy)		45 49.7	5 110.6	6 !	41.3	91.7	4 !	101.1	!
Shrub canopy cover		5 2.	5 50.0	o <mark> </mark>	3	0.0		25.0	
Native grass cover		85 3	40.0	o :	1 1	21.2	2	30.6	
Organic litter		5 2	480.0	D :	8	1600.0		1040.0	:
Total large trees per hectare		92 1	6 17.4	4 10	2	21.7	10	19.6	10
Coarse woody debris (m/ha)		160	6 1.	7 (3.	9.7	7 (5.7	1 (
Non-native plant cover		q	2			į		1.5	
Site Condition Score			i	57			47		55
MAX Site Condition Score			•	80			80		80
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)			i	i		i	ļ		i
Remnant			883.3	3		884.3	3	883.8	į
Regrowth			3.0	0 10		2.0	10	2.5	10
Connectivity			1	1]	ļ		}
Remnant %			44.	5		6.0	į.	25.2	į
Regrowth %			1	1 :	2			1	
Context			!	!		!	ļ	1	!
Remnant %			60.5			28.0	1	44.2	
Regrowth %			1.0	q 4	4	3.4	4 :	2.2	
Site Context Score			i	16		i	12		16
MAX Site Context Score				20			20		20
Total habitat quality score /100				73.00			59.00		71.00
MAX Habitat Quality Score			i .	100			100		100

	AU1 RE 12.1.1	AU2 RE 12.1.1	AU3 RE 12.1.1	AU4 RE12.3.20	AU5 RE 12.3.20	AU6 RE 12.3.20	
Final habitat quality score (weighted)	Remnant	Regrowth	Non-remnant	Remnant	Regrowth	Non-remnant	Average/Final
Habitat Quality Score (measured /100) Habitat Quallity Score (max)	70.00 100	71.00 100	29.50 100	72.50 100	74.00 100	22.50 100	56.50 10
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.8
Assessment Unit Habitat Quality Score /10 Size Weighting	7.00	7.10 1.00	2.95	7.25	7.40	2.25	5.66
Weighted Habitat Quality Score	0.00	7.10	0.00	0.00	0.00	0.00	7.10

GREENRIDGE AU2 RE 12.1.1 REGROWTH WITH OFFSET QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem				RE 12.1.1 Regr	owth				
Site Reference	Benchmark		Site 844a-844b			Site 956-957			
	12.1.1	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition				1		1			
Recruitment of woody perennial species in EDL	10	100	100.0	9 5	100	100.0		100.0	
Native plant species richness - trees		1 :	300.0	9	1	100.0		200.0	•
Native plant species richness - shrubs		1 4	400.0			0.0		200.0	•
Native plant species richness - grasses		2 4	200.0	i :	. 2	100.0		150.0	i
Native plant species richness - forbs		3 :	233.3	9 9	10	533.3		383.3	
Tree canopy height	1	2 10	83.3	\$ 5	10	83.3		83.3	
Tree subcanopy height		7 !	71.4	\$ 5	3	42.9		57.1	
Tree canopy height (average of emergent, canopy, sub-canopy)	9.			9 5	6.5	68.4		73.7	
Tree canopy cover (EDL)	6	7 77.5	115.7		82.5	123.1		119.4	
Subcanopy cover	2	3 22	95.7	7 5		0.0		47.8	
Tree canopy cover (average of emergent, canopy, sub-canopy)	4	49.75	110.6		41.3	91.7		101.1	
Shrub canopy cover		5 2.5	50.0			0.0		25.0	
Native grass cover	8	5 34	40.0	i 3	18	21.2		30.6	
Organic litter		9 24	480.0		80	1600.0		1040.0	
Total large trees per hectare	9	2 16	17.4	1 10	20	21.7	10	19.6	
Coarse woody debris (m/ha)	36	d (1.7	/ 5	35	9.7		5.7	
Non-native plant cover		d :		10	1	ļ	10	1.9	1
Site Condition Score				73			73		73
MAX Site Condition Score				80		ļ	80		80
Site Context			Value	Score		Value	Score	Average	Average Scor
Size of patch (ha)				į		i	i		
Remnant			883.3	3		884.3	1	883.8	
Regrowth			3.0) 10)	2.0	10	2.5	
Connectivity			i	1		1			•
Remnant %			44.5	5		6.0		25.2	
Regrowth %			i	1 2		i			
Context				ł		ļ			
Remnant %			60.5	ž.		28.0		44.2	
Regrowth %			1.0	4		3.4	1 :	2.2	•
Site Context Score				16		i	12		16
MAX Site Context Score				20		İ	20		20
			•	ļ		į	į		
Total habitat quality score /100			•	89.00		l	85.00		89.00
MAX Habitat Quality Score				100		!	100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100) Habitat Quallity Score (max)	88.00 100	89.00 100	69.00 100	91.50 100	88.00 100	86.00 100	
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10 Size Weighting	8.80	8.90 1.00	6.90	9.15	8.80	8.60	8.53
Weighted Habitat Quality Score	0.00	8.90	0.00	0.00	0.00	0.00	8.90

GREENRIDGE AU3 RE 12.1.1 NON-REMNANT START QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem				AU3 - R	E 12.1.1 Non-rem				
Site Reference	Benchmark		Site 958-959			Site 970-971			
	12.1.1	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition			1			1			
Recruitment of woody perennial species in EDL	1	00 100	0 100.0		100	100.0		100.0	
Native plant species richness - trees		1 :	1 100.0		1	100.0		100.0	
Native plant species richness - shrubs		1 :	1 100.0	i :		0.0		50.0	2.5
Native plant species richness - grasses		2	1 50.0	2.5	3	150.0		100.0	
Native plant species richness - forbs		3 9	9 300.0		5	166.7	1 :	233.3	
Tree canopy height		12 (6 50.0	i :	3	25.0		37.5	
Tree subcanopy height		7 3	2 28.6		3 (0.0		14.3	
Tree canopy height (average of emergent, canopy, sub-canopy)		0.5	4 42.1		1.5	15.8	(28.9	,
Tree canopy cover (EDL)		57 (0.0			0.0		0.0	(
Subcanopy cover		23 (0.0	(0 0	0.0		0.0	(
Tree canopy cover (average of emergent, canopy, sub-canopy)		45 (0.0		0 0	0.0		0.0	(
Shrub canopy cover		9 (0.0			0.0		0.0	(
Native grass cover		85 (0.0		6.2	7.3		3.6	(
Organic litter		9 35	5 700.0	ė :	35.8	716.0	ė :	708.0	
Total large trees per hectare		92 (0.0		0 0	0.0		0.0	
Coarse woody debris (m/ha)	3	50 (0.0		0 0	0.0		0.0	(
Non-native plant cover		0 60	0	(75	67.5		67.5	(
Site Condition Score				28.5			23		28.5
MAX Site Condition Score				80		1	80		80
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)			1			ł			ļ
Remnant			0.0	i			i	0.0	į.
Regrowth			0.0	•			•	0.0	
Connectivity									l
Remnant %			1	1		(į.	0.0	i
Regrowth %			39.0	į :	2	6.33		22.7	(
Context			i	ł		ł	ł		į
Remnant %			31.5			33.05	į.	32.3	
Regrowth %			3.3	4 .	9	7.7	1 4	5.5	4
Site Context Score			1	6		!	4		4
MAX Site Context Score			į	20			20		20
Total habitat quality score /100			<u> </u>	34.50			27.00		32.50
MAX Habitat Quality Score			1	100		1	100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100)	79.00	73.00	32.50	84.00	74.00	22.50	60.83
Habitat Quallity Score (max)	100	100	100	100	100	100	100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10	7.90	7.30	3.25	8.40	7.40	2.25	6.08
Size Weighting			1.00				
Weighted Habitat Quality Score	0.00	0.00	3.25	0.00	0.00	0.00	3.25

GREENRIDGE AU3 RE 12.1.1 NON-REMNANT WITHOUT OFFSET QUALITY FOR COASTAL SWAMP OAK TEC

START SCORE:

Assessment Unit - Regional Ecosystem				AU3 - R	E 12.1.1 Non-rem				
Site Reference	Benchmark		Site 958-959			Site 970-971			
				Ì		i	Ì		1
			1	<u> </u>		L	_	Average % benchmark	1
Site Condition	12.1.1	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Recruitment of woody perennial species in EDL		100 10	00 100.0	į	5 100	100.0	j .	100.0	j
Native plant species richness - trees		1	1 100.0		1	100.0		100.0	
Native plant species richness - trees		1	100.0		1 .	2 0.0		50.0	
Native plant species richness - shrubs Native plant species richness - grasses		1	1 50.0		1 '	150.0		100.0	
Native plant species richness - grasses Native plant species richness - forbs		1	9 300.0			166.7		233.3	
Tree canopy height		.1	6 50.0			25.0		37.5	
		12	2 28.6						
Tree subcanopy height		- 1			1.5	0.0		14.3	
Tree canopy height (average of emergent, canopy, sub-canopy)		9.5	4 42.1		1.5			28.9	
Tree canopy cover (EDL)		67	0.0			0.0		0.0	
Subcanopy cover		23	d 0.0		9	0.0		0.0	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	0.0		0	0.0		0.0	
Shrub canopy cover		9	0.0		0	0.0		0.0	
Native grass cover		85	C 0.0		6.2			3.6	
Organic litter		5 3	35 700.0		35.8			708.0	
Total large trees per hectare		92	0.0		0 (0.0		0.0	
Coarse woody debris (m/ha)		860	0.0	0	0	0.0	(0.0	
Non-native plant cover		Q 6	60	<u> </u>	0 79	×	(67.5	
Site Condition Score			ł	25.5		ŀ	23		25.5
MAX Site Condition Score			i .	80		1	80		80
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)			i	i		i	İ		i
Remnant			0.0	o <mark>l</mark>			i,	0.0)
Regrowth			0.0	0	0			0.0)
Connectivity			į.	1		į	į		į
Remnant %			i	ł			i	0.0)
Regrowth %			39.0)	2	6.33		22.7	1
Context			į	i		į	•		
Remnant %			31.5	5		33.09	l	32.3	l
Regrowth %			3.3	3	4	7.3	4	5.5	:
Site Context Score			!	6		!	4		4
MAX Site Context Score			İ	20			20		20
Total habitat quality score /100				31.50			27.00		29.50
MAX Habitat Quality Score			1	100		1	100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100)	70.00	71.00	29.50	72.50	74.00	22.50	56.58
Habitat Quallity Score (max)	100	100	100	100	100	100	100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10	7.00	7.10	2.95	7.25	7.40	2.29	5.66
Size Weighting		ĺ	1.00				
Weighted Habitat Quality Score	0.00	0.00	2.95	0.00	0.00	0.00	2.95

GREENRIDGE AU3 RE 12.1.1 NON-REMNANT WITH OFFSET QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem					AU3 - R	E 12.1.1 Non-remr	nant			
Site Reference	Benchmark			Site 958-959			Site 970-971			1
							i		Average %	
	12.1.1		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition				i	i		i	1		i
Recruitment of woody perennial species in EDL		100	100			5 100			100.0	
Native plant species richness - trees		1	1	100.0		5 1	100.0		100.0	
Native plant species richness - shrubs		1	1	100.0		5	0.0		50.0	
Native plant species richness - grasses		2	1	50.0		5	150.0		100.0	
Native plant species richness - forbs		3	9	300.0		5 5	166.7		233.3	
Tree canopy height		12	6	50.0		5 3	25.0		37.5	
Tree subcanopy height		7	2	28.6		5 (0.0		14.3	
Tree canopy height (average of emergent, canopy, sub-canopy)		9.5	4	42.1		5 1.5			28.9	
Tree canopy cover (EDL)		67	C	0.0		5 (0.0		0.0	
Subcanopy cover		23		0.0		5	0.0		0.0	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	C	0.0	1	5 (0.0	5	0.0 0.0 0.0	
Shrub canopy cover		5	C	0.0		5	0.0		0.0 3.6 708.0 0.0 0.0	
Native grass cover		85	C	0.0		5 6.2			3.6	
Organic litter		5	35	700.0		35.8	716.0	5	708.0	
Total large trees per hectare		92	C	0.0		5 (0.0		0.0	
Coarse woody debris (m/ha)		360	C	0.0		5 (0.0	5	0.0	
Non-native plant cover		0	60	į		5 75		5	67.5	
Site Condition Score				Ì	65			63		65.0
MAX Site Condition Score				ł	80			80		80
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)				}	1		1	1		•
Remnant				0.0			C	9	0.0	
Regrowth				0.0	(0	C	0	0.0	(
Connectivity				ł	1		1	!		:
Remnant %				ł	İ		(i i	0.0	
Regrowth %				39.0	į :	2	6.33	9 0	22.7	(
Context				į	į.		į	į		į.
Remnant %				31.5			33.05		32.3	1
Regrowth %				3.3		1	7.7	4	5.5	4
Site Context Score					6			4		4
MAX Site Context Score					20			20		20
Total habitat quality score /100					71.00			67.00		69.00
MAX Habitat Quality Score					100			100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100) Habitat Quallity Score (max)	88.00 100	89.00 100	69.00 100	91.50 100	88.00 100	86.00 100	85.25 100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10 Size Weighting	8.80	8.90	6.90 1.00	9.15	8.80	8.60	8.53
Weighted Habitat Quality Score	0.00	0.00	6.90	0.00	0.00	0.00	6.90

GREENRIDGE AU4 RE 12.3.20 REMNANT START QUALITY FOR COASTAL SWAMP OAK TEC

START SCORE:

Assessment Unit - Regional Ecosystem						AU4 - RE 12.3.2	0 Remnant					
Site Reference	Benchmark		Site 931-932			Site 964-965			Site 966-967			
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition									1	1		
Recruitment of woody perennial species in EDL	100	50	50.0		100	100.0		100	10	d :	83.3	4
Native plant species richness - trees	4	3	75.0	2.5	. 2	50.0	2.5		17	s :	100.0	4
Native plant species richness - shrubs	4	1	25.0	2.5	. 2	50.0	2.5		10	0 !	58.3	2.
Native plant species richness - grasses	- 2	3	150.0		1	50.0	2.5		20	a !	133.3	4 '
Native plant species richness - forbs	8	4	50.0	2.5	i 6	75.0	2.5		62.		62.5	2.
Tree canopy height	16	18	112.5		15	93.8	i :	25	156.25	5 !	120.8	
Tree subcanopy height	8		62.5	1 :	8	100.0	i :	15	187.	s i :	116.7	4 .
Tree canopy height (average of emergent, canopy, sub-canopy)	12	11.5	95.8		11.5	95.8		20	166.	7	119.4	i .
Tree canopy cover (EDL)	70	99.5	142.1		73.6	105.1		83	118.6	6 :	122.0	į .
Subcanopy cover	20	1.5	7.5		1 8	40.0	i :	34		d :	72.5	
Tree canopy cover (average of emergent, canopy, sub-canopy)	49	50.5	112.2		40.8	90.7		58.5	130.0	0 !	111.0	
Shrub canopy cover	15	0.9	3.3		7	46.7	4 :	11	73.	3 :	41.1	
Native grass cover	20	16.2	81.0	,	31.0	155.0	,	61.8	30	g e	181.7	4
Organic litter	30	47	156.7		38	126.7		30			127.8	į .
Total large trees per hectare	169	124	75.2	10	130			58		2	63.0	
Coarse woody debris (m/ha)	890				315.0			169			27.7	
Non-native plant cover		1		10		1	10		•	1	2.0	
Site Condition Score				55.5			60			59.5		65.0
MAX Site Condition Score			!	80			80			80		80
Site Context			Value	Score		Value	Score		Value	Score	Average	Average Score
Size of patch (ha)												1
Remnant			781.3	}		781.3	i		781.3	3	781.3	4
Regrowth			105.0	10		105.0	10		105.0	0 10	105.0	1/
Connectivity			į	i		į	•		•	i		•
Remnant %			99.4	į.		99.4	i.		68.	2	89.0	į.
Regrowth %			i			İ			4.1	d .		i
Context			ŀ	ŀ		1	1		1	1		1
Remnant %			52.2	i .		52.2	á		68.	/	57.7	4
Regrowth %			2.9		1	2.9			1.0	d .	2.3	
Site Context Score	ì	İ	i	19			19		•	18		19.0
MAX Site Context Score				20		j	20		İ	20		20
Total habitat quality score /100				74.50			79.00			77.50		84.00
MAX Habitat Quality Score			ŀ	100			100			100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Fina
Habitat Quality Score (measured /100)	79.00	73.00	32.50	84.00	74.00	22.50	60.83
Habitat Quallity Score (max)	100	100	100	100	100	100	100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10	7.90	7.30	3.25	8.40	7.40	2.29	6.08
Size Weighting				1.00			
Weighted Habitat Quality Score	0.00	0.00	0.00	8.40	0.00	0.00	8.40

GREENRIDGE AU4 RE 12.3.20 REMNANT WITHOUT OFFSET QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem	AU3 - RE 12.1.1							AU4 - RE 12.3.2	0 Remnant					
Site Reference	Benchmark	Site 958-959	Benchmark		Site 931-932			Site 964-965			Site 966-96/			
	12.1.1	Raw Data	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Sco
Site Condition														
Recruitment of woody perennial species in EDL	100	10	100	50	50.	0	3 100	100.0		3 100	10	9	83.3	ı i
Native plant species richness - trees		1	1 .	4	75.	0 2	.5	50.0			7 17	5 5	100.0	0
Native plant species richness - shrubs		1	1 .	4	25.	0 2	.5	50.0	2.5	5 4	10	5	58.3	
Native plant species richness - grasses		2	1	2 :	150.	0 2	.5	50.0	2.5	5 4	20	2.5	133.3	
Native plant species richness - forbs		3	9 :		50.	0	0	75.0	2.5	5 !	62.	2.5	62.5	i
Tree canopy height	12	2	5 1	18	112.	5	5 19	93.8		5 25	156.25		120.8	
Tree subcanopy height		7	2 :	9	62		5	100.0		5 15	187.5		116.7	
Tree canopy height (average of emergent, canopy, sub-canopy)	9.5	5	1	11.5	95.	8	5 11.5	95.8		5 20	166.7	5	119.4	
Tree canopy cover (EDL)	67	7	71	99.5	142.	1	5 73.6	105.1		5 83	118.6	5 5	122.0	
Subcanopy cover	23	3	2	1.5	7.	.5	2 :	40.0		5 34	17	9 5	72.5	i
Tree canopy cover (average of emergent, canopy, sub-canopy)	45	5	9 45	50.5	112.	2	5 40.8	90.7	!	58.5	130.0	5	111.0	
Shrub canopy cover		5	1	0.5	3	3	0	46.7		3 11	73.	9 5	41.3	
Native grass cover	85	5	2	16.3	81.	0	3 31.0	155.0		5 61.8	30	9 5	181.7	
Organic litter		5 3	3	4	156.	7	3 3	126.7		30	10	9 5	127.8	
Total large trees per hectare	92	2	165	124	75.	2 :	130		10	58	35.3	10	63.0	
Coarse woody debris (m/ha)	360	0	89	260	29.	2	2 315.0	35.4		2 165	18.5	2	27.3	
Non-native plant cover		0 6		9	1		5			5	5	3	2.0	
Site Condition Score						43.5			51			58		53.5
MAX Site Condition Score						80			80			80		80
Site Context					Value	Score		Value	Score		Value	Score	Average	Average Sco
Size of patch (ha)														
Remnant					781.			781.3			781.3		781.3	
Regrowth					105.0	1	0	105.0	10	1	105.0	10	105.0	
Connectivity														
Remnant %					99.4	1		99.4			68.2		89.0	
Regrowth %							5		5		4.0	4		
Context														
Remnant %					52.2	2		52.2			68.7		57.7	
Regrowth %	ı		1	l	2.5	9	4	2.9	4	·	1.0	4	2.3	1
Site Context Score						19			19			18		19.0
MAX Site Context Score						20			20			20		20
Total habitat quality score /100 MAX Habitat Quality Score						62.50 100			70.00 100			76.00 100		72.50 100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100)	70.00					22.50	56.58
Habitat Quallity Score (max)	100	100	100	100	100	100	100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10 Size Weighting	7.00	7.10	2.95	7.25 1.00	7.40	2.25	5.66
Weighted Habitat Quality Score	0.00	0.00	0.00	7.25	0.00	0.00	7.25

GREENRIDGE AU4 RE 12.3.20 REMNANT WITH OFFSET QUALITY FOR COASTAL SWAMP OAK TEC

START SCORE:

Assessment Unit - Regional Ecosystem						AU4 - RE 12.3.2	0 Remnant					
Site Reference	Benchmark		Site 931-932			Site 964-965			Site 966-967			
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition			i	į .		i			i	i		i
Recruitment of woody perennial species in EDL	10	0 50	50.		100	100.0		100	10	o i	83.3	i
Native plant species richness - trees		4	75.			2 50.0			17	5	100.0	i
Native plant species richness - shrubs		4	1 25.	2.5		2 50.0	2.5	4	10	o	58.3	2.
Native plant species richness - grasses		2	150.		:	50.0		4	20		133.3	
Native plant species richness - forbs		8	50.	2.5	5	75.0	2.5		62.5	5	62.5	
Tree canopy height	1	6 18	112.	:	15	93.8		25	156.25	5	120.8	
Tree subcanopy height		8 !	62.			100.0		15			116.7	i
Tree canopy height (average of emergent, canopy, sub-canopy)	1	2 11.5	95.		11.5	95.8		20	166.7	7	119.4	
Tree canopy cover (EDL)	7	0 99.5			73.6			83			122.0	i
Subcanopy cover	2	0 1.5		:	2	40.0		34		o l	72.9	
Tree canopy cover (average of emergent, canopy, sub-canopy)	4	50.5	112.		40.8	90.7	4 :	58.5	130.0	0	111.0	
Shrub canopy cover	1	5 0.5	3.			46.	!	11	73.3	3	41.1	
Native grass cover	2	0 16.2	81.		31.0	155.0		61.8	30	9	181.7	
Organic litter	3	0 4:	156.		38	126.7	1 :	30	10	o i	127.8	
Total large trees per hectare	16	5 124	75.	10	130	78.1	10	58			63.0	1
Coarse woody debris (m/ha)	89	0 260	29.	d :	315.0	35.4		165	18.5	s	27.7	
Non-native plant cover		o :	1	10		4	10	9	i	1	2.0	1
Site Condition Score			İ	65.5		Î	67.5			75		72.5
MAX Site Condition Score			į	80		į	80		i	80		80
Site Context			Value	Score		Value	Score		Value	Score	Average	Average Score
Size of patch (ha)			į	į		į	1		į	i		į
Remnant			781.3	į		781.3	į		781.3		781.3	
Regrowth			105.0	10		105.0	10		105.0	10	105.0	10
Connectivity			1	į		1	•		į.	i		į.
Remnant %			99.4	į		99.4	i		68.2	· i	89.0	i
Regrowth %			}	5		1	9		4.0	4		!
Context			}	1		1	•		!	1		!
Remnant %			52.2	į		52.2	į		68.7	· [57.7	į
Regrowth %			2.9			2.9			1.0		2.3	
Site Context Score			į	19		į	19		i	18		19.0
MAX Site Context Score				20			20			20		20
Total habitat quality score /100 MAX Habitat Quality Score				84.50 100			86.50 100			93.00 100		91.50 100

	AU1 RE 12.1.1	AU2 RE 12.1.1	AU3 RE 12.1.1	AU4 RE12.3.20	AU5 RE 12.3.20	AU6 RE 12.3.20	
Final habitat quality score (weighted)	Remnant	Regrowth	Non-remnant	Remnant	Regrowth	Non-remnant	Average/Fina
Habitat Quality Score (measured /100) Habitat Quallity Score (max)	88.00 100	89.00 100	69.00 100	91.50 100	88.00 100	86.00 100	85.25 100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10 Size Weighting	8.80	8.90	6.90	9.15 1.00	8.80	8.60	8.53
Weighted Habitat Quality Score	0.00	0.00	0.00	9.15	0.00	0.00	9.15

GREENRIDGE AU5 RE 12.3.20 REGROWTH START QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem				AU5 -	RE 12.3.20 Regrov				
Site Reference	Benchmark		Site 974-975			Site 923-924			1
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition			1	1			1		1
Recruitment of woody perennial species in EDL		100 10	0 100.0	o	5 100	100.0		100.0	
Native plant species richness - trees		4	8 200.0	0	5 4	100.0	9	150.0	
Native plant species richness - shrubs		4	4 100.0	0	5 5	125.0	9	112.5	
Native plant species richness - grasses		2	5 250.0	oi.	5 3	150.0	9	200.0	
Native plant species richness - forbs		8 1	0 125.0	ol.	5	87.5	2.5	106.3	
Tree canopy height		16 1	1 68.8	В	3 (37.5		53.1	
Tree subcanopy height		8	7 87.5	5	5 3	37.5		62.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		12	9 75.0	O.	5 4.5	37.5		56.3	
Tree canopy cover (EDL)		70 9	7 81.4	4	5 44.5	63.6		72.5	
Subcanopy cover		20 2	2 110.0	ol .	5 3.5	17.5	2	63.8	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45 39	5 87.8	8	5 24	53.3	9	70.6	
Shrub canopy cover		15 5	5 36.7	7	3 3	13.3	3	25.0	1
Native grass cover		20 9	2 46.0	o.	1 37	185.0	9	115.5	
Organic litter		30 85	2 284.0	o i	3 14	46.7		165.3	
Total large trees per hectare		165	8 4.8	В	5 10	6.:		5.5	
Coarse woody debris (m/ha)		890	0.0	ol.	a a	0.0		0.0	
Non-native plant cover		d	5	į	5 10	į.	9	7.5	
Site Condition Score			1	52		Ì	51.5		56.0
MAX Site Condition Score			1	80			80		80
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)			ł	į		i			ł
Remnant			654.84	4			į	327.4	Ų.
Regrowth			33.5	5 1	0	1.09		17.27	10
Connectivity			!	ł		ł	1		!
Remnant %			79.87	7		29.5		54.69	ı.
Regrowth %			1 (o.	5		1 2	0.0	
Context			1	!		!	:		!
Remnant %			52.65	5		39.82		46.24	į.
Regrowth %			9.11	1	4	9.89	4	9.48	
Site Context Score				19	ĺ		6	I	18
MAX Site Context Score			j	20			20		20
Total habitat quality score /100			1	71.00			57.50		74.00
MAX Habitat Quality Score			!	100		!	100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100)	79.00	73.00	32.50	84.00	74.00	22.50	60.83
Habitat Quallity Score (max)	100	100	100	100	100	100	100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10	7.90	7.30	3.25	8.40	7.40	2.25	6.08
Size Weighting					1.00		
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	7.40	0.00	7.40

GREENRIDGE AU5 RE 12.3.20 REGROWTH WITHOUT OFFSET QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem				AU5 -	RE 12.3.20 Regrov				
Site Reference	Benchmark		Site 974-975			Site 923-924			
								Average %	
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition			!						
Recruitment of woody perennial species in EDL	100	100			100	100.0	5	100.0	
Native plant species richness - trees		1 8	200.0		5 4	100.0	5	150.0	
Native plant species richness - shrubs		4	100.0		9	125.0	5	112.5	
Native plant species richness - grasses		9	250.0		3	150.0		200.0	
Native plant species richness - forbs		10	125.0		7	87.5	2.5	106.3	
Tree canopy height	16	11	68.8		6	37.5	3	53.1	
Tree subcanopy height			87.5		3	37.5	3	62.5	
Tree canopy height (average of emergent, canopy, sub-canopy)	12	9	75.0		4.5	37.5	3	56.3	
Tree canopy cover (EDL)	70	57	81.4		44.5	63.6	5	72.5	
Subcanopy cover	20	22	110.0		3.5	17.5	2	63.8	
Tree canopy cover (average of emergent, canopy, sub-canopy)	45	39.5	87.8		24	53.3	5	70.6	
Shrub canopy cover	15	5.5	36.7		3 2	13.3	3	25.0	
Native grass cover	20	9.2	46.0		37	185.0	5	115.5	
Organic litter	30	85.2	284.0	ĺ :	14	46.7		165.3	į į
Total large trees per hectare	169		4.8		10	6.1	5	5.5	
Coarse woody debris (m/ha)	890		0.0	i o	0	0.0		0.0	
Non-native plant cover					10	i	3	7.5	
Site Condition Score			i e	50			49.5		56.0
MAX Site Condition Score			į	80		i	80		80
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)									
Remnant			654.84				i	327.4	
Regrowth			33.5	10	0	1.09	0	17.27	10
Connectivity			•	l		l	l		l
Remnant %			79.87	•		29.5		54.69	
Regrowth %			c	i s	5	(2	0.0	i .
Context			}	ļ		ļ	Į.		Į.
Remnant %			52.65			39.82		46.24	
Regrowth %			9.11	4	1	9.89	4	9.48	
Site Context Score				19			6		18
MAX Site Context Score				20			20		20
Total habitat quality score /100				69.00			55.50		74.00
MAX Habitat Quality Score				100			100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100)	70.00	71.00	29.50	72.50	74.00	22.50	56.58
Habitat Quallity Score (max)	100	100	100	100	100	100	100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10 Size Weighting	7.00	7.10	2.95	7.25	7.40 1.00	2.25	5.66
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	7.40	0.00	7.40

GREENRIDGE AU5 RE 12.3.20 REGROWTH WITH OFFSET QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem				AU5 -	RE 12.3.20 Regrow				
Site Reference	Benchmark		Site 974-975			Site 923-924			
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Scor
Site Condition				İ					
Recruitment of woody perennial species in EDL	10	100	100.0		100	100.0		100.0	
Native plant species richness - trees		4 8	200.0	i :	5 4	100.0	i 9	150.0	i
Native plant species richness - shrubs		4	100.0	,	5	125.0	9	112.5	
Native plant species richness - grasses		2	250.0		3	150.0	9 9	200.0	
Native plant species richness - forbs		10	125.0	d :	5	87.5		106.3	•
Tree canopy height	1	11	68.8		6	37.5		53.1	
Tree subcanopy height			87.5		3	37.5		62.5	
Tree canopy height (average of emergent, canopy, sub-canopy)	1	9	75.0		4.5			56.3	
Tree canopy cover (EDL)	7	57	81.4	1	44.5	63.0	5 5	72.5	
Subcanopy cover	2	22	110.0		3.5	17.5		63.8	
Tree canopy cover (average of emergent, canopy, sub-canopy)	4	39.5	87.8		24	53.3		70.6	
Shrub canopy cover	1	5.5	36.7		2	13.		25.0	
Native grass cover	2	9.2	46.0	d :	37	185.0	5 9	115.5	
Organic litter	3	85.2	284.0	į į	14	46.	, ,	165.3	
Total large trees per hectare	16	5 8	4.8	4	10	6.:	1 5	5.5	
Coarse woody debris (m/ha)	89	0	0.0		(0.0		0.0	
Non-native plant cover		9		10	10		10	7.5	
Site Condition Score				70		l	68		70.0
MAX Site Condition Score				80		į	80		80
Site Context			Value	Score		Value	Score	Average	Average Sco
Size of patch (ha)				į					
Remnant			654.84	1			4	327.4	1
Regrowth			33.5	10		1.09		17.27	
Connectivity			l	i		i	i		•
Remnant %			79.87	4		29.5	\$	54.69	•
Regrowth %					5	: ,	d 1	0.0	•
Context			Ì	İ		i	i		•
Remnant %			52.65	ol .		39.82		46.24	
Regrowth %			9.11		4	9.8	i 4	9.48	
Site Context Score				19			6		18
MAX Site Context Score				20			20		20
Total habitat quality score /100				89.00			74.00		88.00
MAX Habitat Quality Score				100		1	100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100) Habitat Quallity Score (max)	88.00 100	89.00 100	69.00 100	91.50 100	88.00 100	86.00 100	85.25 100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10 Size Weighting	8.80	8.90	6.90	9.15	8.80 1.00	8.60	8.53
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	8.80	0.00	8.80

GREENRIDGE AU6 RE 12.3.20 NON-REMNANT START QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem				AU6 - RI	12.3.20 Non-rem				
Site Reference	Benchmark		Site 972-973			Site 960-961			
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition			1	1		1			
Recruitment of woody perennial species in EDL	1	00	0.0		100	100.0		50.0	
Native plant species richness - trees		4	0.0		1	25.0	2.5	12.5	
Native plant species richness - shrubs		4	0.0		2	50.0	2.5	25.0	2.5
Native plant species richness - grasses		2	0.0	4	1	50.0	2.5	25.0	2.5
Native plant species richness - forbs		8	3 37.5	2.	5	62.5	2.5	50.0	2.5
Tree canopy height		16	0.0		9	50.0		25.0	
Tree subcanopy height		8	0.0	i .	2	25.0		12.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		12	0.0		9	41.7		20.8	
Tree canopy cover (EDL)		70	0.0		12.5	17.9		8.9	
Subcanopy cover		20	0.0	·	0 0	0.0		0.0	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	0.0		6.25	13.9		6.9	
Shrub canopy cover		15	0.0		1	6.7	4 (3.3	
Native grass cover		20	0.0	d .	19	95.0		47.5	
Organic litter		30 20.8	69.3	3	20	66.7	:	68.0	
Total large trees per hectare	1	65	0.0	i i		,	15	0.0	
Coarse woody debris (m/ha)		90	0.0	d		0.0		0.0	
Non-native plant cover		d 9:	5		95	0.0	ė (95.0	
Site Condition Score			1	7.5		1	45		16.5
MAX Site Condition Score			!	80		1	80		80
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)			ł				•		
Remnant				j.			i	0.0	i e
Regrowth				4				0.0	
Connectivity			1	l		l	I		1
Remnant %			28.12	2		28.12		28.1	
Regrowth %			20.5		2	20.5		20.5	
Context			ł	l		1	1		1
Remnant %			33.5			64.05		48.8	
Regrowth %			8.94	ı .	9	5.67	•	7.3	
Site Context Score			ļ .	6		ļ .	6		6
MAX Site Context Score				20			20		20
Total habitat quality score /100			1	13.50			51.00		22.50
MAX Habitat Quality Score			i	100		1	100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100)	79.00	73.00	32.50	84.00	74.00	22.50	60.83
Habitat Quallity Score (max)	100	100	100	100	100	100	100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10	7.90	7.30	3.25	8.40	7.40	2.25	6.08
Size Weighting						1.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	2.25	2.25

GREENRIDGE AU6 RE 12.3.20 NON-REMNANT WITHOUT OFFSET QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem					AU6 - RE	12.3.20 Non-rem	nant	<u></u>		
Site Reference	Benchmark			Site 972-973			Site 960-961			ŀ
		ĺ								ł
				ļ	ļ		ļ	ļ	Average %	ļ
	12.3.20		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition				ł	ļ		ļ	ļ		ļ
Recruitment of woody perennial species in EDL		100		0.0		100			50.0	
Native plant species richness - trees		4	(0.0		1	25.0		12.5	
Native plant species richness - shrubs		4		0.0		2	50.0			
Native plant species richness - grasses		2		0.0		1	50.0		25.0	
Native plant species richness - forbs		8	3	37.5		5	62.5		50.0	
Tree canopy height		16		0.0		8	50.0		25.0	3
Tree subcanopy height		8		0.0		2	25.0	3	12.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		12		0.0	(9	41.7	3	20.8	C
Tree canopy cover (EDL)		70		0.0	(12.5	17.9	2	8.9	C
Subcanopy cover		20		0.0	(0.0	0	0.0	c
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	(0.0	(6.25	13.9	2	6.9	C
Shrub canopy cover		15		0.0	(1	6.7	0	3.3	C
Native grass cover		20		0.0		19	95.0	5	47.5	1
Organic litter		30	20.8	69.3		20	66.7	5	68.0	9
Total large trees per hectare		165		0.0			0.0		0.0	
Coarse woody debris (m/ha)		890		0.0			0.0	0	0.0	
Non-native plant cover		О	95	1		95	0.0	0	95.0	·
Site Condition Score					7.5		i	30		16.5
MAX Site Condition Score				İ	80		İ	80		80
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)				i	i		i	i		i
Remnant								4	0.0	İ
Regrowth				l c		1	l c	0	0.0	l c
Connectivity				į	į		į	į		į
Remnant %				28.12	į		28.12	į	28.1	i
Regrowth %	1			20.5			20.5	2	20.5	
Context				1	ļ.			!		ļ.
Remnant %				33.5	i		64.05	i	48.8	i
Regrowth %				8.94		ı	5.67		7.3	
Site Context Score				!	6		!	6		6
MAX Site Context Score				i	20		i	20		20
				ļ	1		l			1 2
Total habitat quality score /100					13.50			36.00		22.50
MAX Habitat Quality Score				1	100		i	100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100)	70.00	71.00	29.50	72.50	74.00	22.50	56.58
Habitat Quallity Score (max)	100	100	100	100	100	100	100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10	7.00	7.10	2.95	7.25	7.40	2.29	5.66
Size Weighting						1.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	2.25	2.25

GREENRIDGE AU6 RE 12.3.20 NON-REMNANT WITH OFFSET QUALITY FOR COASTAL SWAMP OAK TEC

Assessment Unit - Regional Ecosystem					AU6 - RI	E 12.3.20 Non-rem	nant			
Site Reference	Benchmark			Site 972-973			Site 960-961			+
				ì					Average %	
	12.3.20		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition				į			İ	-		
Recruitment of woody perennial species in EDL		100	(0.0		100			50.0	
Native plant species richness - trees		4	(0.0		5 :	25.0		12.5	
Native plant species richness - shrubs		4		0.0		5 2	50.0		25.0	
Native plant species richness - grasses		2	(0.0		5	50.0		25.0	
Native plant species richness - forbs		8	3	0.0 0.0 37.5		5	62.5		50.0	
Tree canopy height		16	(0.0		5 8	50.0		25.0	
Tree subcanopy height		8	(0.0		s :	25.0	1 9	12.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		12	. (0.0		5	41.7	7	20.8	
Tree canopy cover (EDL)		70	(0.0		12.5			8.9	
Subcanopy cover		20	(0.0		s (0.0	9	0.0	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	(0.0		6.25	13.9		6.9	
Shrub canopy cover		15	(0.0		S :	6.7	4 9	3.3	
Native grass cover		20		0.0		19	95.0		47.5	
Organic litter		30	20.8	69.3	i i	5 20	66.7		68.0	
Total large trees per hectare		165		0.0	1	5	0.0	d :	0.0	
Coarse woody debris (m/ha)		890		0.0		5	0.0		0.0	
Non-native plant cover		0	95	į	1	95	0.0	10	95.0	
Site Condition Score					70			70		70.0
MAX Site Condition Score				İ	80		İ	80		80
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)					i		i	i		
Remnant				19.75			654.84		337.3	
Regrowth				22.02		2	34.02	2 10	28.0	:
Connectivity				1	!		1	!		•
Remnant %				28.12	Í		28.12	2	28.1	
Regrowth %				20.5	į .	2	20.5	i 1	20.5	
Context				l	İ		1	1		I
Remnant %				33.5			64.05		48.8	
Regrowth %				8.94	(4	5.67	7 4	7.3	
Site Context Score					8			16		16
MAX Site Context Score				<u> </u>	20		j	20		20
Total habitat quality score /100					78.00			86.00		86.00
MAX Habitat Quality Score					100		i	100		100

Final habitat quality score (weighted)	AU1 RE 12.1.1 Remnant	AU2 RE 12.1.1 Regrowth	AU3 RE 12.1.1 Non-remnant	AU4 RE12.3.20 Remnant	AU5 RE 12.3.20 Regrowth	AU6 RE 12.3.20 Non-remnant	Average/Final
Habitat Quality Score (measured /100) Habitat Quallity Score (max)	88.00 100	89.00 100	69.00 100	91.50 100	88.00 100	86.00 100	85.25 100
Assessment Unit area (ha)	14.20	5.16	22.03	28.22	4.74	12.48	86.83
Assessment Unit Habitat Quality Score /10 Size Weighting	8.80	8.90	6.90	9.15	8.80	8.60 1.00	8.53
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	8.60	8.60

Appendix K: Offset HQS tables Koala habitat

TABOOBA AU1 RE 12.8.16 REMNANT START QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem					Tabooba A	U 1 - RE12.8.16 Re	mnant			
Site Reference	Benchmark			Site 472-473			Site 474-475		Average %	
	12.8.16	Raw Data		% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition					:	i		ł		
Recruitment of woody perennial species in EDL		100	100	100.0		100.0	100.0)	100.0	
Native plant species richness - trees		7	6	85.7	2.	6.0	85.7	2.5	85.7	2.
Native plant species richness - shrubs		7	ģ	128.6	1	10.0	142.9		135.7	
Native plant species richness - grasses		7	10	142.9	į.	16.0	228.6		185.7	
Native plant species richness - forbs		29	31	106.9	ė	34.0	117.2		112.1	
Tree canopy height		20	19	75.0	i	18.0	90.0	i .	82.5	
Tree subcanopy height		7	-	100.0		10.0	125.0		112.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		14	11.5			14.0			91.1	
Tree canopy neight (average of emergent, canopy, sub-canopy) Tree canopy cover (EDL)		41	44.1			83.0			155.0	
	1		17.5							
Subcanopy cover		17				1.0			54.4	
Tree canopy cover (average of emergent, canopy, sub-canopy)		29	30.8			42.0			125.5	
Shrub canopy cover		4	q	0.0		0.0	0.0		0.0	
Native grass cover		45	22		i .	27.2			54.7	
Organic litter		21	3.4	16.3	ě.	6.2	29.5		22.9	
Number of large trees/ha		33	10	30.3	į .	14.0	42.4	1	36.4	
Coarse woody debris (m/ha)		336	18	5.4		170.0	50.6		28.0	
Non-native plant cover		d	40		1	15.0		1	27.5	
Quality and availability of food and foraging habitat: Koala					1			10	1	1
Quality and availability of shelter: Koala				•	1			1 10	1	10
,,					•			ļ		
Site Condition Score					71.5			73.5		68.5
MAX Site Condition Score					100			100	1	100
			- 1		Į.			ļ		
Site Condition Score - out of 3					2.15			2.21		2.06
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)								l		
Koala habitat (foraging/breeding/dispersal)				>200	1		>200	10	>200	1
Connectivity					1			ļ		
Foraging/breeding habitat				97.73	į		97.73	<u>.</u>	97.73	
Dispersal habitat				2.2			2.2		2.27	
Context					į.			į		
Foraging/breeding habitat				86.26	į		87.48	į	86.87	
Dispersal habitat				13.74			15.52		14.63	
Ecological Corridors				-	1			1		
Role of site location to species overall population in the state			- 1	:	•			1		
Absence of threats			- 1	-				1	11 1	10
Species mobility capacity	1			•	10	1]	1
Species mobility capacity					, ,	1 :		1	1 :	1
Site Context Score					38			39		38.5
MAX Site Context Score					56			56		56
Site Context Score - out of 3					2.04			2.09	1	2.06

			Tabooba A	J 1 - RE12.8.16 re	mnant					
	AU Koala density	Site 472-473			Site 474-475			Average Score		
Species Stocking Rate (SSR)	0.25		Score			Score		Average score		
Presence detected on or adjacent to site (neighbouring property with connecting habitat)			10			10		10		
Species usage of the site (habitat type & evidenced usage)	1	ł	15			15		1		
Approximate density (per ha)	0.25	į	30			30		30		
Role/importance of species population on site*		İ	10			10		10		
Total SRR score (out of 70)		•	65			65		65		
Max SRR Score		ļ	70			70		70		
SRR Score (out of 4			3.71			3.71		3.71		

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non- remnant	Average/ Final
Site Condition score (out of 3)	2.06	1.83	1.63	2.19	2.01	2.24	1.98	0.53	1.81
Site Context Score (out of 3)	2.06	1.78	1.82	2.01	1.96	1.61	2.38	1.61	1.88
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.83	5.90	4.31	7.91	6.54	7.56	6.94	3.85	6.14
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES	358.69								
Size Weighting	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	7.83	0.00	0.00	0.00	0.00	0.0	0.0	0.0	7.83

TABOOBA AU1 RE 12.8.16 REMNANT WITHOUT OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem					Tabooba	AU 1 - RE12.8.16	Remnant			
Site Reference	Benchmark			Site 472-473			Site 474-475		Average %	Average Score
	12.8.16		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	
Site Condition										
Recruitment of woody perennial species in EDL		100	100	100.0	9	100.0	100.0		100.0	
Native plant species richness - trees		7		85.7	2.5	6.0	85.7	2.5	85.7	2
Native plant species richness - shrubs		7		128.6		10.0	142.9		135.7	
Native plant species richness - grasses		7	10	142.9	9	16.0	228.6		185.7	
Native plant species richness - forbs		29	31	106.9	9 5	34.0	117.2		112.1	
Tree canopy height		20	15	75.0	9	18.0	90.0		82.5	
Tree subcanopy height		8	8	100.0		10.0	125.0		112.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		14	11.5	82.1		14.0	100.0	5	91.1	
Tree canopy cover (EDL)		41	44.1	107.6		83.0	202.4		155.0	
Subcanopy cover		17	17.5	102.9	9 5	1.0	5.9		54.4	
Tree canopy cover (average of emergent, canopy, sub-canopy)		29	30.8	106.2		42.0	144.8		125.5	
Shrub canopy cover		4		0.0		0.0	0.0	(0.0	
Native grass cover		45	22			27.2			54.7	
Organic litter		21			. 3	6.2			22.9	
Number of large trees (ha)		33				14.0			36.4	
Coarse woody debris (m/ha)		336				170.0			28.0	
Non-native plant cover		000	40		1	15.0		1	27.5	
Quality and availability of food and foraging habitat: Koala			1]	10	15.0	•	10	1 27.3	
Quality and availability of shelter: Koala				į	10			10	1	
Quality and availability of sherter. Roals				1				1		
Site Condition Score					69.5			78.5		73.5
MAX Site Condition Score					100			100		100
					į					
Site Condition Score - out of 3				İ	2.09			2.36		2.21
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)				i	İ			i		
Koala habitat (foraging/breeding/dispersal)				>200	10		>200	10	>200	
Connectivity				İ	į			İ		
Foraging/breeding habitat				97.7			97.7		97.7	
Dispersal habitat				2.3	5		2.3		2.3	
Context				1	[[
Foraging/breeding habitat				86.3			87.5		86.9	
Dispersal habitat				13.7	1 5	i	15.5		14.6	
Ecological Corridors					((1	
Role of site location to species overall population in the state				l	1	4] :	1	
Absence of threats					7	1			1	
Species mobility capacity					10	1		10		
Site Context Score					38			38		38
MAX Site Context Score				!	56			56		56
Site Context Score - out of 3				i	2.04			2.04		2.04

			Tabooba	AU 1 - RE12.8.16	Remnant		
	AU Koala density	Site 472-473			Site 474-475		
Species Stocking Rate (SSR)	0.25		Score			Score	Average Score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)			10			10	10
Species usage of the site (habitat type & evidenced usage)			15			15	15
Approximate density (per ha)	0.25	İ	30			30	30
Role/importance of species population on site*			10			10	10
Total SRR score (out of 70) Max SRR Score			65 70			65 70	65 70
SRR Score (out of 4		İ	3.71			3.71	3.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 3)	2.21	1.47	0.60	2.19	1.55	2.19	1.98	0.53	1.59
Site Context Score (out of 3)	2.04	1.74	1.79	1.98	1.90	1.61	2.33	1.61	1.85
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.96	5.50	3.25	7.89	6.02	7.51	6.88	3.85	5.84
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES	358.69								
Size Weighting	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	7.96	0.00	0.00	0.00	0.00	0.0	0.0	0.0	7.96

TABOOBA AU1 RE 12.8.16 REMNANT WITH OFFSET QUALITY FOR KOALA

START SCORE:

q

Assessment Unit - Regional Ecosystem					Tabooba	AU 1 - RE12.8.16	Remnant			
Site Reference	Benchmark			Site 472-473			Site 474-475		Average %	
	12.8.16		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition										
Recruitment of woody perennial species in EDL		100	100	100.0	5	100.0	100.0	5	100.0	i
Native plant species richness - trees		7	6	85.7	2.5	6.0	85.7	2.5	85.7	2
Native plant species richness - shrubs		7	9	128.6	5	10.0	142.9	5	135.7	i
Native plant species richness - grasses		7	10	142.9	5	16.0	228.6	5	185.7	į
Native plant species richness - forbs		29	31	106.9	5	34.0	117.2	5	112.1	İ
Tree canopy height		20	15	75.0	5	18.0	90.0	5	82.5	i
Tree subcanopy height		8	8	100.0	5	10.0	125.0	5	112.5	•
Tree canopy height (average of emergent, canopy, sub-canopy)		14	11.5	82.1	5	14.0	100.0	5	91.1	i
Tree canopy cover (EDL)		41	44.1	107.6	5	83.0	202.4	3	155.0	l
Subcanopy cover		17	17.5	102.9	5	1.0	5.9	2	54.4	
Tree canopy cover (average of emergent, canopy, sub-canopy)		29	30.8	106.2	5	42.0	144.8	5	125.5	
Shrub canopy cover		4	0	0.0	5	0.0	0.0	5	0.0	
Native grass cover		45	22	48.9	3	27.2	60.4	5	54.7	
Organic litter		21	3.4	16.2	5	6.2	29.5	5	22.9	
Number of large trees (ha)		33	10	30.3	10	14.0	42.4	10	36.4	1
Coarse woody debris (m/ha)		336	18	5.4	9	170.0	50.6	5	28.0	
Non-native plant cover		(40		5	15.0		5	27.5	
Quality and availability of food and foraging habitat: Koala			-		10			10	1	
Quality and availability of shelter: Koala				i	10			10	1	1
,					•					
Site Condition Score				ļ	85.5			87.5		87.5
MAX Site Condition Score				į	100			100		100
				ļ				•		
Site Condition Score - out of 3				ł	2.57			2.63		2.63
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)										
Koala habitat (foraging/breeding/dispersal)				>200	10		>200	10	>200	1
Connectivity									1	•
Foraging/breeding habitat				97.73	į		97.73	į	97.73	į
Dispersal habitat				2.27			2.27		2.27	
Context				İ	i			İ		i
Foraging/breeding habitat				86.26	l		87.48	!	86.87	•
Dispersal habitat				13.74	5		15.52	5	14.63	İ
Ecological Corridors					C			0		
Role of site location to species overall population in the state					1			1		
Absence of threats					11			11	l	1
Species mobility capacity				į	10			10	1	1
				ļ	į			ļ		į
Site Context Score					42			42		42
MAX Site Context Score					56			56		56
Site Context Score - out of 3				i	2.25			2.25		2.25

			Tabooba	AU 1 - RE12.8.16	Remnant		
	AU Koala density	Site 472-473			Site 474-475		
Species Stocking Rate (SSR)	0.25		Score			Score	Average Score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)			10			10	10
Species usage of the site (habitat type & evidenced usage)		i	15			15	1
Approximate density (per ha)	0.25		30			30	30
Role/importance of species population on site*		į	10			10	10
Total SRR score (out of 70)		l	65			65	65
Max SRR Score			70			70	70
SRR Score (out of 4		ł	3.71			3.71	3.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	AU6 RE12.3.20 Non-	Average/ Final
Site Condition score (out of 3)	2.63	2.55	2.33	2.34	2.34	2.70	2.40	2.70	2.50
Site Context Score (out of 3)	2.25	2.20	2.17	2.20	2.22	1.77	2.65	1.93	2.16
Species Stocking Rate Score (out of 4)	3.71	3.71	2.57	3.71	3.71	3.71	3.71	2.00	3.31
Habitat Quality score (out of 10)	8.59	8.46	7.07	8.25	8.28	8.18	8.77	6.63	7.95
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES	358.69								
Size Weighting	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	8.59	0.00	0.00	0.00	0.00	0.0	0.0	0.0	8.59

TABOOBA AU2 RE 12.8.16 ADVANCED REGROWTH START QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem										Tabooba AU2	- RE 12.8.16 Adv	ance	ed Regrowth							
Site Reference	Benchmark			Site 470-471				Site 61	13-684			s	Site 685-686				Site 734-735		Average %	Average Score
	12.8.16		Raw Data	% Benchmark	S	Score	Raw Data	% Bench	mark	Score	Raw Data	% E	Benchmark	Score	Raw Data		% Benchmark	Score	benchmark	
Site Condition																				
Recruitment of woody perennial species in EDL	1	100	100	1	0.00	5	10	0	100.0		9	ю	50.0		3	100	100	.0	5 87.5	
Native plant species richness - trees		7			42.9	2.5		9	71.4	2.5	i	5	71.4	2	-5	6	85	.7 2.	5 67.9	
Native plant species richness - shrubs		7			71.4	2.5		3	42.9	2.5		4	57.1	2	.5	1	14	3	0 46.4	
Native plant species richness - grasses		7) 1	28.6	5		8	114.3			3	42.9	2	.5	5	71	.4 2.	5 89.3	' :
Native plant species richness - forbs		29	25	1 1	00.00	5	3	2	110.3		1	5	51.7	2		18	62	.1 2	5 81.0	1 :
Tree canopy height		20	10		50.0	3	1	Б	80.0			в	40.0		3	10	50	.0	3 55.0	
Tree subcanopy height		8			62.5	3		8	100.0			3	37.5		3	4	50		3 62.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		14	7.5		53.6	3	1	2	85.7		5.5	5	39.3		3	7.0	50	.o	3 57.1	
Tree canopy cover (EDL)		41	23.5		57.3	-	43.		106.1		-	1	7.3		0	35			5 64.0	
Subcanopy cover		17			35.3	-	-		41.2			1	17.6		2	11.5	67		5 40.4	
Tree canopy cover (average of emergent, canopy, sub-canopy)		70	14.8		50.9		25.	2	87.1		31	a	10.3		2	23.3	80		5 57.1	
Shrub canopy cover		~	15		37.5	3	43.		112.5			7	0.0		2	19	475		3 156.3	
Native grass cover			3.2		7.1	1	-	1	95.6		1 .	1	135.6		_	2.8			0 61.1	
Organic litter		40	10.8		51.4	9	4	1	23.8			"]	9.5		3	0.8			0 22.1	
		21				5		Ħ			1	4			U .					ļ
Number of large trees/ha		33 336	175		24.2 52.1	5	17		36.4 52.7		1	2	36.4 28.0		5	6	18		5 28.8	
Coarse woody debris (m/ha)		336	175	1	52.1	5	17	1	52.7		9	4	28.0		2	79	23	.5	2 39.1	
Non-native plant cover		q		1		5	2	9			3	IS			10	15			5 23.3	
Quality and availability of food and foraging habitat: Koala						10				10	1				10				5	
Quality and availability of shelter: Koala						5				10	1				1				5	
Site Condition Score						66				78				51				45.5		61.00
MAX Site Condition Score						100				100				100				100		100
					ļ.													-		
Site Condition Score - out of 3						1.98				2.34				1.53				1.37		1.83
Site Context				Value	S	Score		Value		Score		Val	ilue	Score			Value	Score	Average	Average score
Size of patch (ha)												Т								
Koala habitat (foraging/breeding/dispersal)				>	200	10			>200	10			>200				>20	0 10	>200	
Connectivity																				
Foraging/breeding habitat				86	5.09				86.09				86.09				61.6	5	79.98	
Dispersal habitat					3.91	5			13.91				13.91		5		38.3	5	20.02	
Context						-									-		-	-		
Foraging/breeding habitat				os	.77				72.74				70.12				67.4		76.52	
Dispersal habitat					137				27.26				29.88		4		32.5		23.52	
Ecological Corridors	1	_		1		,		 	27.20		-	+	2300		n		323	1	13.32	
Role of site location to species overall population in the state	I			1	- 1			1		1]	1			1			1		l
Absence of threats	1			1		1		1]	1			-				-	
	1			1				1			1	1			.1			1 .	1	
Species mobility capacity						10				10	1				10			1		
Site Context Score	ĺ			İ		37		İ		36		Ĺ		25	i			35		33.25
MAX Site Context Score					- 1	56				56				56				56		56

					Tabooba AU2	RE 12.8.16 Adva	nced Regrowth					
	AU Koala density	Site 470-471		Site 683-684			Site 685-686			Site 734-735		Average Score
Species Stocking Rate (SSR)	0.25		Score		Score			Score			Score	
Presence detected on or adjacent to site (neighbouring property with connecting habitat)			10		10			10			10	2
Species usage of the site (habitat type & evidenced usage)			15		15			15	i		15	1
Approximate density (per ha)	0.04		10		10	İ		10			10	3
Role/importance of species population on site*			5		5			5			5	
Total SRR score (out of 70			40		40			40			40	40
Max SRR Score			70		70			70			70	70
SRR Score (out of 4)			2.29		2.29			2.29			2.29	2.29

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AUS RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non- remnant	Average/ Final
Site Condition score (out of 3)	2.06	1.83	1.63	2.19	2.01	2.24	1.98	0.53	1.81
Site Context Score (out of 3)	2.06	1.78	1.82	2.01	1.96	1.61	2.38	1.61	1.88
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.83	5.90	4.31	7.91	6.54	7.56	6.94	3.85	6.14
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES		145.02							
Size Weighting	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	5.90	0.00	0.00	0.00	0.0	0.0	0.0	5.90

TABOOBA AU2 RE 12.8.16 ADVANCED REGROWTH WITHOUT OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem									Taboo	ba AU	12 - RE 12.8.16 A	dvanced Regrov	rth						
Site Reference	Benchmark 12.8.16		Raw Data	Site 470-4		Score	Raw Data	Site 683-684 % Benchmark	Score	F	Raw Data	Site 685-686 % Benchmark	Score	Raw Data		734-735 nchmark	Score	Average % benchmark	Average Scor
Site Condition										_			-						
Recruitment of woody perennial species in EDL		100	100	0	100.0		10	00 100	.0	3	50	50	.0	3 10	ю	100.0	3	87.5	5
Native plant species richness - trees		7		3	42.9	2.5		5 7	.4	2.5	5	7:	.4 2	2.5	6	85.7	2.5	67.9	9
Native plant species richness - shrubs		7		5	71.4	2.5	i	3 4	.9	2.5	4	57	.1 2	2.5	1	14.3		46.4	1
Native plant species richness - grasses		7	9		128.6	2.5		8 114	.3	2.5	3	42	.9 2	2.5	5	71.4	2.5	89.3	3
Native plant species richness - forbs		29	29	9	100.0	2.5		32 110	.3	2.5	15	5:	.7 2	2.5	.8	62.1	2.5	81.0	
Tree canopy height		20	10	D	50.0		:	16 8		3	8	40		3 1	.0	50.0		55.0	
Tree subcanopy height		8		5	62.5			8 100	.0	3	3	37	.5	3	4	50.0	3	62.5	5
Free canopy height (average of emergent, canopy, sub-canopy)		14	7.5	5	53.6		:	12 8	.7	3	5.5	39	.3	3 7	.0	50.0	3	57.1	
Tree canopy cover (EDL)		41	23.5	5	57.3		43			5	3			o 3		85.4	. 5	64.0	
Subcanopy cover		17		6	35.3		4	7 4		2	3	17		2 11		67.6		40.4	1
Tree canopy cover (average of emergent, canopy, sub-canopy)		29	14.8	В	50.9		25	.3 8	.1	5	3.0	10	.3	2 23	.3	80.2		57.1	
Shrub canopy cover		4	1.5	5	37.5		4	5 112	.5	C	0		LO	Q 1	9	475.0	(156.3	
Native grass cover		45	3.3	2	7.1			13 9:	.6	5	61	135	.6	5 2	.8	6.2		61.1	
Organic litter		21	10.8	В	51.4			9 2	.8	3	2		.5	d d	.8	3.8		22.1	L.
Number of large trees (ha)		33	1	8	24.2			12 3	.4	5	12	36	.4	5	6	18.2		28.8	3
Coarse woody debris (m/ha)		336	179	5	52.1		1	77 5:	.7	5	94	28	.0	2 3	9	23.5		39.1	d
Non-native plant cover		d		s				20		3	35			3 1	5		3	18.8	
Quality and availability of food and foraging habitat: Koala						10	1			10				10			5		
Quality and availability of shelter: Koala							i			10				1			5		
Site Condition Score						49			62				44				38.5		49.00
MAX Site Condition Score						100			100				100				100		100
Site Condition Score - out of 3						1.47			1.86				1.32				1.16		1.47
Site Context				Value		Score		Value	Score			Value	Score		Value		Score	Average	Average score
Size of patch (ha)				1									1		1		1		
Koala habitat (foraging/breeding/dispersal)				>200		10)	>200		10		>200			>200		10	>200	
Connectivity																			
Foraging/breeding habitat					86.1			8				86				61.6	i	80.0	
Dispersal habitat					13.9			1	.9	5		13	.9	5		38.4	4	20.0	9
Context																			
Foraging/breeding habitat					95.8			7.				70				67.4		76.5	
Dispersal habitat					4.4		i i	2	.3	4		25	.9	4		32.6	4	23.5	5
Ecological Corridors						-				О				q					
Role of site location to species overall population in the state	1						4	1		1		l	1	1	1		1		
Absence of threats	1			1			•	1		5		l		5	1		5		
Species mobility capacity						10				10			:	10			10		
Site Context Score						36			35				25				34		32.5
MAX Site Context Score						56			56				56				56		56
Site Context Score - out of 3						1.93			1.88				1.34				1.82		1.74

					Tabooba A	U2 - RE 12.8.16 A	dvanced Regrowti	h			
	AU Koala density	Site 470-471		Site 683-684			Site 685-686		Site 734-735		
Species Stocking Rate (SSR)	0.25		Score		Score			Score		Score	Average Score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)			1		10			10		10	10
Species usage of the site (habitat type & evidenced usage)	1		1		15			15		15	1
Approximate density (per ha)	0.04		1		10			10		10	10
Role/importance of species population on site*					5			5		5	
Total SRR score (out of 70)			40		40			40		40	40
Max SRR Score			70		70			70		70	70
SRR Score (out of 4			2.29		2.29			2.29		2.29	2.29

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	AU4 RE12.8.14 Remnant	AU5 RE12.8.14 Advanced	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 3)	2.21	1.47	0.60	2.19	1.55	2.19	1.98	0.53	1.59
Site Context Score (out of 3)	2.04	1.74	1.79	1.98	1.90	1.61	2.33	1.61	1.85
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.96	5.50	3.25	7.89	6.02	7.51	6.88	3.85	5.84
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES		145.02							
Size Weighting	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	5.50	0.00	0.00	0.00	0.0	0.0	0.0	5.50

TABOOBA AU2 RE 12.8.16 ADVANCED REGROWTH WITH OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem							Tabooba A	U2 - RE 12.8.16	Advanced Regro	wth					
Site Reference	Benchmark 12.8.16	Raw Data	Site 470-471 % Benchmark	Score	Raw Data	Site 683-684 % Benchmark	Score	Raw Data	Site 685-686 % Benchmark	Score	Raw Data	Site 734-735 % Benchmark	Score	Average % benchmark	Average Scor
Site Condition															
Recruitment of woody perennial species in EDL	10	0 10	100.0	9	5 10	100.0			50 50	d	10	100	d	87.	
Native plant species richness - trees		7	3 42.9	2.	5	71.4	2.		. 71	. 2.	9	(85	.7 2.	67.	
Native plant species richness - shrubs		7	5 71.4	2	5	42.5	2.	9	57	2.	9	14	4	46.4	l
Native plant species richness - grasses		7	9 128.6	5	5 :	114.			42	2.		71	4 2	89.3	
Native plant species richness - forbs	2	9 2	9 100.0	ď	5 3.	110.3			15 51	. 2.		18 62	.1 2.	81.	·
Tree canopy height	2	0 1			5 1	80.			40			10 50		55.0	
Tree subcanopy height		8	5 62.5			100.0			37	ļ		50		62	
Tree canopy height (average of emergent, canopy, sub-canopy)	1	4 7.	5 53.6		9 1	85.	5.	5	i.5 39		. 7	u 50	d :	57.:	
Tree canopy cover (EDL)	4	1 23.	5 57.3	3	9 43.				. 7			35 85	2	64.	
Subcanopy cover	1	7				41.			1 17		11			40.	
Tree canopy cover (average of emergent, canopy, sub-canopy)		9 14.			25.				3.0 10		23			57.	
Shrub canopy cover	-	4 1			5 4			-	(0			15 475		156.3	
Native grass cover		5 3.			4				61 135			1.1		61.	
Organic litter		1 10.				5 23.8			; 9			LE 3		22.	
Number of large trees (ha)	2		8 24.2		1				12 36		,	(18		28.	
	-							1							
Coarse woody debris (m/ha)	33	6 17		4	5 17					4		79 23		39.:	
Non-native plant cover		q	5		21)		1	35			15		18.	
Quality and availability of food and foraging habitat: Koala				1	u u		1			1	C.		1		
Quality and availability of shelter: Koala					9		1			1	9		1		
Site Condition Score				78	İ		85		1	80	İ		75.5		85.00
MAX Site Condition Score				100			100			100			100		100
Site Condition Score - out of 3				2.34			2.55			2.40			2.27		2.55
Site Condition Score - out of 3 Site Context			Value			Value	Score		Value			Value	Score 2.27	Average	2.55 Average score
Size of patch (ha)			value	Score		value	score		value	Score		value	Score	Average	Average score
			>200			>200			>20			>20		>200	
Koala habitat (foraging/breeding/dispersal)			>200	10	,	>200	10	1	>200	10	9	>20	10	>200	1
Connectivity															
Foraging/breeding habitat			86.09			86.09			86.0			61.6		79.98	
Dispersal habitat			13.91	1	5	13.91	-		13.9		5	38.3	5 4	20.02	i
Context															
Foraging/breeding habitat			95.77	1		72.74			70.1			67.4		76.52	
Dispersal habitat			4.37		5	27.26	4		29.8	3 4	4	32.5	5 4	23.52	
Ecological Corridors					d			4			9				
Role of site location to species overall population in the state					1			1			1				
Absence of threats				1	1		1			1			1		
Species mobility capacity				1	a		1			1	d		1		
Site Context Score				42			41			41			40		41
MAX Site Context Score				56			56			56			56		56
Site Context Score - out of 3				2.25			2.20			2.20			2.14		2,20

					Tabooba Al	J2 - RE 12.8.16 A	dvanced Regro	wth			
	AU Koala density	Site 470-471		Site 683-684			Site 685-686		Site 734-735		Average Score
Species Stocking Rate (SSR)	0.25		Score		Score			Score		Score	
Presence detected on or adjacent to site (neighbouring property with											
connecting habitat)			10		10			10		1	1
Species usage of the site (habitat type & evidenced usage)			15		15			15		1	1
Approximate density (per ha)	0.04		30		30			30		3	3
Role/importance of species population on site*			10		10			10		1	1
Total SRR score (out of 70)			65		65			65		65	65
Max SRR Score			70		70			70		70	70
SRR Score (out of 4)			3.71		3.71			3.71		3.71	3.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	AU6 RE12.3.20 Non-	Average/ Final
Site Condition score (out of 3)	2.63	2.55	2.33	2.34	2.34	2.70	2.40	2.70	2.50
Site Context Score (out of 3)	2.25	2.20	2.17	2.20	2.22	1.77	2.65	1.93	2.16
Species Stocking Rate Score (out of 4)	3.71	3.71	2.57	3.71	3.71	3.71	3.71	2.00	3.31
Habitat Quality score (out of 10)	8.59	8.46	7.07	8.25	8.28	8.18	8.77	6.63	7.95
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES		145.02							
Size Weighting	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	8.46	0.00	0.00	0.00	0.0	0.0	0.0	8.46

TABOOBA AU3 RE 12.8.16 YOUNG REGROWTH START QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem				Tabooba /	AU3 - RE 12.8.16 Y	oung Regrowth			
Site Reference	Benchmark		Site 687-688			Site 756-757		Average %	
	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition									
Recruitment of woody perennial species in EDL	10	66.7	66.7	1 :	100	100.0		83.4	4
Native plant species richness - trees		:	71.4	2.5		71.4	2.5	71.4	2.5
Native plant species richness - shrubs			57.1	2.5		42.9	2.5	50.0	2.5
Native plant species richness - grasses		1 :	100.0		8	114.3		107.1	9
Native plant species richness - forbs	2	17	58.6	2.5	27	93.1		75.9	3.79
Tree canopy height	2	15	75.0	i :		40.0	i i	57.5	4
Tree subcanopy height		8 !	62.5		4 3	37.5		50.0	3
Tree canopy height (average of emergent, canopy, sub-canopy)	1	10	68.8	d :	5.5	39.3	4	54.0	3
Tree canopy cover (EDL)	4	2	68.3	i 9	28	68.3		68.3	9
Subcanopy cover	1		41.2		3.9			30.9	2
Tree canopy cover (average of emergent, canopy, sub-canopy)	2	17.5	54.7		15.75	44.4	i i	49.6	3.5
Shrub canopy cover		4 (0.0		d	0.0		0.0	(
Native grass cover	4	6	140.0		2	4.4		72.2	2.5
Organic litter	2		4.8		3.8	18.1	,	11.4	1.5
Number of large trees/ha	3		6.1					6.1	
Coarse woody debris (m/ha)	33	27	82.4		61			50.3	3.5
Non-native plant cover		30		10	10				7.5
Quality and availability of food and foraging habitat: Koala			i					l :	
Quality and availability of shelter: Koala			ł	1 9		•		:	
,			l .	1			!		
Site Condition Score		Ì		58.5			50		54.25
MAX Site Condition Score			i	100			100		100
			i						
Site Condition Score - out of 3			i	1.76			1.50		1.63
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)							l		
Koala habitat (foraging/breeding/dispersal)			>200	10		>200	10	>200	10
Connectivity	1	I	i	i	1	i	i	l i	
Foraging/breeding habitat			51.60	į.		70.95		61.3	
Dispersal habitat			48.40	4	1	29.05		38.7	4
Context			!	!		•	!	!	
Foraging/breeding habitat			79.74	l.		64.89	4	72.3	
Dispersal habitat			20.26			35.11		27.7	4
Ecological Corridors			ł	((
Role of site location to species overall population in the state	1	I	l	1	1				1
Absence of threats			l	4	4	1	1	l i	9
Species mobility capacity	1	I	l	10	1		10		10
		1	i	i	Į į				
Site Context Score			ì	34			34		34
MAX Site Context Score				56			56		56
Site Context Score - out of 3				1.82			1.82	1	1.82

				AU3 -	RE 12.8.16 Young	Regrowth		
	AU Koala density Site 687-688			Site 756-757				
Species Stocking Rate (SSR)	0.5			Score			Score	Average Score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)				10			10	10
Species usage of the site (habitat type & evidenced usage)				5				5
Approximate density (per ha)				0	l		(C C
Role/importance of species population on site*				0	İ		(O.
Total SRR score (out of 70)				15	Ì		15	15
Max SRR Score			•	70			70	70
SRR Score (out of 4				0.86			0.86	0.86

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non- remnant	Average/ Final
Site Condition score (out of 3)	2.06	1.83	1.63	2.19	2.01	2.24	1.98	0.53	1.81
Site Context Score (out of 3)	2.06	1.78	1.82	2.01	1.96	1.61	2.38	1.61	1.88
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.83	5.90	4.31	7.91	6.54	7.56	6.94	3.85	6.14
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.83
Total offset area (ha) for this MNES			48.10						
Size Weighting	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	4.31	0.00	0.00	0.0	0.0	0.0	4.31

TABOOBA AU3 RE 12.8.16 YOUNG REGROWTH WITHOUT OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem				Tabooba	AU3 - RE 12.8.16 Y	oung Regrowth			
Site Reference	Benchmark		Site 687-688			Site 756-757		Average %	
	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition			i			i			
Recruitment of woody perennial species in EDL	10	00 66.			100			83.4	
Native plant species richness - trees		7	9 71.4			71.		71.4	2.
Native plant species richness - shrubs		7	57.:		9	42.	2.5	50.0	2.
Native plant species richness - grasses		7	100.		9	114.	2.5	107.1	2.
Native plant species richness - forbs	2		58.6	2.	2	93.	2.5	75.9	2.
Tree canopy height	2	20 1	75.0		d :	40.		57.5	
Tree subcanopy height		8	62.5		¢ :	37.		50.0	
Tree canopy height (average of emergent, canopy, sub-canopy)	1	14 1	71.4		5.5	39.		55.4	
Tree canopy cover (EDL)	4	11 2	68.3		21	68.		68.3	
Subcanopy cover	1	17	41.3		3.5	20.		30.9	
Tree canopy cover (average of emergent, canopy, sub-canopy)	2	17.	60.3		15.75	54.		57.3	
Shrub canopy cover		4	0.		d	0.		0.0	
Native grass cover	4	15 6	140.	j	d :	4.		72.2	
Organic litter	2	21	1 4.		3.1	18.		11.4	
Number of large trees (ha)		33	6.		d	12.		9.1	
Coarse woody debris (m/ha)	33				6:	18.		50.3	
Non-native plant cover		d a	3		10	1			
Quality and availability of food and foraging habitat: Koala		1] -		-	_			
Quality and availability of shelter: Koala			İ			!			
			į	İ		į			
Site Condition Score				20		!	20		20
MAX Site Condition Score			į	100		ŀ	100		100
			į			ļ		i i	
Site Condition Score - out of 3				0.60			0.60		0.60
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)									
Koala habitat (foraging/breeding/dispersal)			>200	10)	>200	10	>200	10
Connectivity			1	1		1			
Foraging/breeding habitat			51.60	l		70.95		61.3	
Dispersal habitat			48.40		1	29.05		38.7	
Context			!						
Foraging/breeding habitat			79.74	i		64.89		72.3	
Dispersal habitat			20.26		5	35.11		27.7	
Ecological Corridors		1	 						
Role of site location to species overall population in the state			İ		1	ŀ			
Absence of threats			1	!	1	ļ			
Species mobility capacity		1	i	1	a l	i	10		1
openes mountly capacity	1		1	, ,			, ,		1
Site Context Score			1	34			33		33.5
MAX Site Context Score			ŀ	56		ł	56		56
Site Context Score - out of 3				1.82			1.77		1.79

				Tabooba A	U3 - RE 12.8.16 Y	oung Regrowth			
	AU Koala density	Koala density Site 687-688				Site 756-757			
Species Stocking Rate (SSR)	0.5			Score	Score				Average Score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)				10			10		10
Species usage of the site (habitat type & evidenced usage)				5			5		!
Approximate density (per ha)	(•	0			((
Role/importance of species population on site*				0			((
Total SRR score (out of 70) Max SRR Score SRR Score (out of 4				15 <i>70</i> 0.86			15 70 0.86		15 70 0.86

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	AU5 RE12.8.14 Advanced	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	AU6 RE12.3.20 Non-	Average/ Final
Site Condition score (out of 3)	2.21	1.47	0.60	2.19	1.55	2.19	1.98	0.53	1.59
Site Context Score (out of 3)	2.04	1.74	1.79	1.98	1.90	1.61	2.33	1.61	1.85
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.96	5.50	3.25	7.89	6.02	7.51	6.88	3.85	5.84
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.83
Total offset area (ha) for this MNES			48.10						
Size Weighting	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	3.25	0.00	0.00	0.0	0.0	0.0	3.25

TABOOBA AU3 RE 12.8.16 YOUNG REGROWTH WITH OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem					Tabooba A	AU3 - RE 12.8.16 Y	oung Regrowth			
Site Reference	Benchmark			Site 687-688			Site 756-757		Average %	
	12.8.16	Raw	Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition									i	
Recruitment of woody perennial species in EDL	1	.00	66.7	66.7	3	100	100.0		83.4	
Native plant species richness - trees		7		71.4			71.4	2.5	71.4	2
Native plant species richness - shrubs		7	4	57.1	2.5	3	42.9	2.5	50.0	2
Native plant species richness - grasses		7		100.0		8	114.3		107.1	
Native plant species richness - forbs		29	17	58.6		27	93.1		75.9	2
Tree canopy height		20	15			8	40.0		57.5	
Tree subcanopy height		8		62.5	3	3	37.5		50.0	
Tree canopy height (average of emergent, canopy, sub-canopy)		14	10	71.4		5.5	39.3	5.0	55.4	
Tree canopy cover (EDL)		41	28	68.3		28	68.3		68.3	
Subcanopy cover		17		41.2	1	3.5	20.6		30.9	
Tree canopy cover (average of emergent, canopy, sub-canopy)		29	17.5	60.3		15.75	54.3	5.0	57.3	
Shrub canopy cover		4	(0.0		C	0.0		0.0	
Native grass cover		45	63	140.0		2	4.4		72.2	
Organic litter		21	:	4.8		3.8	18.1		11.4	
Number of large trees (ha)		33		6.1		4	12.1		9.1	
Coarse woody debris (m/ha)	3	36	277	82.4		61	18.2	:	50.3	
Non-native plant cover		o	30	30	į.	10	10	10	20.0	
Quality and availability of food and foraging habitat: Koala				•	10		ļ	10		1
Quality and availability of shelter: Koala				i	10		İ			1
				<u> </u>			!	ļ .	l f	
Site Condition Score					73.5		ŀ	75		77.5
MAX Site Condition Score				•	100		ļ	100		100
				į			ļ	ļ		
Site Condition Score - out of 3				•	2.21		!	2.25	1	2.33
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)										
Koala habitat (foraging/breeding/dispersal)				>200	10)	>200	10	>200	1
Connectivity				!			!		!	
Foraging/breeding habitat				51.60			70.95	į	61.3	
Dispersal habitat				48.40	4		29.05	4	38.7	
Context				i			ŀ			
Foraging/breeding habitat				79.74			64.89	(72.3	
Dispersal habitat				20.26		i	35.11	4	27.7	
Ecological Corridors					(
Role of site location to species overall population in the state				•	1	l	:	:	l i	
Absence of threats				į	11		į	11	i	1
Species mobility capacity				•	10	i	!	10		1
				i			İ	•		
Site Context Score					41		1	40	1	40.5
MAX Site Context Score					56		İ	56	į	56
Site Context Score - out of 3				!	2.20		!	2.14		2.17

			Tabooba A	U3 - RE 12.8.16 Yo	oung Regrowth		
	AU Koala density	Site 687-688			Site 756-757		
Species Stocking Rate (SSR)	0.5		Score			Score	Average Score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)			10			10	10
Species usage of the site (habitat type & evidenced usage) Approximate density (per ha)	(15 10			15 10	15 10
Role/importance of species population on site*	1		10			10	10
Total SRR score (out of 70) Max SRR Score			45 70			45 70	45 70
SRR Score (out of 4			2.57			2.57	2.57

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	AU6 RE12.3.20 Non-	Average/ Final
Site Condition score (out of 3)	2.63	2.55	2.33	2.34	2.34	2.70	2.40	2.70	2.50
Site Context Score (out of 3)	2.25	2.20	2.17	2.20	2.22	1.77	2.65	1.93	2.16
Species Stocking Rate Score (out of 4) Habitat Quality score (out of 10)	3.71 8.59	3.71 8.46		3.71 8.25	3.71 8.28		3.71 <i>8.77</i>	2.00 6.63	3.31 7.95
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.83
Total offset area (ha) for this MNES			48.10						
Size Weighting	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	7.07	0.00	0.00	0.0	0.0	0.0	7.07

TABOOBA AU4 RE 12.8.14 REMNANT START QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem					Tabooba	AU4 - RE 12.8.14	Remnant			
Site Reference	Benchmark			Site 680-681			Site 747-748		Average %	Average Score
	12.8.14		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	
Site Condition					ļ			ļ		
Recruitment of woody perennial species in EDL		100	100	100.0		66.7	66.7	1	83.4	
Native plant species richness - trees		6	8	133.3	!	g	150.0		141.7	
Native plant species richness - shrubs		6	7	116.7	!	4	66.7	2.5	91.7	
Native plant species richness - grasses		8	9	112.5		10	125.0		118.8	
Native plant species richness - forbs		21	26	123.8		46	219.0		171.4	
Tree canopy height		22	18	81.8		15	68.2		75.0	
Tree subcanopy height		11	10	90.9		9	45.5	1 :	68.2	
Tree canopy height (average of emergent, canopy, sub-canopy)		16.5	14	84.8		10	60.6	İ	72.7	
Tree canopy cover (EDL)		16	35	218.8		27	168.8		193.8	
Subcanopy cover	1	15	14	93.3		d	0.0	(46.7	
Tree canopy cover (average of emergent, canopy, sub-canopy)		15.5	24.5			13.5	87.1		122.6	
Shrub canopy cover		4	3	75.0			25.0		50.0	
Native grass cover		58	47	81.0		12	20.7		50.9	
Organic litter		30	9	16.7		13	43.3		30.0	
Number of large trees/ha		45	22	48.9		e	13.3		31.1	
Coarse woody debris (m/ha)		336	128				1.5		19.8	
Non-native plant cover		0	10		!	35		10	22.5	
Quality and availability of food and foraging habitat: Koala					10			10		1
Quality and availability of shelter: Koala								-		_
					į			į		
Site Condition Score					73			65.5		73
MAX Site Condition Score					100			100		100
Site Condition Score - out of 3					2.19			ł		2.19
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)										
Koala habitat (foraging/breeding/dispersal)				>200	10	1	>200	10	>200	1
Connectivity										
Foraging/breeding habitat				75.23	l		100.0	l	87.6	
Dispersal habitat				24.77			0.0		12.4	
Context										
Foraging/breeding habitat				56.63	ł		74.26	l	65.4	
Dispersal habitat				43.47			25.74		34.6	
Ecological Corridors								(
Role of site location to species overall population in the state								1		
Absence of threats								1		1
Species mobility capacity					10			10		1
								_		_
Site Context Score					38			37		37.5
MAX Site Context Score					56			56		56
Site Context Score - out of 3					2.04			1.98		2.01

_							•
			Tabooba	AU4 - RE 12.8.14	Remnant		
	AU Koala density	Site 680-681			Site 747-748		Average Score
Species Stocking Rate (SSR)	0.23		Score			Score	
Presence detected on or adjacent to site (neighbouring property with							
connecting habitat)		į	10			10	40
Species usage of the site (habitat type & evidenced usage)		į.	10			10	10
Approximate density (per ha)	0.23	İ	20	1		20	20
Role/importance of species population on site*	0.23		10	1		10	10
Total SRR score (out of 70	ĺ	ł	65			65	65
Max SRR Score		İ	70			70	70
SRR Score (out of 4		}	3.71			3.71	3.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non- remnant	Average/ Fina
Site Condition score (out of 3)	2.06	1.83	1.63	2.19	2.01	2.24	1.98	0.53	1.81
Site Context Score (out of 3)	2.06	1.78	1.82	2.01	1.96	1.61	2.38	1.61	1.88
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.83	5.90	4.31	7.91	6.54	7.56	6.94	3.85	6.14
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.83
Total offset area (ha) for this MNES				50.62					
Size Weighting	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	7.91	0.00	0.0	0.0	0.0	7.91

TABOOBA AU4 RE 12.8.14 REMNANT WITHOUT OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem					Taboo	ba AU4 - RE 12.8.	14 Remnant			
Site Reference	Benchmark			Site 680-681			Site 747-748		Average %	Average Score
	12.8.14		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	
Site Condition					}		}	ļ		
Recruitment of woody perennial species in EDL	:	100	100	100.0	!	66.7	66.		83.4	
Native plant species richness - trees		6	8	133.3	!	9	150.0		141.7	
Native plant species richness - shrubs		6	7	116.7	·	4	66.	2.	91.7	
Native plant species richness - grasses		8	9	112.5	!	10	125.0	1	118.8	
Native plant species richness - forbs		21	26	123.8		46	219.0		171.4	
Tree canopy height		22	18	81.8		15	68.3		75.0	
Tree subcanopy height		11	10	90.9	(9	45.		68.2	
Tree canopy height (average of emergent, canopy, sub-canopy)	1	16.5	14	84.8	!	10	60.0		72.7	
Tree canopy cover (EDL)		16	35	218.8	:	27	168.8		193.8	
Subcanopy cover		15	14	93.3	!		0.0	4	46.7	
Tree canopy cover (average of emergent, canopy, sub-canopy)	1	15.5	24.5	158.1		13.5	87.:	9	122.6	
Shrub canopy cover		4	3	75.0	(1	25.0	4	50.0	
Native grass cover		58	47	81.0	! :	12	20.	į :	50.9	
Organic litter		30	5	16.7	:	13	43.3		30.0	
Number of large trees (ha)		45	22	48.9	(13.3		31.1	
Coarse woody debris (m/ha)		336	128	38.1			1.5		19.8	
Non-native plant cover		0	10		!	35		10	22.5	
Quality and availability of food and foraging habitat: Koala					10	1	ļ	10		
Quality and availability of shelter: Koala							ļ			
					į		į	i		
Site Condition Score					73			65.5		73
MAX Site Condition Score					100		ļ	100	1	100
					į		i			
Site Condition Score - out of 3					2.19		į	İ		2.19
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)										
Koala habitat (foraging/breeding/dispersal)				>200	10	1	>200	1	>200	
Connectivity										
Foraging/breeding habitat				75.23			100.0	1	87.6	
Dispersal habitat				24.77			0.0		12.4	
Context										
Foraging/breeding habitat				56.63			74.26		65.4	
Dispersal habitat				43.47		4	25.74		34.6	
Ecological Corridors										
Role of site location to species overall population in the state										
Absence of threats							l			
Species mobility capacity					10	d	l	10		
are a company					1			1		
Site Context Score					37			37		37
MAX Site Context Score					56			56		56
Site Context Score - out of 3					1.98			1.98		1.98

			Tabool	ba AU4 - RE 12.8.1	4 Remnant		
	AU Koala density	Site 680-681			Site 747-748		Average Score
Species Stocking Rate (SSR)	0.23		Score			Score	Average score
Presence detected on or adjacent to site (neighbouring property with connecting habitat) Species usage of the site (habitat type & evidenced usage) Approximate density (per ha) Role/importance of species population on site*	0.23		10 15 30			10 15 30	1) 1' 3)
Total SRR score (out of 70) Max SRR Score SRR Score (out of 40)			65 70 3.71			65 70 3.71	65 70 3.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	AU5 RE12.8.14 Advanced	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	AU6 RE12.3.20 Non-	Average/ Final
Site Condition score (out of 3)	2.21	1.47	0.60	2.19	1.55	2.19	1.98	0.53	1.59
Site Context Score (out of 3)	2.04	1.74	1.79	1.98	1.90	1.61	2.33	1.61	1.85
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.96	5.50	3.25	7.89	6.02	7.51	6.88	3.85	5.84
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.83
Total offset area (ha) for this MNES				50.62					
Size Weighting	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	7.89	0.00	0.0	0.0	0.0	7.89

TABOOBA AU4 RE 12.8.14 REMNANT WITH OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem					Tabooba /	AU4 - RE 12.8.14	Remnant			
Site Reference	Benchmark			Site 680-681			Site 747-748		Average %	
	12.8.14	ĺ	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition					ł					İ
Recruitment of woody perennial species in EDL		100	100	100.0		66.7	66.7		83.4	į.
Native plant species richness - trees		6	8	133.3		\$ 9	150.0		141.7	į.
Native plant species richness - shrubs		6	7	116.7		9 4	66.7		91.7	į.
Native plant species richness - grasses		8	9	112.5		10	125.0		118.8	
Native plant species richness - forbs		21	26	123.8		46	219.0		171.4	i
Tree canopy height		22				15	68.2		75.0	į
Tree subcanopy height		11	18 10	90.9					68.2	
Tree canopy height (average of emergent, canopy, sub-canopy)		16.5	14	84.8		10	60.6		72.7	
Tree canopy cover (EDL)		16	35			27			193.8	
Subcanopy cover		15	14				0.0		46.7	
Tree canopy cover (average of emergent, canopy, sub-canopy)		15.5	24.5			13.5			122.6	
Shrub canopy cover		4	3			1	25.0		50.0	
Native grass cover		58	47			12			50.9	
Organic litter		30		16.		13			30.0	
Number of large trees (ha)		45	5 22	48.5	10		13.3		31.1	
Coarse woody debris (m/ha)		336	128	38.1			1.5		19.8	
Non-native plant cover		330	10			35			22.5	
Quality and availability of food and foraging habitat: Koala		٩	10		10		1	10	22	
Quality and availability of shelter: Koala					100]	İ	10		
Quality and availability of shelter. Roals					·	1		10	1	•
Site Condition Score					83			83		78
MAX Site Condition Score					100			100		100
Site Condition Score - out of 3					2.49					2.34
Site Context		-		Value	Score		Value	C		
		_		value	score		value	Score	Average	Average Score
Size of patch (ha)										
Koala habitat (foraging/breeding/dispersal)				>200	10	1	>200	10	>200	1
Connectivity				75.00			400			
Foraging/breeding habitat Dispersal habitat				75.23 24.77			100.0	,	87.6 12.4	1
•				24.7	1	1	0.0	-	12.4	1
Context				56.63			74.04			
Foraging/breeding habitat				43.47			74.26 25.74		65.4 34.6	1
Dispersal habitat		_		43.4	4		25.74	- 4	34.0	
Ecological Corridors										
Role of site location to species overall population in the state					1	1		1		
Absence of threats					11			11		1
Species mobility capacity					10	1		10	i	1
Site Context Score					41			41		41
MAX Site Context Score					56			56		56
Site Context Score - out of 3					2.20			2.20		2.20

			Tabooba A	AU4 - RE 12.8.14 I	Remnant		
	AU Koala density	Site 680-681			Site 747-748		
Species Stocking Rate (SSR)	0.23		Score			Score	Average Score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)			10			10	10
Species usage of the site (habitat type & evidenced usage)		ŀ	15			15	15
Approximate density (per ha)	0.23	l	30			30	30
Role/importance of species population on site*			10			10	10
Total SRR score (out of 70)		}	65			65	65
Max SRR Score		į	70			70	70
SRR Score (out of 4		ļ	3.71			3.71	3.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	AU6 RE12.3.20 Non-	Average/ Final
Site Condition score (out of 3)	2.63	2.55	2.33	2.34	2.34	2.70	2.40	2.70	2.50
Site Context Score (out of 3)	2.25	2.20	2.17	2.20	2.22	1.77	2.65	1.93	2.16
Species Stocking Rate Score (out of 4)	3.71	3.71	2.57	3.71	3.71	3.71	3.71	2.00	3.31
Habitat Quality score (out of 10)	8.59	8.46	7.07	8.25	8.28	8.18	8.77	6.63	7.95
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.83
Total offset area (ha) for this MNES				50.62					
Size Weighting	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	8.25	0.00	0.0	0.0	0.0	8.25

TABOOBA AU5 RE 12.8.14 ADVANCED REGROWTH START QUALITY FOR KOALA

START SCORE: 7

Assessment Unit - Regional Ecosystem					Tabooba AU5	- 12.8.14 Advan	ced Regrowth			
Site Reference	Benchmark			Site 736-737			Site 751-752		Average %	Average Score
	12.8.14		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average score
Site Condition					i					
Recruitment of woody perennial species in EDL		100	100	100.0		100	100.0		100.0	
Native plant species richness - trees		6	8	133.3		8	133.3		133.3	
Native plant species richness - shrubs		6	9	150.0	ė :	9	116.7		133.3	
Native plant species richness - grasses		8	9	112.5		g	112.5		112.5	
Native plant species richness - forbs		21	27	128.6	i :	48	228.6		178.6	
Tree canopy height		22	12	54.5		10	45.5		50.0	
Tree subcanopy height		11	6	54.5	i :	9	45.5		50.0	
Tree canopy height (average of emergent, canopy, sub-canopy)		16.5	9	54.5		7.5	45.5		50.0	
Tree canopy cover (EDL)		16	44	275.0	i :	40.5	253.1		264.1	
Subcanopy cover		15		33.3		10.5	70.0		51.7	
Tree canopy cover (average of emergent, canopy, sub-canopy)		15.5	24.5			25.5			161.3	
Shrub canopy cover		4	2				25.0		37.5	
Native grass cover	1	58	29			16			38.8	
Organic litter		30]		:				11.7	
Number of large trees/ha		45	10			1 7			15.6	
Coarse woody debris (m/ha)		336				146			47.9	
Non-native plant cover		330	20]	20			20.0	
Quality and availability of food and foraging habitat: Koala			1		10	1 ~		10	20.0	
Quality and availability of shelter: Koala				ŀ	1 7]				
quanty and dramability of sticker, round				į	i '	1		·		
Site Condition Score				!	71			67		67
MAX Site Condition Score				į	100			100		100
min site condition score				į	100			100		100
Site Condition Score - out of 3								•		2.01
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)										
Koala habitat (foraging/breeding/dispersal)				>200	10		>200	10	>200	
Connectivity										
Foraging/breeding habitat				100.0			100.0		100.0	
Dispersal habitat				0.0			0.0		0.0	
Context					1		-	1	-	
Foraging/breeding habitat				81.39			74.0	l	77.7	
Dispersal habitat				18.69			26.0		22.3	
Ecological Corridors			 			+				
Role of site location to species overall population in the state	1		1	1]		
Absence of threats			l	l						
Species mobility capacity	1		l	l	10			10		
species mounty capacity					1	1				
Site Context Score					37			36		36.5
MAX Site Context Score					56			56		56
Site Context Score - out of 3					1.98			1.93		1.96

			1	Tabooba AU5	- 12.8.14 Advan	ced Regrowth		
	AU Koala density	Site 736-737				Site 751-752		Average Score
Species Stocking Rate (SSR)	0.23			Score			Score	
Presence detected on or adjacent to site (neighbouring property with connecting habitat)				10			10	10
Species usage of the site (habitat type & evidenced usage)				15			15	15
Approximate density (per ha)	0.07			10			10	10
Role/importance of species population on site*	1			10	1		10	10
Total SRR score (out of 70) Max SRR Score				45 70			45 70	45 70
SRR Score (out of 4				2.57			2.57	2.57

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non- remnant	Average/ Fina
Site Condition score (out of 3)	2.06	1.83	1.63	2.19	2.01	2.24	1.98	0.53	1.81
Site Context Score (out of 3)	2.06	1.78	1.82	2.01	1.96	1.61	2.38	1.61	1.88
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.83	5.90	4.31	7.91	6.54	7.56	6.94	3.85	6.14
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.83
Total offset area (ha) for this MNES					19.80				
Size Weighting	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	6.54	0.0	0.0	0.0	6.54

TABOOBA AU5 RE 12.8.14 ADVANCED REGROWTH WITHOUT OFFSET QUALITY FOR KOALA

Assessment Unit - Regional Ecosystem						Tabooba AU5 -	12.8.14 Advance	d Regrowth			
Site Reference	Benchmark			Site 736				Site 751-752		Average %	
	12.8.14		Raw Data	% Benchma	ark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition											
Recruitment of woody perennial species in EDL		100	100).	100.0	5	100	100.0	9	100.0	
Native plant species richness - trees		6	8	1	133.3	5	8	133.3		133.3	
Native plant species richness - shrubs		6	9		150.0	2.5	7	116.7	2.5	133.3	2.5
Native plant species richness - grasses		8	9	i	112.5	2.5	9	112.5	2.5	112.5	2.5
Native plant species richness - forbs		21	27		128.6	2.5	48	228.6	2.5	178.6	2.5
Tree canopy height		22	12		54.5	3	10	45.5	3	50.0	
Tree subcanopy height		11	6		54.5	3	5	45.5	3	50.0	(
Tree canopy height (average of emergent, canopy, sub-canopy)		16.5	9	ž.	54.5	3	7.5	45.5	3	50.0	
Tree canopy cover (EDL)		16	44		275.0	5	40.5	253.1	9	264.1	
Subcanopy cover		15		į.	33.3	2	10.5	70.0	2	51.7	
Tree canopy cover (average of emergent, canopy, sub-canopy)		15.5	24.5	4	158.1	5	25.5	164.5	5	161.3	
Shrub canopy cover		4	1		50.0	0	1	25.0	(37.5	,
Native grass cover		58	29		50.0	3	16			38.8	
Organic litter		30	-		3.3	0	6	20.0		11.7	
Number of large trees (ha)		45	10		22.2	5	4	8.9		15.6	
Coarse woody debris (m/ha)		336	176		52.4	5	146	43.5		47.9	
Non-native plant cover		0	20		-	3	20			20.0	
Quality and availability of food and foraging habitat: Koala		Ī	_	i		10			10		10
Quality and availability of shelter: Koala				•		5					-
Quality and availability of shelter. Roals				l		-			1		·
Site Condition Score				i		56.5			54.5		51.5
MAX Site Condition Score				i		100			100		100
Site Condition Score - out of 3											1.55
Site Context				Value		Score		Value	Score	Average	Average Score
Size of patch (ha)										-	-
Koala habitat (foraging/breeding/dispersal)				>200		10		>200	10	>200	10
Connectivity											
Foraging/breeding habitat					100.0			100.0		100.0	
Dispersal habitat					0.0	5		0.0		0.0	
Context											
Foraging/breeding habitat					81.4			74.0		77.7	
Dispersal habitat					18.7	5		26.0	4	22.3	
Ecological Corridors		_				-					
Role of site location to species overall population in the state						1			1		
Absence of threats						5					
Species mobility capacity						10			10		10
species mosnity capacity						10			1		1
Site Context Score						36			35		35.5
MAX Site Context Score						56			56		56
Site Context Score - out of 3						1.93			1.88		1.90

			Tabooba AU5 -	Tabooba AU5 - 12.8.14 Advanced Regrowth											
	AU Koala density	Site 736-737		Site 751-752											
Species Stocking Rate (SSR)	0.23		Score			Score		Average Score							
Presence detected on or adjacent to site (neighbouring property with connecting habitat)			10			10		10							
Species usage of the site (habitat type & evidenced usage)		•	15			15		15							
Approximate density (per ha)	0.07	į	10			10		10							
Role/importance of species population on site*		•	10	4		10		10							
Total SRR score (out of 70) Max SRR Score SRR Score (out of 4			45 70 2.57			45 70 2.57		45 70 2.57							

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 3)	2.21	1.47	0.60	2.19	1.55	2.19	1.98	0.53	1.59
Site Context Score (out of 3)	2.04	1.74	1.79	1.98	1.90	1.61	2.33	1.61	1.85
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.96	5.50	3.25	7.89	6.02	7.51	6.88	3.85	5.84
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.83
Total offset area (ha) for this MNES					19.80				
Size Weighting	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	6.02	0.0	0.0	0.0	6.02

TABOOBA AU5 RE 12.8.14 ADVANCED REGROWTH WITH OFFSET QUALITY FOR KOALA

START SCORE:	8
START SCORE.	U

Assessment Unit - Regional Ecosystem				Tabooba AU5	- 12.8.14 Advance	ed Regrowth			
Site Reference	Benchmark		Site 736-737			Site 751-752		Average %	
	12.8.14	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition									
Recruitment of woody perennial species in EDL	10	100	100.0	9	100	100.0	5	100.0	5
Native plant species richness - trees		6	133.3		8	133.3	5	133.3	5
Native plant species richness - shrubs		6	150.0	9	7	116.7	5	133.3	5
Native plant species richness - grasses		8 !	112.5		9	112.5	5	112.5	5
Native plant species richness - forbs	2	1 2	128.6	i :	48	228.6	5	178.6	5
Tree canopy height	2	2 1	54.5		10	45.5	5	50.0	5
Tree subcanopy height	1	1	54.5	5	5 5	45.5	5	50.0	5
Tree canopy height (average of emergent, canopy, sub-canopy)	16.	5 !	54.5	5	7.5	45.5	5	50.0	5
Tree canopy cover (EDL)	1	5 4	275.0	3	40.5	253.1	3	264.1	3
Subcanopy cover	1	5	33.3		10.5	70.0	5	51.7	5
Tree canopy cover (average of emergent, canopy, sub-canopy)	15.	5 24.5	158.1		25.5	164.5	5	161.3	5
Shrub canopy cover		4	50.0		. 1		5	37.5	
Native grass cover	5	3 25	50.0) :	16	27.6	3	38.8	3
Organic litter	3				6	20.0		11.7	
Number of large trees (ha)	4				4	8.9		15.6	5
Coarse woody debris (m/ha)	33	5 170	52.4		146	43.5	5	47.9	5
Non-native plant cover	-	0 20			20		5	20.0	
Quality and availability of food and foraging habitat: Koala		_	1	10			10		10
Quality and availability of shelter: Koala			į.	-			5		5
Quality and availability of shelter. Rould			!	1					
Site Condition Score				83			78		78
MAX Site Condition Score			ŧ	100			100		100
			!	!					
Site Condition Score - out of 3									2.34
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)			1						
Koala habitat (foraging/breeding/dispersal)			>200	10)	>200	10	>200	10
Connectivity									
Foraging/breeding habitat			100.0)		100.0		100.0	
Dispersal habitat			0.0	9	5	0.0	5	0.0	5
Context							-		_
Foraging/breeding habitat			81.35			74.0		77.7	
Dispersal habitat			18.65		5	26.0	4	22.3	5
Ecological Corridors				(0		0
Role of site location to species overall population in the state							1		1
Absence of threats				11			11		11
Species mobility capacity				10			10		10
Site Context Score				42			41		41.5
MAX Site Context Score				56			56		56
Site Context Score - out of 3				2.25			2.20		2.22

				Tabooba AU5	- 12.8.14 Advanc	ed Regrowth		
	RE Koala density		Site 736-737		Site 751-752			
Species Stocking Rate (SSR)	0.23			Score			Score	Average Score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)				10			10	10
Species usage of the site (habitat type & evidenced usage)			i	15		i	15	15
Approximate density (per ha)	0.07			30		1	30	30
Role/importance of species population on site*			į	10		İ	10	10
Total SRR score (out of 70)			l	65			65	65
Max SRR Score			ļ	70		ļ	70	70
SRR Score (out of 4			ł	3.71			3.71	3.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	AU6 RE12.3.20 Non-	Average/ Final
Site Condition score (out of 3)	2.63	2.55	2.33	2.34	2.34	2.70	2.40	2.70	2.50
Site Context Score (out of 3)	2.25	2.20	2.17	2.20	2.22	1.77	2.65	1.93	2.16
Species Stocking Rate Score (out of 4)	3.71	3.71	2.57	3.71	3.71	3.71	3.71	2.00	3.31
Habitat Quality score (out of 10)	8.59	8.46	7.07	8.25	8.28	8.18	8.77	6.63	7.95
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.83
Total offset area (ha) for this MNES					19.80				
Size Weighting	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	8.28	0.0	0.0	0.0	8.28

GREENRIDGE AU4 RE 12.3.20 REMNANT START QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem	Greenridge AU4 12.3.20 Remnant												
Site Reference	Benchmark			Site 931-932			Site 964-965			Site 966-967		Average %	Average Score
	12.3.20	- 1	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	
Site Condition													
Recruitment of woody perennial species in EDL		100	50			100			100			83.3	
Native plant species richness - trees		4	3	75.0			50.0			17		100.0	
Native plant species richness - shrubs		4	1	25.0			50.0			10		58.3	2
Native plant species richness - grasses		- 2	3	150.0		:	50.0			20	5	133.3	
Native plant species richness - forbs		8	4	50.0			75.0		5 5	62.	2.5		2
Tree canopy height		16	18			15			25			120.8	
Tree subcanopy height		8		62.5	:	3 1	100.0		15	187.5	5	116.7	
Tree canopy height (average of emergent, canopy, sub-canopy)		12	11.5			11.5	95.8		20	166.7	5	119.4	
Tree canopy cover (EDL)		70	99.5	142.1		73.6	105.1		83	118.0	5	122.0	
Subcanopy cover	1	20	1.5	7.5		1	8 40.0		2 34	170	9	72.5	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	50.5	112.7		40.8	3 90.7	, :	58.5	130.0) 5	111.0	
Shrub canopy cover		15	0.5	3.3		9 :	46.7	7	11	73.	5	41.1	
Native grass cover		20	16.2	81.0		31.0	155.0		61.8	30	5	181.7	
Organic litter		30	47	156.7		38	126.7		30	10	5	127.8	
Number of large trees/ha		165	124	75.2	10	130	78.8	10	58	35.3	5	63.0	2
Coarse woody debris (m/ha)		890	260	29.2		315.0	35.4	1	165	18.	5 2	27.7	
Non-native plant cover		d	1		10			10			5	2.0	
Quality and availability of food and foraging habitat: Koala					10			10			5		1
Quality and availability of shelter: Koala						9			5		10		
Site Condition Score					70.5			75			74.5		75.0
MAX Site Condition Score					100			100			100		100
					ļ.						!		
Site Condition Score - out of 3					2.12			2.25			2.24		2.25
Site Context				Value	Score		Value	Score		Value	Score	Average	Average Score
Size of patch (ha)													
Koala habitat (foraging/breeding/dispersal)				>200	10		>200	10		7.7	2	>200	
Connectivity													
Foraging/breeding habitat				100.0	1		100.0			4.3		68.1	
Dispersal habitat				0.0		9	0.0		\$	9.4	5 0	3.2	
Context													
Foraging/breeding habitat				60.85			62.98			49.50		57.8	
Dispersal habitat				28.80		4	24.19		4	12.6	4	21.9	
Ecological Corridors						8			5		6		
Role of site location to species overall population in the state						4			4		4		
Absence of threats	1					8					7	1	
Species mobility capacity					10	1		10	1		7	1	:
Site Context Score					47			47			30		41
MAX Site Context Score					56			56			56		56
Site Context Score - out of 3					2.52			2.52			1.61		2.21

						Greenridge AU4	12.3.20 Remnant				
	AU Koala density		Site 931-932			Site 964-965			Site 966-967		Average Score
Species Stocking Rate (SSR)	0.4			Score			Score			Score	Average score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)				10			10			16	10
Species usage of the site (habitat type & evidenced usage)				15			15			15	15
Approximate density (per ha)		0.4		30	0.4		30	0.4		30	30
Role/importance of species population on site*				10			10			10	10
Total SRR score (out of 70) Max SRR Score SRR Score (out of 4)				65 70 3.71			65 70 3.71			65 70 3.71	65 70 3.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non- remnant	Average/ Final
Site Condition score (out of 3)	2.06	1.83	1.63	2.19	2.01	2.24	1.98	0.53	1.81
Site Context Score (out of 3)	2.06	1.78	1.82	2.01	1.96	1.61	2.38	1.63	1.88
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.7	2.49
Habitat Quality score (out of 10)	7.83	5.90	4.31	7.91	6.54	7.56	6.94	3.85	6.14
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.83
Total offset area (ha) for this MNES						28.70			
Size Weighting	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	7.6	0.0	0.0	7.56

GREENRIDGE AU4 RE 12.3.20 REMNANT WITHOUT OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem					G	reenridge AU4 - F	RE 12.3.20 Remna	int				
Site Reference	Benchmark		Site 931-932			Site 964-965			Site 966-967		Average %	
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition			i	i		i	į .		i	į .		
Recruitment of woody perennial species in EDL	1	00 5	50.0		100	100.0)	100	100	9	83.3	
Native plant species richness - trees		4	75.0	2.5	. 2	50.0	2.5	7	175		100.0	b
Native plant species richness - shrubs		4	25.0	2.5	2	50.0	2.5	4	100	9	58.3	2.
Native plant species richness - grasses		2	150.0	2.5	1	50.0	2.5	4	200	2.5	133.3	2.
Native plant species richness - forbs		8	50.0	o <mark>l</mark> (<mark>)</mark>	75.0	2.5	9	62.5	2.5	62.5	2.5
Tree canopy height		16 1	112.5		15	93.8		25	156.25		120.8	3
Tree subcanopy height		8	62.5	5 .	8	100.0		15			116.7	
Tree canopy height (average of emergent, canopy, sub-canopy)		12 11.	95.8	3	11.5	95.8		20	166.7		119.4	
Tree canopy cover (EDL)		70 99.	142.1		73.6	105.1		83	118.6		122.0	
Subcanopy cover		20 1.			2	40.0		34			72.5	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45 50.	112.2	2	40.8	90.7		58.5	130.0	9	111.0	
Shrub canopy cover		15 0.		1	7	l .		11	1		41.1	1
Native grass cover		20 16.			31.0			61.8			181.7	
Organic litter		30 4			38			30			127.8	
Number of large trees (ha)		65 12			130			58			63.0	
Coarse woody debris (m/ha)		90 26			315.0			2 165			27.7	
Non-native plant cover	٩	20	25.		315.0	33.		100	10		27.7	
Quality and availability of food and foraging habitat: Koala		4	1	10	,	1	10	3	1			10
			į	1		İ	1		İ	10	1	10
Quality and availability of shelter: Koala			ļ	1	9		ļ '	1			1	
Site Condition Score			į.	58.5		į	66		į	73		73.5
MAX Site Condition Score			1	100			100			100		100
			1	1		İ	1		İ	1		
Site Condition Score - out of 3			į	1.76		1	1.98		1	2.19		2,21
Site Context			Value	Score		Value	Score		Value	Score	Average	Average Score
Size of patch (ha)												
Koala habitat (foraging/breeding/dispersal)			>200	10)	>200	10	o constant	7.8	3	>200	10
Connectivity												
Foraging/breeding habitat			100.0)		100.0	0		4.3		68.1	ı
Dispersal habitat			0.0		5	0.0			9.5		3.2	
Context												1
Foraging/breeding habitat			60.9	9		63.0	0		49.5		57.8	3
Dispersal habitat			28.8			24.2		4	12.6		21.9	
Ecological Corridors		+										· .
Role of site location to species overall population in the state										1 2	11	
Absence of threats					,			•			1	
Species mobility capacity				10			10			1	1	10
species mobility capacity							1	1		· '		1
Site Context Score				46			46			30		41
MAX Site Context Score				56			56			56		56
Site Context Score - out of 3				2.46			2.46			1.61		2.18

					Gi	reenridge AU4 - R	E 12.3.20 Remna	nt			
	AU Koala density		Site 931-932			Site 964-965			Site 966-967		
Species Stocking Rate (SSR)	0.4			Score			Score			Score	Average Score
Presence detected on or adjacent to site (neighbouring property with connecting habitat) Species usage of the site (habitat type & evidenced usage)				10 15			10 15			10 15	10 15
Approximate density (per ha) Role/importance of species population on site*		0.4		30 10	0.4		30 10	0.4		30 10	30 10
Total SRR score (out of 70) Max SRR Score SRR Score (out of 4				65 70 3.71			65 70 3.71			65 70 3.71	65 70 3.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	AU5 RE12.8.14 Advanced	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	AU6 RE12.3.20 Non-	Average/ Final
Site Condition score (out of 3)	2.21	1.47	0.60	2.19	1.55	2.19	1.98	0.53	1.59
Site Context Score (out of 3)	2.04	1.74	1.79	1.98	1.90	1.61	2.33	1.61	1.85
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.96	5.50	3.25	7.89	6.02	7.51	6.88	3.85	5.84
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES						28.70			
Size Weighting	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	7.5	0.0	0.0	7.51

GREENRIDGE AU4 RE 12.3.20 REMNANT WITH OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem					Gre	enridge AU4 - R	E 12.3.20 Remna	nt				
Site Reference	Benchmark		Site 931-932			Site 964-965			Site 966-967		Average %	
Site incremed	12.3.20	Raw Data		Score	Raw Data	% Benchmark	Score	Raw Data		Score		Average Score
Site Condition				1								
Recruitment of woody perennial species in EDL	10	0 50	50.0		100	100.0		100	100		83.3	,
Native plant species richness - trees	10	4	75.0		200	50.0			179		100.0	
Native plant species richness - shrubs		4	25.0			50.0			100		58.3	
Native plant species richness - grasses		2	150.0		1	50.0		4	200		133.3	
Native plant species richness - forbs		8	50.0			75.0		-	62.5		62.5	
Tree canopy height	1	6 18			15		1				120.8	
Tree subcanopy height	-	8	62.5		8	100.0		25 15	187.5		116.7	
Tree canopy height (average of emergent, canopy, sub-canopy)	1	2 11.5			11.5			20			119.4	
Tree canopy cover (EDL)	7				73.6			83			122.0	
Subcanopy cover	2				75.0	40.0		34			72.5	
Tree canopy cover (average of emergent, canopy, sub-canopy)	4				40.8			58.5	130.0		111.0	
Shrub canopy cover	1	1			7			11			41.1	
Native grass cover	2				31.0			61.8			181.7	
Organic litter	3				38						127.8	
Number of large trees (ha)	16				130			s 30 58	35.2		63.0	
Coarse woody debris (m/ha)	89				315.0			165	18.5		27.7	
Non-native plant cover	83	0 20]	10	313.0	33.4	10	100	10.5	10	2,0	10
Quality and availability of food and foraging habitat: Koala		1	1	10	1	1	100]			2.0	10.0
			į	10	1	•	10			10		10.0
Quality and availability of shelter: Koala			1	1		i	·	1		10		10.0
Site Condition Score			į .	80.5			82.5			90		92.5
MAX Site Condition Score			ļ	100		•	100			100		100
			1	ļ			1					
Site Condition Score - out of 3			į	2.42			2.48			2.70		2.78
Site Context			Value	Score		Value	Score		Value	Score	Average	Average Score
Size of patch (ha)												
Koala habitat (foraging/breeding/dispersal)			>200	10		>200	10		7.75	2	>200	10
Connectivity												
Foraging/breeding habitat			100.0			100.0			4.31		68.1	
Dispersal habitat			0.0	5		0.0	5		9.46	0	3.2	4
Context												
Foraging/breeding habitat			60.85			62.98			49.50		57.8	
Dispersal habitat			28.80	4		24.19	4		12.62	4	21.9	4
Ecological Corridors				6			6			6		
Role of site location to species overall population in the state				4	i		4	1		4		4
Absence of threats				10			10			10		10
Species mobility capacity				10			10			7		10
Site Context Score				49			49			33		44
MAX Site Context Score				49 56			49 56			33 56		44 56
Site Context Score - out of 3				2.63			2.63			1,77		2.34
Site content store - out or s				2.03			2.03			2.77		2.34

					Gr	eenridge AU4 - R	E 12.3.20 Remnar	nt			
	AU Koala density		Site 931-932			Site 964-965			Site 966-967		
Species Stocking Rate (SSR)	0.4	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average Score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)				10			10			10	10
Species usage of the site (habitat type & evidenced usage)				15	i	i	15	i	i	15	15
Approximate density (per ha)		0.4		30	0.4	4	30	0.4	1	30	30
Role/importance of species population on site*				10		į	10		•	10	10
Total SRR score (out of 70)				65		}	65		i	65	65
Max SRR Score				70		į	70		i	70	70
SRR Score (out of 4				3.71			3.71			3.71	3.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	AU6 RE12.3.20 Non-	Average/ Final
Site Condition score (out of 3)	2.63	2.55	2.33	2.34	2.34	2.70	2.40	2.70	2.50
Site Context Score (out of 3)	2.25	2.20	2.17	2.20	2.22	1.77	2.65	1.93	2.16
Species Stocking Rate Score (out of 4)	3.71	3.71	2.57	3.71	3.71	3.71	3.71	2.00	3.31
Habitat Quality score (out of 10)	8.59	8.46	7.07	8.25	8.28	8.18	8.77	6.63	7.95
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.83
Total offset area (ha) for this MNES						28.70			
Size Weighting	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	8.2	0.0	0.0	8.18

GREENRIDGE AU5 RE 12.3.20 REGROWTH START QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem					Greenric	dge AU5 12.3.20 R	egrowth			
Site Reference	Benchmark			Site 974-975			Site 923-924		Average %	Average Score
	12.3.20		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average score
Site Condition										
Recruitment of woody perennial species in EDL		100	10	0 100	.0.	5 100	100		100.0	
Native plant species richness - trees		4	l	8 200	.0	5 4	100		150.0	
Native plant species richness - shrubs		4	l	4 100	.0	5 5	125		112.5	
Native plant species richness - grasses		2	l .	250	.0	5	150		200.0	
Native plant species richness - forbs		,	1			5	87.5		106.3	
Tree canopy height		16	1			3	37.5		53.1	
Tree subcanopy height		-8	1		.5	5 3	37.5		62.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		12		9 7	i.0	5 4.5	37.5		56.3	
Tree canopy cover (EDL)		70			.4	5 44.5			72.5	
Subcanopy cover		20	2			5 3.5			63.8	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45			.8	5 24			70.6	
Shrub canopy cover		15		1	i.7	3 2			25.0	
Native grass cover		20			i.0	1 37			115.5	
Organic litter		30				3 14			165.3	
Number of large trees/ha		165			.7	5 10			7.9	
Coarse woody debris (m/ha)		890			0.0	0 0			0.0	
Non-native plant cover		0.00	1]	~~ ~	5 10			7.5	
Quality and availability of food and foraging habitat: Koala			1	7	1	-	•			
Quality and availability of shelter: Koala				1	•	1				
Quality and availability of Sherrer . Rodia				1	1	3		•		
Site Condition Score				į.	62			61.5		66.0
MAX Site Condition Score				i	100			100		100
				i	ŧ			į		
Site Condition Score - out of 3				1	1.86			1.85		1.98
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)										
Koala habitat (foraging/breeding/dispersal)				>20	10 10	0	>200	10	>200	1
Connectivity										
Foraging/breeding habitat				79.8	6		0.00		39.9	
Dispersal habitat				20.:	.4	5	51.43	. 2	35.8	
Context										
Foraging/breeding habitat				56.6			40.89		48.8	
Dispersal habitat				33	.9	4	41.07	4	37.5	
Ecological Corridors						6				
Role of site location to species overall population in the state			l	ı	1	4	l			
Absence of threats			ĺ		1	7	1	1 :		
Species mobility capacity					1	.0		10		:
Site Context Score					46			43		45
MAX Site Context Score					56			56		56
Site Context Score - out of 3					2.46			2.30		2.38

				Greenrid	ge AU5 12.3.20 R	egrowth		
	AU Koala density		Site 974-975			Site 923-924		Average Score
Species Stocking Rate (SSR)	0.4			Score			Score	Average score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)				10			10	10
Species usage of the site (habitat type & evidenced usage)	i			15			15	19
Approximate density (per ha)		0.14		10	0.14		10	10
Role/importance of species population on site*				10			10	10
Total SRR score (out of 70) Max SRR Score				45 70			45 70	45 70
SRR Score (out of 4				2.57			2.57	2.57

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non- remnant	Average/ Final
Site Condition score (out of 3)	2.06	1.83	1.63	2.19	2.01	2.24	1.98	0.53	1.81
Site Context Score (out of 3)	2.06	1.78	1.82	2.01	1.96	1.61	2.38	1.61	1.88
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.83	5.90	4.31	7.91	6.54	7.56	6.94	3.85	6.14
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.83
Total offset area (ha) for this MNES							4.77		
Size Weighting	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	0.0	6.9	0.0	6.94

GREENRIDGE AU5 RE 12.3.20 REGROWTH WITHOUT OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem					Greenrid	ge AU5 12.3.20 R	egrowth			
Site Reference	Benchmark			Site 974-975			Site 923-924		Average %	Average Scor
	12.3.20		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	
Site Condition										
Recruitment of woody perennial species in EDL		100	10	100.0		100	100.0	5	100.0	
Native plant species richness - trees		4		200.0	4 5	4	100.0	5	150.0	
Native plant species richness - shrubs		4		4 100.0		5	125.0	5	112.5	
Native plant species richness - grasses		2		250.0		3	150.0		200.0	
Native plant species richness - forbs		8	1	125.0		7	87.5	2.5	106.3	
Tree canopy height		16	1	1 68.8		6	37.5	3	53.1	
Tree subcanopy height		8		7 87.5		3	37.5	3	62.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		12		9 75.0		4.5	37.5	3	56.3	
Tree canopy cover (EDL)		70	5	7 81.4		44.5	63.6	5	72.5	
Subcanopy cover		20	2	110.0		3.5		2	63.8	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	39.	87.8		24	53.3	5	70.6	
Shrub canopy cover		15	5.	36.7	4 :	2	13.3	3	25.0	
Native grass cover		20	9.	46.0		37	185.0	5	115.5	
Organic litter		30	85.	284.0	i s	14	46.7	. 3	165.3	
Number of large trees (ha)		165		4.8		10			5.5	
Coarse woody debris (m/ha)		890		0.0	i		0.0	d	0.0	
Non-native plant cover			ł	ş.		10	1	3	7.5	
Quality and availability of food and foraging habitat: Koala				1			į	5		
Quality and availability of shelter: Koala				ŀ			ŀ			
				į	·		į	1		
Site Condition Score				ŀ	60			59.5		66.0
MAX Site Condition Score				i	100		i	100		100
Who sice condition score				i	100		i	100		100
Site Condition Score - out of 3				į	1.80		į	1.79		1.98
Site Context				Value	Score		Value	Score	Average	Average Sco
Size of patch (ha)				ĺ	Ī					
Koala habitat (foraging/breeding/dispersal)				>200	10		>200	10	>200	
Connectivity										
Foraging/breeding habitat				79.86			0.00		39.9	
Dispersal habitat				20.14	5		51.43	. 2	35.8	
Context			l	1	1		l	1	,,,,,	
Foraging/breeding habitat			l	56.62			40.89		48.8	
Dispersal habitat			l	33.9			41.07		37.5	
Ecological Corridors			1		-			6		
Role of site location to species overall population in the state			1	1	1			4		
Absence of threats			1	1	- 6			6		
Species mobility capacity			1	1	10			10		
species mosnity capacity						1		10		
Site Context Score					45			42		44
MAX Site Context Score					56			56		56
Site Context Score - out of 3					2.41			2.25		2.33

				Greenride	ge AU5 12.3.20 R	egrowth			
	AU Koala density		Site 974-975			Site 923-924			Average Score
Species Stocking Rate (SSR)	0.4			Score			Score		
Presence detected on or adjacent to site (neighbouring property with connecting habitat)				10			10		10
Species usage of the site (habitat type & evidenced usage)				15			15		15
Approximate density (per ha)		0.14		10	0.14		10		10
Role/importance of species population on site*				10			10		10
Total SRR score (out of 70) Max SRR Score				45 70			45 70		45 70
SRR Score (out of 4				2.57			2.57		2.57

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 3)	2.21	1.47	0.60	2.19	1.55	2.19	1.98	0.53	1.59
Site Context Score (out of 3)	2.04	1.74	1.79	1.98	1.90	1.61	2.33	1.61	1.85
Species Stocking Rate Score (out of 4) Habitat Quality score (out of 10)	3.71 7.96			3.71 7.89	2.57 6.02	3.71 7.51	2.57 6.88		2.49 5.84
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES Size Weighting	0.00	0.00	0.00	0.00	0.00	0.00	4.77 1.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	0.00	6.9	0.0	6.88

GREENRIDGE AU5 RE 12.3.20 REGROWTH WITH OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem						Greenrid	ge AU5 12.3.20 R	egrowth			
Site Reference	Benchmark			9	Site 974-975			Site 923-924		Average %	Average Score
	12.3.20		Raw Data	% B	Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average score
Site Condition											
Recruitment of woody perennial species in EDL		100	10	00	100.0	5	100	100.0	į	100.0	
Native plant species richness - trees		4		8	200.0	5	4	100.0	i	150.0	
Native plant species richness - shrubs		4		à	100.0			125.0	l	112.5	,
Native plant species richness - grasses		2		e	250.0		3	150.0		200.0	
Native plant species richness - forbs		8	1	10	125.0	5	7	87.5		106.3	
Tree canopy height		16	1	11	68.8	5	6	37.5		53.1	
Tree subcanopy height		9	_	7	87.5		3	37.5		62.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		12		ç	75.0		4.5			56.3	
Tree canopy cover (EDL)		70		57	81.4		44.5	63.6		72.5	
Subcanopy cover	l	20		22	110.0		3.5			63.8	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	39.		87.8		24			70.6	
Shrub canopy cover (average of emergent, canopy, sub-canopy)		15		.5	36.7		-"	13.3		25.0	
Native grass cover		20		.2	46.0		37			115.5	
Organic litter		30	85.		284.0		14	46.7		165.3	
Organic litter Number of large trees (ha)		165		.Z 8	4.8		10			5.5	
		890		2	0.0		10	0.0		9.0	
Coarse woody debris (m/ha)		890		4	0.0					7.5	
Non-native plant cover		u		3		10	10		1	7.5	10
Quality and availability of food and foraging habitat: Koala				1		3					
Quality and availability of shelter: Koala						5	1		1	4	3
Site Condition Score						80			83		80.0
MAX Site Condition Score				1		100			100		100
Site Condition Score - out of 3						2.40			2.49		2.40
Site Context				Val	lue	Score		Value	Score	Average	Average Score
				Vai	iue	score		value	Score	Average	Average score
Size of patch (ha)									_		40
Koala habitat (foraging/breeding/dispersal)					>200	10		>200	1	>200	10
Connectivity											
Foraging/breeding habitat					79.86	_		0.00 51.43		39.9	_
Dispersal habitat					20.14	5		51.43		35.8	2
Context											
Foraging/breeding habitat					56.62			40.89		48.8	
Dispersal habitat					33.9	4		41.07		4 37.5	4
Ecological Corridors	l			1		6				6	6
Role of site location to species overall population in the state				1		4				4	4
Absence of threats				1		12			1	2	10
Species mobility capacity						10	1		1	9	10
Site Context Score						51			48		50
						l .					
MAX Site Context Score						56			56		56

				Greenrid	ge AU5 12.3.20 R	egrowth		
	AU Koala density		Site 974-975			Site 923-924		Average Score
Species Stocking Rate (SSR)	0.4			Score			Score	Average score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)				10			10	10
Species usage of the site (habitat type & evidenced usage)				15	1		15	15
Approximate density (per ha)		0.14		30	0.14		30	30
Role/importance of species population on site*				10			10	10
Total SRR score (out of 70)				65			65	65
Max SRR Score				70			70	70
SRR Score (out of 4				3.71			3.71	3.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non-	Average/ Final
Site Condition score (out of 3)	2.63	2.55	2.33	2.34	2.34	2.70	2.40	2.70	2.50
Site Context Score (out of 3)	2.25	2.20	2.17	2.20	2.22	1.77	2.65	1.93	2.16
Species Stocking Rate Score (out of 4)	3.71	3.71	2.57	3.71	3.71	3.71	3.71	2.00	3.31
Habitat Quality score (out of 10)	8.59	8.46	7.07	8.25	8.28	8.18	8.77	6.63	7.95
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES							4.77		
Size Weighting	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	0.0	8.8	0.0	8.77

GREENRIDGE AU6 RE 12.3.20 NON-REMNANT START QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem					Greenridge	AU6 12.3.20 Nor	n-remnant			
Site Reference	Benchmark			Site 972-973			Site 960-961		Average %	Average Score
	12.3.20		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average searc
Site Condition										
Recruitment of woody perennial species in EDL		100		0.0		100	100		50.0	
Native plant species richness - trees		4		0.0		1 1	25	2.5	12.5	
Native plant species richness - shrubs		4		0.0		1 2	50	2.5	25.0	2
Native plant species richness - grasses		- 2		0.0		1 1	50		25.0	2
Native plant species richness - forbs		8		37.5			62.5		50.0	
Tree canopy height		16		0.0		1 8	50		25.0	
Tree subcanopy height		8		0.0	i c	1 2	25		12.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		12		0.0	•	و ا	41.7		20.8	
Tree canopy cover (EDL)		70		0.0		12.5			8.9	
Subcanopy cover		20		0.0					0.0	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45		0.0		6.25	13.9		6.9	
Shrub canopy cover		15		0.0			6.7		3.3	
Native grass cover		20				19			47.5	
Organic litter		30				20			68.0	
Number of large trees/ha		169				1 ~			0.0	
Coarse woody debris (m/ha)		890				1 7			0.0	
Non-native plant cover		030	99		1 7	95)	95.0	
Quality and availability of food and foraging habitat: Koala		,	1	1		7		l l	55.0	
Quality and availability of shelter: Koala				i] !)		
Quality and availability of shelter. Roals				İ	i '	1		ì		
Site Condition Score					8.5			30		17.5
MAX Site Condition Score				i	100			100		100
Site Condition Score - out of 3				l	0.26			0.90		0.53
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)				Tuiuc	Score		Vuiuc	Score	Average	Average score
Koala habitat (foraging/breeding/dispersal)				>200	10		7.75		>200	
Connectivity				-200	10		7.73	1	>200	
Foraging/breeding habitat				,			4.31		2.2	
Dispersal habitat				61.79	1 .		9.46		35.6	
Context				01.73	1 1		5.40	ì	33.0	
Foraging/breeding habitat				24.41			47.53		36.0	
Dispersal habitat				43.00			25.41		34.2	
Ecological Corridors				43.00			23.41		34.2	
Role of site location to species overall population in the state						1				
Absence of threats									l J	
Absence of threats Species mobility capacity					1	1				
Species mobility capacity										
Site Context Score					35			25		30
MAX Site Context Score					56			56		56
Site Context Score - out of 3					1.88			1.34		1.61

				Greenridge	AU6 12.3.20 Nor	n-remnant		
	AU Koala density		Site 972-973			Site 960-961		Average Score
Species Stocking Rate (SSR)	0.4			Score			Score	
Presence detected on or adjacent to site (neighbouring property with connecting habitat) Species usage of the site (habitat type & evidenced usage)				10			10	10
Species usage or the site (habitat type & evidenced usage) Approximate density (per ha) Role/importance of species population on site*		0.17		10 5	0.17		10	10
Total SRR score (out of 70) Max SRR Score SRR Score (out of 4)				30 70 1.71			30 70 1.71	30 70 1.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non- remnant	Average/ Final
Site Condition score (out of 3)	2.06	1.83	1.63	2.19	2.01	2.24	1.98	0.53	1.81
Site Context Score (out of 3)	2.06	1.78	1.82	2.01	1.96	1.61	2.38	1.61	1.88
Species Stocking Rate Score (out of 4)	3.71	2.29	0.86	3.71	2.57	3.71	2.57	1.71	2.49
Habitat Quality score (out of 10)	7.83	5.90	4.31	7.91	6.54	7.56	6.94	3.85	6.14
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES								11.88	
Size Weighting	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	0.0	0.0	3.8	3.85

GREENRIDGE AU6 RE 12.3.20 NON-REMNANT WITHOUT OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem					Greenridge	AU6 12.3.20 No	n-remnant			
Site Reference	Benchmark			Site 972-973			Site 960-961		Average %	Average Score
	12.3.20		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	
Site Condition					1			!		
Recruitment of woody perennial species in EDL		100		0 0		100	100.0	5	50.0	
Native plant species richness - trees		4		0 0		0 1	25.0	2.5	12.5	
Native plant species richness - shrubs		4		0 0		0 2	50.0	2.5	25.0	2.5
Native plant species richness - grasses		2		0 0	o e	0 1	50.0	2.5	25.0	2.5
Native plant species richness - forbs		8		3 37.	5 2.	5 5	62.5	2.5	50.0	2.5
Tree canopy height		16		0 0	o e	0 8	50.0	3	25.0	:
Tree subcanopy height		8		0 0	0	0 2	25.0	3	12.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		12		0 0	o i	0 5	41.7	3	20.8	(
Tree canopy cover (EDL)		70		0 0		12.5	17.9	2	8.9	
Subcanopy cover		20		0 0		o o	0.0	q	0.0	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45		0 0		6.25	13.9	2	6.9	(
Shrub canopy cover		15		d 0		1			3.3	
Native grass cover		20		0 0		19			47.5	
Organic litter		30	20			5 20			68.0	
Number of large trees (ha)		165	-	0 0		d 0			0.0	
Coarse woody debris (m/ha)		890		0 0		,	0.0		0.0	
Non-native plant cover		030		95	1	95	0.0	ď	95.0	
Quality and availability of food and foraging habitat: Koala				-	1]	1	i	33.0	
Quality and availability of shelter: Koala				į	1	1		,		
Quality and availability of stieller. Roala				1	1	1		ľ		
Site Condition Score				1	8.5			30		17.5
MAX Site Condition Score				1	100			100		100
Site Condition Score - out of 3					0.26			0.90		0.53
Site Context				Value	Score		Value	Score	Average	Average Score
Size of patch (ha)										
Koala habitat (foraging/breeding/dispersal)				>20	0 10	o	7.75	2	>200	10
Connectivity										
Foraging/breeding habitat					0		4.31		2.2	
Dispersal habitat				61.7	9	2	9.46	a d	35.6	
Context										
Foraging/breeding habitat				24.4	1		47.53		36.0	
Dispersal habitat				43.0		4	25.41	4	34.2	
Ecological Corridors						6		6		
Role of site location to species overall population in the state						1		l 1		
Absence of threats						4		-		
Species mobility capacity						,		7		
Species modificy capacity						1		1		
Site Context Score					35			25		30
MAX Site Context Score					56			56		56
Site Context Score - out of 3					1.88			1.34		1.61

				Greenridge	AU6 12.3.20 Nor	n-remnant			
	AU Koala density		Site 972-973			Site 960-961			Average Score
Species Stocking Rate (SSR)	0.4			Score			Score		Average score
Presence detected on or adjacent to site (neighbouring property with connecting habitat)				10			10		10
Species usage of the site (habitat type & evidenced usage)				5			5		5
Approximate density (per ha)		0.17		10	0.17		10		10
Role/importance of species population on site*				5			5		5
Total SRR score (out of 70)				30			30		30
Max SRR Score				70			70		70
SRR Score (out of 4				1.71			1.71		1.71

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 3)	2.21	1.47	0.60	2.19	1.55	2.19	1.98	0.53	1.59
Site Context Score (out of 3)	2.04	1.74	1.79	1.98	1.90	1.61	2.33	1.61	1.85
Species Stocking Rate Score (out of 4)	3.71		0.86	3.71	2.57	3.71		1.71	2.49
Habitat Quality score (out of 10)	7.96	5.50	3.25	7.89	6.02	7.51	6.88	3.85	5.84
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES								11.88	
Size Weighting	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	0.00	0.0	3.8	3.85

GREENRIDGE AU6 RE 12.3.20 NON-REMNANT WITH OFFSET QUALITY FOR KOALA

START SCORE:

Assessment Unit - Regional Ecosystem				Greenridge	AU6 12.3.20 No	n-remnant			
Site Reference	Benchmark		Site 972-973			Site 960-961		Average %	Average Score
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	/Werage score
Site Condition									
Recruitment of woody perennial species in EDL	10	0	0.	9	100	100.0		50.0	
Native plant species richness - trees		4	G 0.	o	1	25.0	9	12.5	
Native plant species richness - shrubs		4	d 0.		2	50.0		25.0	
Native plant species richness - grasses		2	d 0.		1	50.0		25.0	
Native plant species richness - forbs		8	3 37.		9	62.5		50.0	
Tree canopy height	1	5	o .		8	50.0		25.0	
Tree subcanopy height	_	9	d 0			25.0		12.5	
Tree canopy height (average of emergent, canopy, sub-canopy)	1		d 0.			41.7		20.8	
Tree canopy cover (EDL)	7		0.		12.5	17.9		8.9	
Subcanopy cover	2		0.		12.5	0.0		0.0	
Tree canopy cover (average of emergent, canopy, sub-canopy)	4		0.		6.25			6.9	
Shrub canopy cover	1		0.		0.23	6.7		3.3	
Native grass cover	2		0.		19			47.5	
Organic litter	3	20.			20			68.0	
Number of large trees (ha)	16		d 0.		20			0.0	
Coarse woody debris (m/ha)	89		d 0.			0.0		0.0	
Non-native plant cover	0.5	9.		10	95			95.0	10
		9.		10		0.0	10	95.0	10
Quality and availability of food and foraging habitat: Koala Quality and availability of shelter: Koala			:	10			10		10
Quality and availability of shelter: koala			1	10			10		10
Site Condition Score			1	90			90		90.0
MAX Site Condition Score			i	100			100		90.0 100
WAX Site Condition Score			<u>I</u>	100			100		100
Site Condition Score - out of 3			1	2.70			2.70		2.70
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)									
Koala habitat (foraging/breeding/dispersal)			>20	10		7.75		>200	10
Connectivity				1					
Foraging/breeding habitat				n		4.31		2.2	
Dispersal habitat			61.7	3	,	9.46		35.6	
Context			02.7	1 .		5.40	Ì	55.0	
Foraging/breeding habitat			24.4	1		47.53		36.0	
Dispersal habitat			43.0		1	25.41	2	34.2	
Ecological Corridors		1							
Role of site location to species overall population in the state					1		1		
Absence of threats		I	I	11	1		11		10
Species mobility capacity		1		- 1			- 11		10
species mobility capacity				·			ĺ í		
Site Context Score		ĺ	1	41			31		36
MAX Site Context Score				56			56		56
Site Context Score - out of 3				2.20			1.66		1.93

				Greenridge	AU6 12.3.20 No	n-remnant		
	AU Koala density		Site 972-973			Site 960-961		Average Score
Species Stocking Rate (SSR)	0.4			Score			Score	
Presence detected on or adjacent to site (neighbouring property with connecting habitat)				10			10	10
Species usage of the site (habitat type & evidenced usage)			i	5				İ
Approximate density (per ha)		0.17	!	10	0.17		10	10
Role/importance of species population on site*			i	10			10	10
Total SRR score (out of 70)			1	35			35	35
Max SRR Scon	•			70			70	70
SRR Score (out of 4	1		į	2.00			2.00	2.00

Final habitat quality score (weighted)	Tabooba AU1 RE12.8.16 remnant	Tabooba AU2 RE12.8.16 Advanced Regrowth	Tabooba AU3 RE12.8.16 Young Regrowth	Tabooba AU4 RE12.8.14 Remnant	Tabooba AU5 RE12.8.14 Advanced Regrowth	Greenridge AU4 RE12.3.20 Remnant	Greenridge AU5 RE12.3.20 Regrowth	Greenridge AU6 RE12.3.20 Non-	Average/ Final
Site Condition score (out of 3)	2.63	2.55	2.33	2.34	2.34	2.70	2.40	2.70	2.50
Site Context Score (out of 3)	2.25	2.20	2.17	2.20	2.22	1.77	2.65	1.93	2.16
Species Stocking Rate Score (out of 4)	3.71	3.71	2.57	3.71	3.71	3.71	3.71	2.00	3.31
Habitat Quality score (out of 10)	8.59	8.46	7.07	8.25	8.28	8.18	8.77	6.63	7.95
Assessment Unit area (ha)	49.8	145.02	48.1	50.62	19.8	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES								11.88	
Size Weighting	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	0.0	0.0	6.6	6.63

Appendix L: Offset HQS tables GHFF habitat

TABOOBA AU1 RE 12.8.16 REMNANT START QUALITY FOR GREY-HEADED FLYING-FOX

START SCORE:

Assessment Unit - Regional Ecosystem				Tabooba	a AU 1 - RE12.8.16	remnant			
Site Reference	Benchmark		Site 472-473			Site 474-475			
	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Scor
Site Condition			!	!					
Recruitment of woody perennial species in EDL	100	10			100.0			100.0	ĺ
Native plant species richness - trees		6	85.1		6.0			85.7	1
Native plant species richness - shrubs		9	128.6		10.0			135.7	
Native plant species richness - grasses		10	142.9		16.0	228.6	1	185.7	ŧ
Native plant species richness - forbs	25	3:	106.9	(34.0	117.		112.1	•
Tree canopy height	20	1	75.0	1	18.0	90.0	i	82.5	ļ
Tree subcanopy height		8	100.0		10.0	125.0	1	112.5	
Tree canopy height (average of emergent, canopy, sub-canopy)	14	11.5	82.:		14.0	100.0		91.1	į
Tree canopy cover (EDL)	4:	44.1	107.6		83.0	202.4	i	155.0	ı
Subcanopy cover	17	17.5	102.9		1.0			54.4	i
Tree canopy cover (average of emergent, canopy, sub-canopy)	25	30.8	106.2		42.0	144.		125.5	i
Shrub canopy cover			0.0	i i	0.0	0.	i	0.0	i
Native grass cover	41	2			27.3			54.7	}
Organic litter	2.	3.4			6.3	29.		22.9	
Number of large eucalypt trees (ha)	3:	10			14.0			36.4	
Coarse woody debris (m/ha)	336	12			170.0			28.0	
Non-native plant cover	33	4		10	15.0			27.5	
Non-native plant cover	 		Value	Score	130	Value	Score	Average	Average Sco
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores			0.29			0.2	Store	0.29	Average sec
			0.2		1	0.2		0.23	1
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness			1		1				1
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness Site Condition Score				74.5			72.5		700
			į	71.5			73.5		75.5
MAX Site Condition Score			į	130			130		130 2.32
Site Condition Score - out of 4 Site Context			Value	Score		Value	Score	Average	
			value	Store		value	Store	Average	Average Sco
Size of patch (ha)			!	!			1		!
Remnant			1094.79 722.0		ļ	1094.79 722.0		1094.8 722.0	
Regrowth			/22.0			722.1		/22.0	<u> </u>
Connectivity			į	i			i I		i
No. active GHFF camps within 20km			i				i	2.0	
Context			İ	İ			į		İ
% GHFF foraging habitat within 20 km			32.		1	32.		32.1	
Ecological Corridors					(
Role of site location to species overall population in the state No. of active ≥ level three GHFF camps within a 20km								1.0	
Absence of threats									}
Site Context Score				22			23		23
MAX Site Context Score Site Context Score - out of 3			!	56			56		56
									1.23

	Tabooba AU 1 - RE12.8.16 remnant												
	Benchmark		Site 472-473			Site 474-475		Average %					
Species Stocking Rate (SSR)	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score				
Abundance of large trees	33	1	30.	4	14.0	42.	1	36.	4 4				
Timing of GHFF Biological Resources			İ	9.25		ł		.2	9.25				
Species Stocking Rate Score			1	13.25		1	13.3		13.3				
MAX Species Stocking Rate Score			!	20		!	20		20				
SRR Score - out of 3			!			!	<u> </u>		1.99				

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.32	2.18	2.20	2.31	2.22	2.46	2.18	0.51	2.05
Site Context Score (out of 3)	1.23	1.10	1.10	1.55	1.42	1.77	1.98	1.34	1.44
Species Stocking Rate Score (out of 3)	1.99	2.02		2.10	1.80	1.85	1.39	0.00	1.60
Habitat Quality score (out of 10)	5.54	5.30	4.99	5.96	5.44	6.08	5.55	1.85	5.09
Assessment Unit area in the offset area (ha)	49.80	145.02	48.3	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES	49.80								
Size Weighting	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	5.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.54

TABOOBA AU1 RE 12.8.16 REMNANT QUALITY WITHOUT OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITHOUT OFFSET:

Assessment Unit - Regional Ecosystem				Tabooba	AU 1 - RE12.8.16 re	emnant			
Site Reference	Benchmark		Site 472-473			Site 474-475		Average %	
	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Sco
Site Condition									
Recruitment of woody perennial species in EDL	10	0 100	100.0		100.0	100.0		100.0	4
Native plant species richness - trees		7 6	85.7	2.5	6.0	85.7	2.5	85.7	
Native plant species richness - shrubs		7 9	128.6		10.0	142.9		135.7	
Native plant species richness - grasses		7 10	142.9		16.0	228.6		185.7	ė.
Native plant species richness - forbs	2	9 31	106.9		34.0	117.2		112.1	i.
Tree canopy height	2	0 19	75.0	i :	18.0	90.0		82.5	i .
Tree subcanopy height	-	8 3	100.0		10.0			112.5	
Tree canopy height (average of emergent, canopy, sub-canopy)	1	4 11.5			14.0			91.1	
Tree canopy cover (EDL)	4	1 44.1	107.6		83.0	202.4		155.0	i
Subcanopy cover	1				1.0			54.4	
Tree canopy cover (average of emergent, canopy, sub-canopy)	2				42.0			125.5	
Shrub canopy cover	_	4			0.0	0.0		0.0	
Native grass cover		5 22			27.2	60.4		54.7	
Organic litter		1 3.4			6.2	29.5		22.9	
Organic litter Number of large trees (ha)	1 1				14.0			36.4	
	33			-	170.0	42.4 50.6		28.0	
Coarse woody debris (m/ha) Non-native plant cover	53	6 18		1 :	170.0	50.6	1	28.0	
Normative plant cover		40	Value	Score		Value	Score	Average	Average Sci
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores			0.29			0.28		0.3	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness			1 0.2	10	1 :	0.24	10	3.0	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness			1) "	1		. "	2.0	
Site Condition Score				69.5			78.5	2.0	73.5
MAX Site Condition Score				130			130		130
Site Condition Score - out of 4			i	130			150		2,26
Site Context			Value	Score		Value	Score	Average	Average Sci
Size of patch (ha)			value	Score	ļ	Vuiuc	Score	Average	Average se
Remnant			1094.79	i		1094.79	•	1094.8	į
Regrowth			722.0			722.0	10	722.0	
Connectivity			722.0		1	722.0		722.0	1
No. active GHFF camps within 20km								20	į
Context			<u> </u>					2.0	1
% GHFF foraging habitat within 20 km			32.2			32.1		32.1	
% GHEF TOTAGING HADITAL WITHIN 20 KIN			32.2	,		32.1		32.1	—
				,	1				
Role of site location to species overall population in the state No. of active ≥ level three GHFF camps within a 20km			:		2			1.0	
Absence of threats				3.5			,		
Site Context Score				21.5			22		23
			!	56			56		56
MAX Site Context Score									

		Tabooba AU 1 - RE12.8.16 remnant											
	Benchmark		Site 472-473			Site 474-475	Average %						
Species Stocking Rate (SSR)	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score				
Abundance of large trees	33	10	30.3	€	14.0	42.4	(36.4	6				
Timing of GHFF Biological Resources			1	9.25			9.29		9.25				
Species Stocking Rate Score				15.25			15.3		15.3				
MAX Species Stocking Rate Score			i	20			20		20				
SRR Score - out of 3			ļ	ļ					2.29				

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	AU2 RE 12.8.16 Advanced	AU2 RE 12.8.16 Young	Tabooba AU4 RE 12.8.14 Remnant	AU5 RE 12.8.14 Advanced	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.26	1.66	0.31	2.31	1.58	2.11	2.18	0.51	1.62
Site Context Score (out of 3)	1.23	1.10	0.96	1.55	1.42	1.77	1.98	1.21	1.40
Species Stocking Rate Score (out of 3)	2.29	1.72	0.00	2.10	1.80	1.85	1.39	0.00	1.39
Habitat Quality score (out of 10)	5.78	4.48	1.27	5.96	4.80	5.73	5.55	1.71	4.41
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES	49.80								
Size Weighting	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	5.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.78

TABOOBA AU1 RE 12.8.16 REMNANT QUALITY WITH OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITH OFFSET:

Assessment Unit - Regional Ecosystem				Tabooba	AU 1 - RE12.8.16	remnant			
Site Reference	Benchmark		Site 472-473			Site 474-475		Average %	İ
	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Sco
Site Condition									
Recruitment of woody perennial species in EDL	10	100	100.0		100.0	100.0		100.0	1
Native plant species richness - trees			85.7	2.5	6.0	85.1	2.5	85.7	1
Native plant species richness - shrubs			128.6	9	10.0	142.9		135.7	ė.
Native plant species richness - grasses		10	142.9		16.0	228.6		185.7	ž.
Native plant species richness - forbs	2	3:	106.9		34.0	117.2		112.1	į.
Tree canopy height	2	15	75.0		18.0	90.0	4 9	82.5	İ
Tree subcanopy height		8 1	100.0	4 9	10.0	125.0	(:	112.5	4
Tree canopy height (average of emergent, canopy, sub-canopy)	1	11.5	82.:	9	14.0	100.0		91.1	4
Tree canopy cover (EDL)	4	1 44.1	107.6		83.0	202.4		155.0	į
Subcanopy cover	1	17.5	102.9		1.0	5.9		54.4	d
Tree canopy cover (average of emergent, canopy, sub-canopy)	2	30.8	106.2		42.0	144.8		125.5	
Shrub canopy cover		4	0.0		0.0	0.0		0.0	
Native grass cover	4	22	48.5		27.2	60.4	4	54.7	i
Organic litter	2	3.4			6.2	29.5		22.9	ļ
Number of large trees (ha)	3	10	30.3	10	14.0	42.4	10	36.4	
Coarse woody debris (m/ha)	33				170.0			28.0	
Non-native plant cover	33	40			15.0		1	27.5	
			Value	Score		Value	Score	Average	Average Sco
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores (/10)			0.25			0.2		0.3	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness (/20)				10	i	0.2	10	3.0	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness (/20)				10			10	2.0	
Site Condition Score			i	90.5			92.5		87.5
MAX Site Condition Score			İ	130			130		130
Site Condition Score - out of 4			•						2.69
Site Context			Value	Score		Value	Score	Average	Average Sco
Size of patch (ha)									
Remnant			1094.79	ł .		1094.79	1	1094.8	į
Regrowth			722.0	10		722.0	10	722.0	4
Connectivity			i	1			1		1
No. active GHFF camps within 20km					2	2		2.0	ġ.
Context									
% GHFF foraging habitat within 20 km			32.2	4		32.:	4	32.1	
Ecological Corridors				(
Role of site location to species overall population in the state				i					
No. of active ≥ level three GHFF camps within a 20km			1	, ,		1	i i	1.0	d
Absence of threats *				9			9		
roseite of theory			ļ						
Site Context Score			i	27			27		28
MAX Site Context Score			1	56			56		56

				Tabooba	AU 1 - RE12.8.16	remnant			
	Benchmark		Site 472-473			Site 474-475		Average %	
Species Stocking Rate (SSR) **	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees	33	10	30.3		14.0	42.		36.4	
Timing of GHFF Biological Resources				9.25			9.25		9.2
Species Stocking Rate Score				15.25			15.3		15.3
MAX Species Stocking Rate Score				20			20		20
SRR Score - out of 3							}		2.29

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced	Tabooba AU2 RE 12.8.16 Young	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.69	2.77	2.63	2.46	2.59	2.69	2.62	2.92	2.67
Site Context Score (out of 3)	1.50	1.50	1.50	1.82	1.82	2.04	2.25	2.14	1.82
Species Stocking Rate Score (out of 3)	2.29	2.32	1.69	2.40	2.10	2.19	1.39	2.10	2.05
Habitat Quality score (out of 10)	6.48	6.58	5.82	6.68	6.48	6.88	6.25	7.17	6.54
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES	49.80								
Size Weighting	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	6.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.48

TABOOBA AU2 RE 12.8.16 ADVANCED REGROWTH START QUALITY FOR GREY-HEADED FLYING-FOX

START SCORE:

Assessment Unit - Regional Ecosystem							Tabooba	AU2 - RE 12.8.16	Advanced Rep	growth					
Site Reference	Benchmark		Site 470-471			Site 683-684			Site 685-686			Site 734-735			
	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmar	k Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition															
Recruitment of woody perennial species in EDL	100	10	100.0		5 10	0 100.0		9 9	50 5	0.0	3 1	.00 100	1.0	87.5	i .
Native plant species richness - trees	7		42.9	2.5	5	5 71.4	2.	5	5 7	1.4	2.5	6 85	5.7 2	67.9	4 .
Native plant species richness - shrubs	7		5 71.4	2.5	5	3 42.9	2.	5	4 5	7.1	1.5	1 1	1.3	46.4	i :
Native plant species richness - grasses	7		128.6	1 :	5	8 114.3	1	9	3 4	2.9	1.5	5 7:	L4 2	89.3	4 :
Native plant species richness - forbs	29	2	100.0		5 3	2 110.3		s :	15 5	1.7	1.5	18 62	2.1 2	81.0	4
Tree canopy height	20	1	50.0		1	6 80.0	ı	5	8 4	0.0	3	10 50	0.0	55.0	i
Tree subcanopy height	8		62.5		3	8 100.0		9	3 3	7.5	3	4 50	0.0	62.5	i .
Tree canopy height (average of emergent, canopy, sub-canopy)	14	7.	53.6		3 1	2 85.7		9 9	.5 3	9.3	3	7.0 50	0.0	57.1	
Tree canopy cover (EDL)	41	23.	57.3		43.			9		7.3	d	35 85		64.0	1
Subcanopy cover	17				a a	7 41.2	·	1		7.6		1.5 6		40.4	i
Tree canopy cover (average of emergent, canopy, sub-canopy)	29	14.			25.			9 3		0.3		3.3 80		57.1	
Shrub canopy cover	4	1	37.5		4	5 112.5		9		0.0	d	19 475	.0	156.3	1
Native grass cover	45	3.			1 4	3 95.6		٠ ،	13	5.6	9		52	61.1	ı
Organic litter	21	10.]	5 23.8	1	1 '		95	1 :		3.8	22.1	l .
Number of large eucalypt trees (ha)	22	10.	24.7	1	1,	2 36.4	1	1 .	12 3			6 1		28.8	1
Coarse woody debris (m/ha)	336	17			17		1			8.0	1	79 2		39.1	l .
Non-native plant cover			3		1 7	0			35		ก	15		18.8	ı
			Value	Score		Value	Score		Value	Score		Value	Score		Average score
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores			0.43			0.51				51		0		0.47	1
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness			0.4.	1	1	0.5		1		- ·			7	3.50	1
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness			1		1		1 1	ä		1	10		1 1	2.75	
Site Condition Score				66	1		86			68			60.5	2.73	71.00
MAX Site Condition Score				130			130			130			130		130
Site Condition Score - out of 4				130			230			130			130		2.18
Site Context			Value	Score		Value	Score		Value	Score		Value	Score	Average	Average score
Size of patch (ha)			Tuiuc	Jeore		vuice	Score		· · · ·	Store		vuiuc	Score	Average	Average score
Remnant			1472.92			1472.92			1472	92		1472.	92	1472.9	1
Regrowth			343.6			343.6			34		10	343		343.6	Į.
Connectivity			343.0		1	343.0			34.	5.0	10	343	.0 2	343.0	
No. active GHFF camps within 20km														2.3	1
Fontext			-					1		4	1		1 .	4 43	-
% GHFF foraging habitat within 20 km			31.9			31.6			3	16		3:	13	31.6	1
Ecological Corridors			31.3			31.0		2	3	1.0	2	3.		31.0	-
				,										1	-
Role of site location to species overall population in the state No. of active ≥ level three GHFF camps within a 20km											-			1.2	1
				35	1		1	1	1	1	1		1 :	1.5	
Absence of threats				3.5				4			1		3.		1
Site Context Score				25.5			21			21			21.5		20.5
MAX Site Context Score				56			56			56			56		56
Site Context Score - out of 3															1.10

							Tabooba	AU2 - RE 12.8.16	Advanced Regro	wth					
	Benchmark		Site 470-471			Site 683-684			Site 685-686			Site 734-735		Average %	
Species Stocking Rate (SSR)	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees	33		8 24.3		12	36.4	-	1	36.4			18	2 2	28.8	
Timing of GHFF Biological Resources				9.25			10)		9.25	i		9.25		9.4
Species Stocking Rate Score				11.3			14.0			13.3			11.3		13.4
MAX Species Stocking Rate Score				20			20			20			20		20
SRR Score - out of 3															2.02

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.32	2.18	2.20	2.31	2.22	2.46	2.18	0.51	2.05
Site Context Score (out of 3)	1.23	1.10	1.10	1.55	1.42	1.77	1.98	1.34	1.44
Species Stocking Rate Score (out of 3)	1.99	2.02	1.69	2.10	1.80	1.85	1.39	0.00	1.60
Habitat Quality score (out of 10)	5.54	5.30	4.99	5.96	5.44	6.08	5.55	1.85	5.09
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.4	358.82
Total offset area (ha) for this MNES	0.00	145.02	0.00	0.00	0.00	0.00	0.00	0.00	
Size Weighting	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	5.30	0.00	0.00	0.00	0.00	0.00	0.00	5.30

TABOOBA AU2 RE 12.8.16 ADVANCED REGROWTH QUALITY WITHOUT OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITHOUT OFFSET:

Assessment Unit - Regional Ecosystem						T	abooba AU2	- RE 12.8.16 A	dvanced Regrov	vth					
Site Reference	Benchmark		Site 470-471			Site 683-684			Site 685-686			Site 734-735			
	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Scor
iite Condition															
Recruitment of woody perennial species in EDL	10	0 10	0 100.		100	100.0	3	50	50.0		100	100.0		87.5	
Native plant species richness - trees		7	3 42.	2.5	5 5	71.4	2.5		71.4	2.5	5	85.3	2.5	67.9	
Native plant species richness - shrubs		7	5 71.	2.5	5 3	42.9	2.5		57.1	2.5	5	14.3	3	46.4	
Native plant species richness - grasses		7	9 128.	2.5	5 8	114.3	2.5		42.9	2.5	5 !	71.4	2.5	89.3	
Native plant species richness - forbs	2	9 2	9 100.	2.5	5 32	110.3	2.5	15	51.7	2.5	18	62.:	2.5	81.0	
Tree canopy height	2	0 1	0 50.	o e	3 16	80.0	3	3	40.0	1	10	50.0	o'	55.0	,
Free subcanopy height		8	5 62.	5	3 8	100.0	3	3	37.5	1 :		50.0) :	62.5	i
Free canopy height (average of emergent, canopy, sub-canopy)	1	4 7	5 53.	5	3 12	85.7	3	5.5	39.3		7.0	50.0)	57.1	
Free canopy cover (EDL)	4	1 23	5 57.		5 43.5	106.1			7.3		35	85.4		64.0)
Subcanopy cover	1	7	6 35.	:	2 7	41.2	2	:	17.6		11.5			40.4	
Free canopy cover (average of emergent, canopy, sub-canopy)	2	9 14	8 50.	1	25.3	87.1		3.0	10.3		2 23.3	80.3		57.1	
Shrub canopy cover		4 1	5 37.		4.5	112.5	(,	0.0		19	475.0		156.3	
Native grass cover	4	5 3			0 43	95.6		6	135.6		2.0	6	,	61.1	
Drganic litter	2				3 5	23.8			9.5		0.0			22.1	
Number of large trees (ha)	3	3	8 24.	,	5 17	36.4		1:	36.4		5	18.	,	28.8	
Coarse woody debris (m/ha)	33				5 177	52.7		9	28.0		2 7			39.1	
Non-native plant cover		a	5		3 20		3	35	5		3 15	5		18.8	
			Value	Score		Value	Score		Value	Score		Value	Score	Average	Average score
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores			0.4		5	0.51	8	3	0.51		8	0.4		0.47	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness				2	5	4		5	4		5		4 10	3.50	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness				2	5	3	10)	3	10	9		10	2.75	
Site Condition Score				49			65			56			53.5		54.00
MAX Site Condition Score				130			130			130			130		130
Site Condition Score - out of 4															1.66
Site Context			Value	Score		Value	Score		Value	Score		Value	Score	Average	Average score
Size of patch (ha)			İ	ĺ					İ			İ	İ		
Remnant			1472.9	1		1472.92			1472.92			1472.92	2	1472.9	
Regrowth			343.	11	0	343.6	10)	343.6	10	9	343.6	10	343.6	
Connectivity															
No. active GHFF camps within 20km				3 .	4	2		2	2		2		2 :	2.3	1
Context															
% GHFF foraging habitat within 20 km			31.		4	31.6	4	1	31.6		4	31.3	3	31.6	i
Ecological Corridors					•										
Role of site location to species overall population in the state															
No. of active ≥ level three GHFF camps within a 20km				2 .	4	1		2	1		2		1 :	1.3	
Absence of threats					2		1.5	•		15	•				
Site Context Score				24			19.5			19.5			20		20.5
MAX Site Context Score				56			56			56			56		56
Site Context Score - out of 3															1.10

						-	shooks AU2	DE 12 0 16 A	dvanced Regroy	.ab					
	Benchmark 12.8.16	Kaw pata	Site 470-471	ACCOUNT.		Site 683-684			Site 685-686		Kaw Data	Site 734-735	NOTE THE REAL PROPERTY.	Average % benchmark	Average Score
Adundance or large trees	33	now boto	8 24.2		1	36.4		12	36.4		nuw Dutu	18.2	J.Corc	Denchmark 28.8	
Timing of GHFF Biological Resources				9.25			10	i		9.25			9.25		9.4
Species Stocking Rate Score	•			11.3			12.0			11.3			11.3		11.4
MAX Species Stocking Rate Score				20			20			20			20		20
SRR Score - out of 3															1.72

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AUS RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.26	1.66	0.31	2.31	1.58	2.11	2.18	0.51	1.62
Site Context Score (out of 3)	1.23	1.10	0.96	1.55	1.42	1.77	1.98	1.21	1.40
Species Stocking Rate Score (out of 3)	2.29	1.72	0.00	2.10	1.80	1.85	1.39	0.00	1.39
Habitat Quality score (out of 10)	5.78	4.48	1.27	5.96	4.80	5.73	5.55	1.71	4.41
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES	49.80								
Size Weighting	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	5.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.78

TABOOBA AU2 RE 12.8.16 ADVANCED REGROWTH QUALITY WITH OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITH OFFSET:

Assessment Unit - Regional Ecosystem							Tabooba AU	12 - RE 12.8.16 /	dvanced Regro	wth					
Site Reference	Benchmark		Site 470-471			Site 683-684			Site 685-686			Site 734-735		Average %	
	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Sco
Site Condition															1
Recruitment of woody perennial species in EDL	100	100			5 10			5 5	50.0		5 10		5	87.5	
Native plant species richness - trees		1 3	42.9			5 71.4		5	71.4			6 85.7	2.5	67.9	a
Native plant species richness - shrubs		1 :	71.4		5	3 42.9		5	57.1			1 14.3	3 0	46.4	4
Native plant species richness - grasses		9	128.6		5	8 114.3	:	5	42.9	2	5	5 71.4	2.5	89.3	ŝ
Native plant species richness - forbs	25	29			5 3			5 1	51.7	, 2			1 2.5	81.0) i
Free canopy height	20	10	50.0		5 1	6 80.0	ı :	5	40.0		5 1	50.0	5	55.0	اد
Free subcanopy height			62.5		5	8 100.0	!	5	37.5		5	4 50.0	5	62.5	ś
Free canopy height (average of emergent, canopy, sub-canopy)	14	7.5	53.6		5 1	2 85.7	5.0	5.5	39.3		5 7.	0 50.0	5	57.1	1
Free canopy cover (EDL)	4:	23.5	57.3		5 43.	5 106.1		5	7.3		5 3	5 85.4	5	64.0	ز
Subcanopy cover	17		35.3		5	7 41.2	1	5	17.6	i	5 11.	5 67.6	5 5	40.4	4
Free canopy cover (average of emergent, canopy, sub-canopy)	25	14.8	50.9		5 25.	3 87.1		5 31	10.3		5 23.	3 80.3	5	57.1	i
Shrub canopy cover		1.5	37.5		5 4	5 112.5		5	0.0		5 1	9 475.0	5	156.3	3
Native grass cover	45	3.2			3 4			5 6	135.6		5 2.		3	61.1	
Drganic litter	2	10.8	51.4		5	5 23.8			9.5		5 0.	8 3/		22.1	1
Number of large trees (ha)	3:		24.2		0 1			1	36.4		0	6 18.2	10	28.8	
Coarse woody debris (m/ha)	33	179			5 17			9	28.0		5 7		5	39.1	
Non-native plant cover		1 1	5		5 2			5 3			5 1		5	18.8	
			Value	Score		Value	Score		Value	Score		Value	Score	Average	Average scor
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores (/10)			0.43		5	0.51		8	0.51		8	0.43		0.47	7
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness (/20)			7		D		10	n		1	n .		10	3.50	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness (/20)			2	10	D		10	D	3	i i	0		10	2.75	
Site Condition Score				88			93			88			80.5		90.00
MAX Site Condition Score				130			130			130			130		130
Site Condition Score - out of 4							1			200					2,77
Site Context			Value	Score		Value	Score		Value	Score		Value	Score	Average	Average scor
Size of patch (ha)															†
Remnant			1472.92	ļ.		1472.92	,		1472.92			1472.92	·	1472.9	3
Regrowth			343.6	11	o l	343.6		0	343.6	i 1	D	343.6	il 10	343.6	āl
Connectivity															+
No. active GHFF camps within 20km			3	١.	4		· :	2	2		2		2 2	2.3	3
Context									1						
% GHFF foraging habitat within 20 km			31.9		4	31.6		4	31.6	i	4	31.3	3 4	31.6	د
Cological Corridors					0		-	0			0		C		
Role of site location to species overall population in the state No. of active ≥ level three GHFF camps within a 20km			2		4	:		2	1	ı	2		1 2	13	3
Absence of threats *					9			9			9		9		
														ı	
ite Context Score				31			27			27			27		28
MAX Site Context Score				56			56			56			56	1	56
Site Context Score - out of 3			1											il	1.50

							Tabooba AU	2 - RE 12.8.16 A	dvanced Regro	wth					
	Benchmark		Site 470-471			Site 683-684			Site 685-686			Site 734-735		Average%	
Species Stocking Rate (SSR) **	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees	- 3	3	24.2		12	36.4	€	12	36.4			18.		28.8	
Timing of GHFF Biological Resources				9.25	i i		10			9.25			9.25		9.437
Species Stocking Rate Score MAX Species Stocking Rate Score				15.3 20			16.0 20			15.3 20			15.3 20		15.4 20
SRR Score - out of 3															2.32

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.69	2.77	2.63	2.46	2.55	2.69	2.62	2.92	2.67
Site Context Score (out of 3)	1.50	1.50	1.50	1.82	1.82	2.04	2.25	2.14	1.82
Species Stocking Rate Score (out of 3)	2.29	2.32	1.69	2.40	2.10	2.15	1.39	2.10	2.05
Habitat Quality score (out of 10)	6.48	6.58	5.82	6.68	6.48	6.88	6.25	7.17	6.54
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES	49.80								
Size Weighting	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	6.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.48

TABOOBA AU3 RE 12.8.16 YOUNG REGROWTH START QUALITY FOR GREY-HEADED FLYING-FOX

START SCORE:

Assessment Unit - Regional Ecosystem	- RE 12.8.16 Adva				Tabooba A	U3 - RE 12.8.16 You	ng Regrowth			
Site Reference		Benchmark		Site 687-688			Site 756-757			
	Average Score	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition					i					
Recruitment of woody perennial species in EDL		10	66.7	66.	į :	100	100.0	: 4	83.4	
Native plant species richness - trees	2.			71.	2.5		71.	2.9	71.4	2.
Native plant species richness - shrubs	2.	9		57.	2.5		42.5	2.5	50.0	2.
Native plant species richness - grasses	2.	9		100.0			114.3		107.1	
Native plant species richness - forbs	2.	25	17	58.	2.5	27	93.:		75.5	2.
Tree canopy height		21	15	75.1			40.0		57.5	
Tree subcanopy height				62.			37.		50.0	
Tree canopy height (average of emergent, canopy, sub-canopy)		14	10	71.		5.5	39.3	3.0	55.4	
Tree canopy cover (EDL)		4	28			28			68.3	
Subcanopy cover		1	-	41.		3.5			30.9	
Tree canopy cover (average of emergent, canopy, sub-canopy)		2	17.5	60.		15.75	54.3	5.0	57.3	
Shrub canopy cover				0.0	i (0.0	i d	0.0	
Native grass cover		41	65	140.0			4.		72.7	
Organic litter		2		4.5	1 1	31	18.:	! !	11.4	
Number of large eucalypt trees (ha)		3		6.1	1	3.0	12.:		9.1	
Coarse woody debris (m/ha)		331	277			61	18.		50.3	
Non-native plant cover			30	30	10	10	10.	1	20.0	
	Average score			Value	Score		Value	Score	Average	Average Score
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores				0.51			0.4		0.48	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness	1	1			10		41	10	4	1
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness	1	d			10		2.0	j j	2.50	1
Site Condition Score	71.00				78.5			63		71.5
MAX Site Condition Score	130				130			130		130
Site Condition Score - out of 4	2.18									2.20
Site Context	Average score			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)										
Remnant				1472.	į		1472.9	į	1472.9	
Regrowth	1	d		343.5			343.5		343.5	1
in Growth										
Connectivity										
Connectivity No. active GHFF camps within 20km				,				,		
No. active GHFF camps within 20km										
No. active GHFF camps within 20km Context				32			31		31.0	
Context % GHFF foraging habitat within 20 km				32.			31.		31.5	
No. active GHFF camps within 20km Context % GHFF foraging habitat within 20 km Ecological Corridors				32.			31.		31.9	
No. active GHFF camps within 20km Context % GHFF foraging habitat within 20 km				32:			31.	4	31.4	
No. active GHFF camps within 20km Context % GHFF foraging habitat within 20 km Ecological Corridors Role of site location to species overall population in the state No. of active 2 level three GHFF camps within a 20km	2.			32:			31.	2 4 0 2.5	31.5	2.
No. active GHFF camps within 20km Context % GHFF foraging habitat within 20 km Ecological Corridors Role of site location to species overall population in the state No. of active 2 level three GHFF camps within a 20km Absence of threats	205			32.			31.	205	31.6	-
No. active GHFF camps within 20km Context % GHFF foraging habitat within 20 km Ecological Corridors Role of site location to species overall population in the state No. of active 2 level three GHFF camps within a 20km	2. 20.5 56			32.	20		31.	20.5 56	31.4	2. 20.5 56

	- RE 12.8.16 Adva				Tahaaha Al	U3 - RE 12.8.16 You	ng Rogroudh			
		Benchmark		Site 687-688	Taboobax	03-KE 12.8.10 100	Site 756-757		Average %	
Species Stocking Rate (SSR)	Average Score	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees		33		6.1	2		12.		9.1	
Timing of GHFF Biological Resources	9.4	4		i	9.25		i	9.29		9.29
Species Stocking Rate Score	13.4		Ì	ĺ	11.3		i	11.3		11.3
MAX Species Stocking Rate Score	20			İ	20		İ	20		20
SRR Score - out of 3	2.02			!	1.6875		!	1.6875		1.6875

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.32	2.18	2.20	2.31	2.22	2.46	2.18	0.51	2.05
Site Context Score (out of 3)	1.23	1.10	1.10	1.55	1.42	1.77	1.98	1.34	1.44
Species Stocking Rate Score (out of 3)	1.99	2.02	1.69	2.10	1.80	1.85	1.39	0.00	1.60
Habitat Quality score (out of 10)	5.54	5.30	4.99	5.96	5.44	6.08	5.55	1.85	5.09
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES			48.10					0.00	
Size Weighting	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	1
Weighted Habitat Quality Score	0.00	0.00	4.99	0.00	0.00	0.00	0.00	0.00	4.99

TABOOBA AU3 RE 12.8.16 YOUNG REGROWTH QUALITY WITHOUT OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITHOUT OFFSET:

Assessment Unit - Regional Ecosystem				Tabooba AU	3 - RE 12.8.16 Your	ng Regrowth			
Site Reference	Benchmark		Site 687-688			Site 756-757		Average %	
	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition									
Recruitment of woody perennial species in EDL	10	66.7	66.7	(100	100.0	. (83.4	
Native plant species richness - trees			71.4	2.5	5	71.4	2.5	71.4	2
Native plant species richness - shrubs		4	57.1	2.5	3	42.9	2.5	50.0	2
Native plant species richness - grasses			100.0	2.9	8	114.3	2.5	107.1	2
Native plant species richness - forbs	2	17	58.6	2.5	27	93.1	2.9	75.9	2
Tree canopy height	2	19	75.0	. (8	40.0	, (57.5	
Tree subcanopy height		8 9			3	37.5		50.0	
Tree canopy height (average of emergent, canopy, sub-canopy)	1	4 10			5.5	39.3		55.4	
Tree canopy cover (EDL)	4	28	68.3		28	68.3	(68.3	
Subcanopy cover	1	, ,	41.2		3.5	20.6		30.9	
Tree canopy cover (average of emergent, canopy, sub-canopy)	2	17.5			15.75			57.3	
Shrub canopy cover	_		0.0			0.0		0.0	
Native grass cover	4	6	140.0		2	4.4	1 7	72.2	
Organic litter	2		4.5		38	18.1		11.4	
Number of large trees (ha)	3		6.1		3.0	12.1		9.1	
Coarse woody debris (m/ha)	33				61			50.3	
Non-native plant cover	33	30			10			50.5	
Non-native plant cover			Value	Score		Value	Score	Average	Average Scor
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores	_		0.51			0.49		0.48	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness			0.5.			4.0		4.00	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness						2.0	1	2.50	i
Site Condition Score				10		2.0	10	2.50	10
MAX Site Condition Score				130			130		130
Site Condition Score - out of 4			ł	130			130		0.31
Site Context			Value	Score		Value	Score	Average	Average Scor
Size of patch (ha)									
Remnant			1472.9	j		1472.9	į.	1472.9	:
Regrowth			343.5		1	343.5		343.5	
Connectivity	_						 		<u> </u>
No. active GHFF camps within 20km								2	į
Context			i						i
% GHFF foraging habitat within 20 km			32.1	i .		31.7		31.9	i
Ecological Corridors			<u> </u>						-
Role of site location to species overall population in the state	1	 	 	<u> </u>			<u> </u>		
No. of active ≥ level three GHFF camps within a 20km								1	
Absence of threats	+	 	 				19		
Addence of directs			ļ						
Site Context Score		1	 	19			19.5		18
MAX Site Context Score				56			56		56
Site Context Score - out of 3									0.96
Site Context Score - out of 3			!						

				Tabooba AU	8 - RE 12.8.16 You	ng Regrowth			
	Benchmark		Site 687-688			Site 756-757		Average %	
Species Stocking Rate (SSR)	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees	33	- 2	6.1	(4	12.1		9.1	
Timing of GHFF Biological Resources			l	(Ī			
Species Stocking Rate Score			•	0.0			0.0		0.0
MAX Species Stocking Rate Score			į	20		<u> </u>	20		20
SRR Score - out of 3			İ	0		İ	0		0

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced	Tabooba AU2 RE 12.8.16 Young	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.26	1.66	0.31	2.31	1.58	2.11	2.18	0.53	1.62
Site Context Score (out of 3)	1.23	1.10	0.96	1.55	1.42	1.77	1.98	1.23	1.40
Species Stocking Rate Score (out of 3)	2.29	1.72	0.00	2.10	1.80	1.85	1.39	0.00	1.39
Habitat Quality score (out of 10)	5.78	4.48	1.27	5.96	4.80	5.73	5.55	1.71	4.41
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES			48.10						
Size Weighting	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	1.27	0.00	0.00	0.00	0.00	0.00	1.27

TABOOBA AU3 RE 12.8.16 YOUNG REGROWTH QUALITY WITH OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITH OFFSET:

Assessment Unit - Regional Ecosystem				Tabooba A	U3 - RE 12.8.16 You	ing Regrowth			
Site Reference	Benchmark		Site 687-688			Site 756-757		Average %	
	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Sco
Site Condition									
Recruitment of woody perennial species in EDL	10	0 66.3	66.7	•	100	100.0		83.4	•
Native plant species richness - trees		7	71.4	2.5	9	71.4	2.5	71.4	
Native plant species richness - shrubs		7	57.:	2.5		42.9	2.5	50.0	
Native plant species richness - grasses		7	100.0		8	114.3		107.1	
Native plant species richness - forbs	2	9 1	58.6		27	93.1		75.9	
Tree canopy height	2	0 1	75.0		8	40.0		57.9	
Tree subcanopy height		8	62.5		3	37.5		50.0	
Tree canopy height (average of emergent, canopy, sub-canopy)	1	.4 10	71.4		5.5		5.0	55.4	
Tree canopy cover (EDL)	4	11 21	68.3		28			68.3	
Subcanopy cover	1	7	41.3		3.5			30.9	
Tree canopy cover (average of emergent, canopy, sub-canopy)	2	9 17.5	60.3		15.79	54.3	5.0	57.3	
Shrub canopy cover		4	0.0		(0.0		0.0	
Native grass cover	4	15 6:	140.0	(4.4		72.2	
Organic litter	2	11	4.3		3.8	18.1		11.4	
Number of large trees (ha)	3	3	6.:		4	12.1		9.1	
Coarse woody debris (m/ha)	33	6 27	82.4		61	18.2		50.3	
Non-native plant cover		Q 31	30		10			20.0	
			Value	Score		Value	Score	Average	Average Sco
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores (/10)			0.5			0.49		0.48	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness (/20)				10		4.0	10	4	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness (/20)				10		2.0	10	2.50	•
Site Condition Score				81.5			88		85.5
MAX Site Condition Score			İ	130			130		130
Site Condition Score - out of 4			•	Ì					2.63
Site Context			Value	Score		Value	Score	Average	Average Sco
Size of patch (ha)									
Remnant			1472.9			1472.9		1472.9	
Regrowth			343.5	10		343.5	10	343.5	
Connectivity									
No. active GHFF camps within 20km					2			2	
Context									
% GHFF foraging habitat within 20 km			32.:		4	31.7		31.9	
Ecological Corridors				-					
Role of site location to species overall population in the state	1	1	•	•	İ	•			
No. of active ≥ level three GHFF camps within a 20km			•	•	2	1		1	
Absence of threats *									
	1		i		1				
Site Context Score				27		Ī	27		28
MAX Site Context Score				56			56		56
Site Context Score - out of 3									1.50

				Tabooba Al	J3 - RE 12.8.16 You	ing Regrowth			
	Benchmark		Site 687-688			Site 756-757		Average %	
Species Stocking Rate (SSR) **	12.8.16	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees	33		6.1	. 2	4	12.		9.1	
Timing of GHFF Biological Resources	1			9.25		}	9.29		9.2
Species Stocking Rate Score	Ì		i	11.3	Ĭ		11.3		11.3
MAX Species Stocking Rate Score			1	20		i	20		20
SRR Score - out of 3				1.6875		i	1.6875		1.6875

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced	Tabooba AU2 RE 12.8.16 Young	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.69	2.77	2.63	2.46	2.59	2.69	2.62	2.92	2.67
Site Context Score (out of 3)	1.50	1.50	1.50	1.82	1.82	2.04	2.29	2.14	1.82
Species Stocking Rate Score (out of 3)	2.29	2.32	1.69	2.40	2.10	2.15	1.39	2.10	2.05
Habitat Quality score (out of 10)	6.48	6.58	5.82	6.68	6.48	6.88	6.25	7.17	6.54
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES			48.10						
Size Weighting	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	5.82	0.00	0.00	0.00	0.00	0.00	5.82

TABOOBA AU4 RE 12.8.14 REMNANT START QUALITY FOR GREY-HEADED FLYING-FOX

START SCORE:

Assessment Unit - Regional Ecosystem				Taboob	a AU4 - RE 12.8.1	4 Remnant			
Site Reference	Benchmark		Site 680-681			Site 747-748			-
	12.8.14	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average S
Site Condition						İ			
Recruitment of woody perennial species in EDL	1	00	.00 100	.0	5 66.7	66.7	4 :	83.4	1
Native plant species richness - trees		6	8 13	.3	5 9	150.0		141.7	4
Native plant species richness - shrubs		6	7 116	.7	5 4	66.7	2.5	91.7	7
Native plant species richness - grasses		8	9 113	.5	5 10	125.0		118.8	3
Native plant species richness - forbs		21	26 12		5 46	219.0		171.4	
Tree canopy height		22	18 8	L8	5 19	68.2		75.0	l
Tree subcanopy height		11	10 9		5	45.9		68.2	2
Tree canopy height (average of emergent, canopy, sub-canopy)	1	5.5	14 8	1.8	5 10	60.6		72.7	4
Tree canopy cover (EDL)		16	35 218	.8	3 27	168.8		193.8	3
Subcanopy cover		15	14 9		s	0.0		46.7	
Tree canopy cover (average of emergent, canopy, sub-canopy)	1	5.5 2	4.5 158	.1	5 13.5	87.1	d .	122.6	
Shrub canopy cover	_	4	3 7		9	25.0		50.0	
Native grass cover		58	47 8		3 12			50.9	
Organic litter		30	5 1		3 1			30.0	
Number of large eucalypt trees (ha)	l l	45		3.9	1 7	13.3		31.1	1
Coarse woody debris (m/ha)				3.1	1	13.		19.8	
Non-native plant cover	1	0	10		5 39	1	10	22.5	
	_	1	Value	Score		Value	Score	Average	Average
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores	_	1	0	24	2	0.26		0.25	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness				3.0 1	0	1	2 10	3.50	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness				2.0	5) "	2.00	
Site Condition Score				75			70.5		75
MAX Site Condition Score			1	130		ļ	130		130
Site Condition Score - out of 4			1	250		į	130		2.3
Site Context			Value	Score		Value	Score	Average	Average
Size of patch (ha)			+	+					
Remnant			125	9		1094.8		610.3	
Regrowth			1690		7	721.7	10	1206.1	
Connectivity				-	1		<u> </u>		
No. active GHFF camps within 20km				4	4			4.0)
Context			_	1	1				1
% GHFF foraging habitat within 20 km			3:	5	4	32.4		32.0	,
Ecological Corridors		-			0	JE.		52.0	1
Role of site location to species overall population in the state		-			1		· '		1
No. of active ≥ level three GHFF camps within a 20km	1	1	1	4	d			3.0	1
Absence of threats		1		1	1	·	4	3.0	1—
Absence of direats					9		4.3		
Site Context Score				26			28.5		2
MAX Site Context Score				56			56		56

				Tabooba	AU4 - RE 12.8.1	4 Remnant			
	Benchmark		Site 680-681			Site 747-748		Average %	
Species Stocking Rate (SSR)	12.8.14	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees Timing of GHFF Biological Resources	45	22	48.9	4 10	6	13.3	10	31.1	4 10
Species Stocking Rate Score			i	14.0		į	12.0		14.0
MAX Species Stocking Rate Score				20		!	20		20
SRR Score - out of 3				ì		i	i		2.1

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.32	2.18	2.20	2.31	2.22	2.46	2.18	0.51	2.05
Site Context Score (out of 3)	1.23	1.10	1.10	1.55	1.42	1.77	1.98	1.34	1.44
Species Stocking Rate Score (out of 3)	1.99	2.02	1.69	2.10	1.80	1.85	1.39	0.00	1.60
Habitat Quality score (out of 10)	5.54	5.30	4.99	5.96	5.44	6.08	5.55	1.85	5.09
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES				50.62				0.00	
Size Weighting	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	l
Weighted Habitat Quality Score	0.00	0.00	0.00	5.96	0.00	0.00	0.00	0.00	5.96

TABOOBA AU4 RE 12.8.14 REMNANT QUALITY WITHOUT OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITHOUT OFFSET:

Assessment Unit - Regional Ecosystem				Tabooba	a AU4 - RE 12.8.1	4 Remnant			
Site Reference	Benchmark		Site 680-681			Site 747-748		Average %	
	12.8.14	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Scor
Site Condition									i
Recruitment of woody perennial species in EDL	100	100	100.0	i :	66.7	66.7	•	83.4	į
Native plant species richness - trees		8	133.3		9	150.0	(:	141.7	İ
Native plant species richness - shrubs		7	116.7	!	4	66.7	2.5	91.7	ļ
Native plant species richness - grasses		9	112.5		10	125.0	i i	118.8	!
Native plant species richness - forbs	2:	26	123.8		46	219.0		171.4	İ
Tree canopy height	22	18 10	81.8		15	68.2	1	75.0	ł
Tree subcanopy height	11	10	90.9		9	45.5	i i	68.2	İ
Tree canopy height (average of emergent, canopy, sub-canopy)	16.9	14			10	60.6		72.7	i
Tree canopy cover (EDL)	16	35	218.8		27	168.8		193.8	ŀ
Subcanopy cover	15	14	93.3	i :		0.0		46.7	i
Tree canopy cover (average of emergent, canopy, sub-canopy)	15.5	24.5	158.1		13.5	87.1		122.6	İ
Shrub canopy cover		3	75.0		1	25.0	l .	50.0	l
Native grass cover	58	47	81.0	i :	12	20.7		50.9	į
Organic litter	30	9	16.7		13	43.3		30.0	i
Number of large trees (ha)	49	22				13.3		31.1	
Coarse woody debris (m/ha)	336	128				1.5		19.8	
Non-native plant cover		10			35		10	22.5	
			Value	Score		Value	Score	Average	Average Scor
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores			0.24		2	0.26		0.25	!
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness			3.0	10			10	3.50	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness			2.0		9			2.00	l
Site Condition Score				75		ļ	70.5		75
MAX Site Condition Score				130		į	130		130
Site Condition Score - out of 4				•		l			2.31
Site Context			Value	Score		Value	Score	Average	Average Scor
Size of patch (ha)								_	
Remnant			125.9	l		1094.8		610.3	
Regrowth			1690.6		,	721.7	10	1206.1	
Connectivity									
No. active GHFF camps within 20km			4		4			4.0	l
Context									
% GHFF foraging habitat within 20 km			31.5		4	32.4		32.0	l
Ecological Corridors									
Role of site location to species overall population in the state									
No. of active ≥ level three GHFF camps within a 20km			3					3.0	ł
Absence of threats					4		3.5		
Site Context Score				25			27.5		29
MAX Site Context Score				56			56		56

				Tabooba	AU4 - RE 12.8.1	4 Remnant			
	Benchmark		Site 680-681			Site 747-748		Average %	
Species Stocking Rate (SSR)	12.8.14	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees	45	22	48.9	4		13.3		31.1	4
Timing of GHFF Biological Resources	1			10	1	ŀ	10		10
Species Stocking Rate Score	Ì	Ì		14.0			12.0		14.0
MAX Species Stocking Rate Score				20		i	20		20
SRR Score - out of 3							1		2.1

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	AU2 RE 12.8.16 Advanced	AU2 RE 12.8.16 Young	Tabooba AU4 RE 12.8.14 Remnant	AU5 RE 12.8.14 Advanced	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.26	1.66	0.31	2.31	1.58	2.11	2.18	0.51	1.62
Site Context Score (out of 3)	1.23	1.10	0.96	1.55	1.42	1.77	1.98	1.21	1.40
Species Stocking Rate Score (out of 3)	2.29	1.72	0.00	2.10	1.80	1.85	1.39	0.00	1.39
Habitat Quality score (out of 10)	5.78	4.48	1.27	5.96	4.80	5.73	5.55	1.71	4.41
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES				50.62					
Size Weighting	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	5.96	0.00	0.00	0.00	0.00	5.96

TABOOBA AU4 RE 12.8.14 REMNANT QUALITY WITH OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITH OFFSET:

Site Reference	Benchmark 12.8.14	Raw Data	Site 680-681	Score	Raw Data	Site 747-748	Score	Average % benchmark	Average Score
Site Condition	12.0.14	Kaw Data	% Benchmark	Score	Raw Data	% Benchmark	score	Deficilitation	Average Score
Recruitment of woody perennial species in EDL	10	100	100.0		66.7	66.7		83.4	
Native plant species richness - trees	10	100	133.3		00.7	150.0		141.7	
Native plant species richness - shrubs]	116.7		1 7	66.7		91.7	
Native plant species richness - grasses		1 3	112.5		10			118.8	
Native plant species richness - forbs	2	26	123.8		46			171.4	
Tree canopy height	2	18			15			75.0	
Tree subcanopy height	1	10				45.5		68.2	
Tree canopy height (average of emergent, canopy, sub-canopy)	16.5				10			72.7	
Tree canopy cover (EDL)	10		218.8		27	168.8		193.8	
Subcanopy cover	11				1	0.0		46.7	
Tree canopy cover (average of emergent, canopy, sub-canopy)	15.5				13.5			122.6	
Shrub canopy cover	13	1 243	75.0		15.5			50.0	
Native grass cover		47			12			50.9	
Organic litter	3	1 "	16.7		13			30.0	
Number of large trees (ha)	3	22		10		13.3		31.1	
Coarse woody debris (m/ha)	33			10	Š			19.8	
Non-native plant cover	33	10	30.2		35			22.5	
Non-hative plant cover			Value	Score		Value	Score	Average	Average Score
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores (/10)			0.24			0.26		0.25	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores (/20)			3.0		1	0.20	1.	3.50	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness (/20) Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness (/20)			2.0	1	1			2.00	
Site Condition Score			2.0	85			83	2.00	80
MAX Site Condition Score			1	130			130		130
Site Condition Score - out of 4			i	130			130		2.46
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)									
Remnant			125.9			1094.8		610.3	
Regrowth			1690.6		7	721.7	10	1206.1	. 10
Connectivity									
No. active GHFF camps within 20km			4		4		4	4.0	
Context									
% GHFF foraging habitat within 20 km			31.5		4	32.4		32.0	
Ecological Corridors				-					
Role of site location to species overall population in the state									
No. of active ≥ level three GHFF camps within a 20km			3		4	3	4	3.0	
Absence of threats *	i i								10
Ausence of threats									
				30			33		34
Ausence of unless Site Context Score MAX Site Context Score				30 56			33 56		34 56

				Tabooba	AU4 - RE 12.8.1	4 Remnant			
	Benchmark		Site 680-681			Site 747-748		Average %	
Species Stocking Rate (SSR) **	12.8.14	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees	45	22	48.9	(-	13.3		31.1	
Timing of GHFF Biological Resources		ļ		10			10		10
Species Stocking Rate Score			•	16.0		1	14.0		16.0
MAX Species Stocking Rate Score				20			20		20
SRR Score - out of 3									2.4

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.69	2.77	2.63	2.46	2.55	2.69	2.62	2.92	2.67
Site Context Score (out of 3)	1.50	1.50	1.50	1.82	1.82	2.04	2.29	2.14	1.82
Species Stocking Rate Score (out of 3)	2.29	2.32	1.69	2.40	2.10	2.19	1.39	2.10	2.05
Habitat Quality score (out of 10)	6.48	6.58	5.82	6.68	6.48	6.88	6.25	7.17	6.54
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES				50.62					
Size Weighting	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	6.68	0.00	0.00	0.00	0.00	6.68

TABOOBA AU5 RE 12.8.14 ADVANCED REGROWTH START QUALITY FOR GREY-HEADED FLYING-FOX

START SCORE:

- 5

Assessment Unit - Regional Ecosystem					Tabooba AU	15 - 12.8.14 Advar	nced Regrowth			
Site Reference	Benchmark			Site 736-737			Site 751-752			
	12.8.14	R	aw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average S
Site Condition					•					
Recruitment of woody perennial species in EDL		100	100	100.0	4	5 100	100.0	4 9	100.0	4
Native plant species richness - trees		6	8	133.3	d	5 8	133.3		133.3	
Native plant species richness - shrubs		6	g	150.0	i	5	116.7		133.3	
Native plant species richness - grasses		8	g	112.5	ı	5 9	112.5		112.5	l
Native plant species richness - forbs		21	27	128.6		5 48	228.6		178.6	l
Tree canopy height		22	12	54.5		3 10	45.5		50.0	
Tree subcanopy height		11	6	54.5		3	45.5		50.0	
Tree canopy height (average of emergent, canopy, sub-canopy)	1	16.5	9	54.5	4	3 7.5			50.0	
Tree canopy cover (EDL)		16	44	275.0		3 40.5			264.1	
Subcanopy cover (EDE)	1	15	44	33.3		2 10.5			51.7	
Tree canopy cover (average of emergent, canopy, sub-canopy)	1	15.5	24.5	158.1	1	5 25.5			161.3	
Shrub canopy cover (average of efficiency, canopy, sub-canopy)		4	24.3	50.0		23.3	25.0		37.5	
Native grass cover		58	29	50.0		3 16			38.8	
Organic litter		30	1	3.3		1 1	20.0		11.7	
		45	.1		!]	1	1	15.6	
Number of large eucalypt trees (ha)		336	10 176	22.2 52.4		5 146	8.5 43.5		15.6 47.9	
Coarse woody debris (m/ha) Non-native plant cover		336	20		1	5 146		1 :	47.9 20.0	
NOT-Hative plant cover		4		Value	Score	2	Value	Score	Average	Average
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores		-		0.31			Value 0.21			_
				0.31	1	5	0.2	: :	0.26	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness					1] "	3.50	3
					1	2		1		1
Site Condition Score					76			69		72
MAX Site Condition Score Site Condition Score - out of 4					130		i	130		130 2.2
Site Condition Score - out of 4 Site Context		-		Value	Score		Value	Score	Average	Average
Size of patch (ha)		+		value	score		value	Score	Average	Average
Remnant				1472.9			1472.9		1472.9	
				343.5	1	0	343.5	10	343.5	
Regrowth Connectivity		-		343.3	1	U .	343.3	10	343.3	
No. active GHFF camps within 20km									3.5	
Context		-				•	· ·	-	3.3	1
% GHFF foraging habitat within 20 km				32.2			31.9		32.1	
		4		32.4		4	31.3		32.1	
Ecological Corridors	_	-				ч				
Role of site location to species overall population in the state No. of active ≥ level three GHFF camps within a 20km	1								25	1
		+		-		9			2.5	1
Absence of threats						3				
Site Context Score					31			21		26.
MAX Site Context Score					56			56		56
Site Context Score - out of 3										1.4

				Tabooba AU	5 - 12.8.14 Advar	iced Regrowth			
	Benchmark		Site 736-737			Site 751-752		Average %	
Species Stocking Rate (SSR)	12.8.14	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees Timing of GHFF Biological Resources	45	10	22.2	2 10	4	8.9	10	15.6	10
Species Stocking Rate Score	2			12.0		İ	12.0		12.0
MAX Species Stocking Rate Score				20			20		20
SRR Score - out of 3				ì		i	1		1.8

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.32	2.18	2.20	2.31	2.22	2.46	2.18	0.51	2.05
Site Context Score (out of 3)	1.23	1.10	1.10	1.55	1.42	1.77	1.98	1.34	1.44
Species Stocking Rate Score (out of 3)	1.99	2.02	1.69	2.10	1.80	1.85	1.39	0.00	1.60
Habitat Quality score (out of 10)	5.54	5.30	4.99	5.96	5.44	6.08	5.55	1.85	5.09
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES					19.80			0.00	
Size Weighting	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	5.44	0.00	0.00	0.00	5.44

TABOOBA AU5 RE 12.8.14 ADVANCED OFFSET QUALITY WITHOUT OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITHOUT OFFSET:

- 5

Assessment Unit - Regional Ecosystem				Tabooba AU	5 - 12.8.14 Advar	ced Regrowth			
Site Reference	Benchmark		Site 736-737			Site 751-752			
	12.8.14	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Sci
Site Condition			1	1		ŀ	İ		
Recruitment of woody perennial species in EDL	10	0 10	100.0		100	100.0	, i	100.0	
Native plant species richness - trees		e :	133.3		8	133.3	:	133.3	
Native plant species richness - shrubs		€ :	150.0	2.5	7	116.7	2.5	133.3	
Native plant species richness - grasses		8	112.5	2.5	9	112.5	2.5	112.5	
Native plant species richness - forbs	2	1 2		2.5	48	228.6	2.5	178.6	
Tree canopy height	2	2 1	54.5		10	45.5		50.0	
Tree subcanopy height	1	1	54.5		9	45.5	4 :	50.0	
Tree canopy height (average of emergent, canopy, sub-canopy)	16.	9	54.5		7.5	45.5		50.0	
Tree canopy cover (EDL)	1	6 4	275.0	9	40.5	253.:	4 !	264.1	
Subcanopy cover	1	5	33.3		10.5	70.0	i :	51.7	
Tree canopy cover (average of emergent, canopy, sub-canopy)	15.	5 24.	158.1		25.5	164.5		161.3	
Shrub canopy cover		4	50.0	(1	25.0		37.5	
Native grass cover	5	8 2	50.0		16	27.6	9 :	38.8	
Organic litter	3	o .	3.3		€	20.0	:	11.7	
Number of large trees (ha)	4	5 1	22.2	4 :	4	8.9	i :	15.6	
Coarse woody debris (m/ha)	33	6 17	52.4		146	43.5		47.9	
Non-native plant cover		0 2	i	1	20	į		20.0	
			Value	Score		Value	Score	Average	Average S
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores			0.31			0.2:		0.26	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness			4		5	:		3.50	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness			1		9		!	2.00	
Site Condition Score				56.5		i	51.5		51.5
MAX Site Condition Score			i	130		į	130	l	130
Site Condition Score - out of 4			l	l		į	į	i	1.58
Site Context			Value	Score		Value	Score	Average	Average S
Size of patch (ha)			l						
Remnant		1	1472.9			1472.9		1472.9	
Regrowth			343.5	10		343.5	10	343.5	
Connectivity									
No. active GHFF camps within 20km			5		9		2	3.5	
Context									
% GHFF foraging habitat within 20 km			32.2	4	4	31.9	4	32.1	
Ecological Corridors				((
Role of site location to species overall population in the state									
No. of active ≥ level three GHFF camps within a 20km			4	1 8	9		1 :	2.5	
Absence of threats				1.5			1.5		
Site Context Score				29.5			19.5		26.5
MAX Site Context Score				56			56		56
									1.42

				Tabooba AU	5 - 12.8.14 Advan	nced Regrowth			
	Benchmark		Site 736-737			Site 751-752		Average %	
Species Stocking Rate (SSR)	12.8.14	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees	45	10	22.2	2	4	8.9		15.6	
Timing of GHFF Biological Resources	1			10	1	İ	10		10
Species Stocking Rate Score	-			12.0		ł	12.0	Ì	12.0
MAX Species Stocking Rate Score	l			20		į	20		20
SRR Score - out of 3				İ		İ			1.8

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.26	1.66	0.31	2.31	1.58	2.11	2.18	0.51	1.62
Site Context Score (out of 3)	1.23	1.10	0.96	1.55	1.42	1.77	1.98	1.21	1.40
Species Stocking Rate Score (out of 3)	2.29	1.72	0.00	2.10	1.80	1.85	1.39	0.00	1.39
Habitat Quality score (out of 10)	5.78	4.48	1.27	5.96	4.80	5.73	5.55	1.71	4.41
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES					19.80				
Size Weighting	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	4.80	0.00	0.00	0.00	4.80

TABOOBA AU5 RE 12.8.14 ADVANCED REGROWTH QUALITY WITH OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITH OFFSET:

Assessment Unit - Regional Ecosystem				Tabooba AL	5 - 12.8.14 Adva	nced Regrowth			
Site Reference	Benchmark		Site 736-737			Site 751-752		Average %	
	12.8.14	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score		Average Score
Site Condition						i	•		
Recruitment of woody perennial species in EDL	10	100	100.0	į.	5 100	100.0		100.0	
Native plant species richness - trees			133.3	į	5 1	133.3	3	133.3	
Native plant species richness - shrubs		9	150.0	İ	5	116.7	4	133.3	
Native plant species richness - grasses		9	112.5		5 9	112.5		112.5	
Native plant species richness - forbs	2	27	128.6		5 48			178.6	
Tree canopy height	2	12	54.5		5 10	45.9		50.0	
Tree subcanopy height	1		54.9		5 !	45.5		50.0	
Tree canopy height (average of emergent, canopy, sub-canopy)	16.		54.9		5 7.5	45.5		50.0	
Tree canopy cover (EDL)	1	44	275.0		3 40.5	253.1		264.1	
Subcanopy cover	1		33.3		5 10.5	70.0	× .	51.7	
Tree canopy cover (average of emergent, canopy, sub-canopy)	15.	24.5	158.1		5 25.5	164.5		161.3	
Shrub canopy cover		1 :	50.0	i	ς .	1 25.0	,	37.5	
Native grass cover	5	25			3 16			38.8	
Organic litter	3	-	3.3		5			11.7	
Number of large trees (ha)	4	10				8.9		15.6	
Coarse woody debris (m/ha)	33	176			5 146			47.9	
Non-native plant cover	33	20		Ì	20		1	20.0	
non native plant core.			Value	Score		Value	Score	Average	Average Score
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores (/10)			0.31			0.21		0.26	· · · · · · · · · · · · · · · · · · ·
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness (/20)			0.3	,	1	0.2.	1 1	3.50	10
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness (/20)			1	1 1		1	1 1	2.00	1
Site Condition Score				88	1	i '	80	2.00	83
MAX Site Condition Score			i	130		i	130		130
Site Condition Score - out of 4			ł	130		ł	130		2.55
Site Context			Value	Score		Value	Score	Average	Average Score
Size of patch (ha)			voide	Score	1	value	Score	Arciuge	Average score
Remnant			1472.9			1472.9		1472.9	
Regrowth			343.5	1	2	343.5		343.5	10
Connectivity			343.3	1	1	343	, 1	343.3	
No. active GHFF camps within 20km								3.5	
•				1		ļ .	1 1	3.2	
Context			32.2		4	31.9		32.1	
% GHEE forgaing habitat within 20 km			32.2			31.	1 1	32.1	
% GHFF foraging habitat within 20 km					4				
Ecological Corridors									
Ecological Corridors Role of site location to species overall population in the state No. of active ≥ level three GHFF camps within a 20bm			4		8	:	1 :	2.5	
Ecological Corridors Role of site location to species overall population in the state No. of active ≥ level three GHFF camps within a 20km			4		9	:	1	2.5	1
Ecological Corridors Role of site location to species overall population in the state No. of active 2 level three GHFF camps within a 200m Absence of threats *			4	37	9		27	2.5	34
Ecological Corridors Role of site location to species overall population in the state			4	37 56	8	:	27 56	2.5	

				Tabooba AU	5 - 12.8.14 Adva	nced Regrowth			
	Benchmark		Site 736-737			Site 751-752		Average %	
Species Stocking Rate (SSR) **	12.8.14	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees	45	10	22.2		4	8.9		15.6	,
Timing of GHFF Biological Resources				10	i		10		10
Species Stocking Rate Score				16.0			14.0		14.0
MAX Species Stocking Rate Score				20			20		20
SRR Score - out of 3									2.10

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.69	2.77	2.63	2.46	2.55	2.69	2.62	2.92	2.67
Site Context Score (out of 3)	1.50	1.50	1.50	1.82	1.82	2.04	2.29	2.14	1.82
Species Stocking Rate Score (out of 3)	2.29	2.32	1.69	2.40	2.10	2.19	1.39	2.10	2.05
Habitat Quality score (out of 10)	6.48	6.58	5.82	6.68	6.48	6.88	6.25	7.17	6.54
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES Size Weighting	0.00	0.00	0.00	0.00	19.80 1.00	0.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	6.48	0.00	0.00	0.00	6.48

GREENRIDGE AU4 RE 12.3.20 REMNANT START QUALITY FOR GREY-HEADED FLYING-FOX

START SCORE:

Assessment Unit - Regional Ecosystem							Gree	enridge AU4 - RE	12.3.20 Rer	nnant				
Site Reference	Benchmark			Site 931-932				Site 964-965			Site 966-967			ļ
	12.3.20		Raw Data	% Benchmark	Score		Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average
Site Condition						_								1
Recruitment of woody perennial species in EDL		100	50	50.0		- 1	100	100.0	į.	10	100		83.3	4
Native plant species richness - trees		4	3	75.0		2.5	į	50.0	2.5		179		100.0	į.
Native plant species richness - shrubs		4		25.0		2.5		50.0	2.5	. 4	100		58.3	3
Native plant species richness - grasses		2	3	150.0		- 1		50.0	2.5		200		133.3	ş i
Native plant species richness - forbs		8		50.0		2.5		75.0			62.5		62.5	
Tree canopy height		16	18			7	19	93.		29			120.8	
Tree subcanopy height		8	-	62.5		- 1	7	100.0		19			116.7	
Tree canopy height (average of emergent, canopy, sub-canopy)		12	11.5			1	11.5	95.		20			119.4	
Tree canopy cover (EDL)		70	99.5				73.0	105.1	i	83		i .	122.0	
Subcanopy cover		20	1.5			-1		40.0		34	170		72.5	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	50.5			J	40.8	90.	l	58.5			111.0	
Shrub canopy cover		15	0.5			-1	****	46.	i	11			41.3	1
Native grass cover		20	16.2	81.0		- 1	31.0			61.8			181.7	
Organic litter		30	47	156.7		-1	31			30			127.8	
Number of large eucalypt trees (ha)		165	12			.1	130			58	35.2		63.0	
		890	26	75.2 29.2		10				16				
Coarse woody debris (m/ha)		890	26	29.2		.1	315.0	35.4	١	16	18.5	1	27.7	
Non-native plant cover		ď		Value	Score	10		Value	Score	,	Value	Score	Average	Average
		_			score	4								
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores				0.29		- 1		0.44	1	1	0.44	1 1	0.39	1
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness				1.0		- 1		1.0	1	1	4	10		4
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness				1.0		-1		1.0		1		10	1.7	1
Site Condition Score					70.5				75		•	84.5		80.
MAX Site Condition Score				•	130				130		•	130		130.
Site Condition Score - out of 4									i		ł	1		2.5
Site Context				Value	Score			Value	Score		Value	Score	Average	Average
Size of patch (ha)				•								i		
Remnant				781.3				781.3			781.3		781.3	
Regrowth				105.0		10		105.0	1	4	105.0	10	105.0	1
Connectivity														
No. active GHFF camps within 20km				7.0		- 1		7.1		1	6		6.7	7
Context														
% GHFF foraging habitat within 20 km				17.2		- 1		17.		1	17.1		17.3	1
Ecological Corridors														
Role of site location to species overall population in the state						_								1
No. of active ≥ level three GHFF camps within a 20km				1.0		- 1		10		1			1.0	0
Absence of threats		-				7						3.0		t —
				:	1	- 1			:	1	:	-	1	1
Site Context Score					34				34			29.5		33.0
MAX Site Context Score					56				56			56		56
Site Context Score - out of 3									~			~		1.7

	Greenridge AU4 - RE 12.3.20 Remnant											
	Benchmark Site 931-932 Site 964-965 Site 966-967 Average %											
Species Stocking Rate (SSR)	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees Timing of GHFF Biological Resources	16	124.0	75.2	6.0 4.5	130	78.8	8.0 4.5	58	35.3	2 10	63.05	6.3
Species Stocking Rate Score		ì	Ī	10.5			12.5		Ī	14.0		12.3
MAX Species Stocking Rate Score SRR Score - out of 3			ļ	20			20			20		20 1.85

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.32	2.18	2.20	2.31	2.22	2.46	2.18	0.51	2.05
Site Context Score (out of 3)	1.23	1.10	1.10	1.55	1.42	1.77	1.98	1.34	1.44
Species Stocking Rate Score (out of 3)	1.99	2.02	1.69	2.10	1.80	1.85	1.39	0.00	1.60
Habitat Quality score (out of 10)	5.54	5.30	4.99		5.44	6.08	5.55	1.85	5.09
Assessment Unit area in the offset area (ha)	49.80	145.02	48.3	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES						28.22		0.00	
Size Weighting	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	6.08	0.00	0.00	6.08

GREENRIDGE AU4 RE 12.3.20 REMNANT QUALITY WITHOUT OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITHOUT OFFSET:

Assessment Unit - Regional Ecosystem						Greenridge AU	4 - RE 12.3.20 I	Remnant				
Site Reference	Benchmark		Site 931-932			Site 964-965			Site 966-967			
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition							!			i		
Recruitment of woody perennial species in EDL	10	50	50.0		100	100.0	o <mark>!</mark>	100	10	D <mark>i</mark>	83.3	
Native plant species richness - trees		4 3	75.0			50.0		7	17		100.0	i
Native plant species richness - shrubs		4 1	25.0	2.5	2	50.0	2.5	4	10	9	58.3	2
Native plant species richness - grasses		2	150.0	2.5	1	50.0	2.5	4	20	2.5	133.3	2
Native plant species richness - forbs		8 4	50.0	(6	75.0	2.5		62.	5 2.5	62.5	
Tree canopy height	1	5 18	112.5		15	93.	s :	25	156.25	s l 9	120.8	1
Tree subcanopy height		8 9	62.5		8	100.0) ! 9	15	187.		116.7	!
Tree canopy height (average of emergent, canopy, sub-canopy)	1	11.5	95.8		11.5	95.	3 9	20	166.	7 9	119.4	ļ
Tree canopy cover (EDL)	7	99.9	142.1		73.6	105.:		83	118.6	5 9	122.0	i
Subcanopy cover	2	1.5	7.5		2 8			34	17	9	72.5	
Tree canopy cover (average of emergent, canopy, sub-canopy)	4	50.5	112.2		40.8	90.	7 9	58.5	130.0	9	111.0	İ
Shrub canopy cover	1	0.9	3.3		7	46.	/ :	11	73.	3 5	41.1	İ
Native grass cover	2				31.0	155.0		61.8			181.7	l
Organic litter	3	47	156.7		38		,	30	10	ol s	127.8	
Number of large trees (ha)	16	124	75.2	10	130			58			63.0	
Coarse woody debris (m/ha)	89				315.0			165			27.7	
Non-native plant cover		0 2			0			103		1 :	27.7	
non naute plant core			Value	Score		Value	Score		Value	Score	Average	Average Score
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores			0.3			0.	1		0.	4	0.4	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness			1.0		1	1/				10	2.0	i
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness			1.0			1/			1	10	1.7	
Site Condition Score				58.5		1	66			83		68.5
MAX Site Condition Score			1	130		1	130		1	130		130.0
Site Condition Score - out of 4			ŀ	150		ŀ	130		!	130		2.1
Site Context			Value	Score	-	Value	Score		Value	Score	Average	Average Score
Size of patch (ha)			i						i	i		
Remnant			781.3			781.3			781.3	i l	781.3	
Regrowth			105.0	10)	105.0	10		105.0	10	105.0	1
Connectivity									1	1		
No. active GHFF camps within 20km			7.0		3	7.1) 8		1	6 6	6.7	1
Context												
% GHFF foraging habitat within 20 km			17.2		2	17.	1 2		17.	1 2	17.1	
Ecological Corridors							- 6			6		
Role of site location to species overall population in the state												
No. of active ≥ level three GHFF camps within a 20km			1.0		2	1.0) :			1 2	1.0	ł
				9	5					2.5		
Absence of threats									l	1		
Absence of threats Site Context Score				33	Ì		33		i	28.5		33.0
				33 56			33 56			28.5 56		33.0 56 1,77

						Greenridge AU	4 - RE 12.3.20 F	Remnant				
	Benchmark		Site 931-932			Site 964-965			Site 966-967		Average %	
Species Stocking Rate (SSR)	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees	16	124.0	75.2		130	78.8	8.0	58	35.		63.05	
Timing of GHFF Biological Resources			i	4.5	i	i	4.5		i	10		6.33
Species Stocking Rate Score			Ì	12.5		Ì	12.5		Ì	16.0		12.3
MAX Species Stocking Rate Score			1	20		1	20			20		20
SRR Score - out of 3	•		ļ	1		ļ			ł			1.85

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.26	1.66	0.31	2.31	1.58	2.11	2.18	0.51	1.62
Site Context Score (out of 3)	1.23	1.10	0.96	1.55	1.42	1.77	1.98	1.21	1.40
Species Stocking Rate Score (out of 3)	2.29	1.72	0.00	2.10	1.80	1.85	1.39	0.00	1.39
Habitat Quality score (out of 10)	5.78	4.48	1.27	5.96	4.80	5.73	5.55	1.71	4.41
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES Size Weighting	0.00	0.00	0.00	0.00	0.00	28.22 1.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	5.73	0.00	0.00	5.73

GREENRIDGE AU4 RE 12.3.20 REMNANT QUALITY WITH OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITH OFFSET:

Assessment Unit - Regional Ecosystem					G	reenridge AU4 -	RE 12.3.20 F	Remnant				
Site Reference	Benchmark		Site 931-932			Site 964-965			Site 966-967		Average %	
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition												
Recruitment of woody perennial species in EDL	10	50	50.0	5	100	100.0		100	10	5	83.3	3
Native plant species richness - trees		4 3	75.0	2.5	2	50.0	2.5		17	5 5	100.0	0
Native plant species richness - shrubs		4 1	25.0	2.5	2	50.0	2.5		10	5	58.3	3 2
Native plant species richness - grasses		2 3			1		5	4			133.3	
Native plant species richness - forbs		4	1 50.0	2.5	6		2.5			5 5	62.5	5
Tree canopy height	1	18	112.5	5	15	93.8		25	156.2	5 5	120.8	В
Tree subcanopy height		9 5	62.5	5	8	100.0		15	187.	5 5	116.7	7
Tree canopy height (average of emergent, canopy, sub-canopy)	1	11.5	95.8	5	11.5	95.8		20		7 5	119.4	4
Tree canopy cover (EDL)	7	99.5	142.1	. 5	73.6	105.1	5	83	118.0	5 5	122.0	0
Subcanopy cover	2	1.5	7.5	. 2	8	40.0		34	17	5	72.5	5
Tree canopy cover (average of emergent, canopy, sub-canopy)	4	50.5	112.2	5	40.8	90.7	5	58.5	130.0	5	111.0	0
Shrub canopy cover	1			3	7	46.7		- 11	73.	5	41.1	1
Native grass cover	2	16.2			31.0			61.8			181.7	7
Organic litter	3				38			30	10	5	127.8	8
Number of large trees (ha)	16	124	75.2	10	130	78.8	10	58	35.	10	63.0	d
Coarse woody debris (m/ha)	89				315.0	35.4		165			27.7	
Non-native plant cover	-	1		10	0.20.0		10		-	10	2.0	
			Value	Score		Value	Score		Value	Score	Average	Average Score
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores (/10)			0.			0.4			0.	1 5	0.4	4
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness (/20)			1.0			1.0			-	10	2.0	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness (/20)			1.0			1.0				10	1.7	
Site Condition Score				80.5			82.5			100		87.5
MAX Site Condition Score				130			130			130		130.0
Site Condition Score - out of 4												2.7
Site Context			Value	Score		Value	Score		Value	Score	Average	Average Score
Size of patch (ha)												
Remnant			781.3	:		781.3			781.3	8	781.3	3
Regrowth			105.0	10		105.0	10		105.0	10	105.0	0
Connectivity												
No. active GHFF camps within 20km			7.0	8		7.0	8			6	6.7	7
Context												
% GHFF foraging habitat within 20 km			17.2	2		17.1	2	4	17.	1 2	17.1	1
Ecological Corridors			1	6			6			6		
Role of site location to species overall population in the state												
No. of active ≥ level three GHFF camps within a 20km		l	1.0	2	1	1.0	2			1 2	1.0	o
Absence of threats *	i i	İ		10			10	1		10		
		l			1	l						
								1				38.0
Site Context Score				38			38			36		
Site Context Score MAX Site Context Score				38 56			38 56			36 56		56

	Greenridge AU4 - RE 12.3.20 Remnant											
Species Stocking Kate (SSK) **	Benchmark 12.3.20	Kaw Data	Site 931-932 % Benchmark	score	Kaw Data	Site 964-965 % Benchmark	ocore	Kaw Data	Site 966-967 % Benchmark	Score	Average % benchmark	Average Score
Abundance of large trees	165	124.0	75.	a.	130	78.8	8.0	58	35.2	0	63.05	
Timing of GHFF Biological Resources				4.5			4.5			10		6.33
Species Stocking Rate Score				12.5			12.5			16.0		14.3
MAX Species Stocking Rate Score				20			20			20		20
SRR Score - out of 3	1											2.15

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.69	2.77	2.63	2.46	2.55	2.69	2.62	2.92	2.67
Site Context Score (out of 3)	1.50	1.50	1.50	1.82	1.82	2.04	2.25	2.14	1.82
Species Stocking Rate Score (out of 3)	2.29	2.32	1.69	2.40	2.10	2.15	1.39	2.10	2.05
Habitat Quality score (out of 10)	6.48	6.58	5.82	6.68	6.48	6.88	6.25	7.17	6.54
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES						28.22			
Size Weighting	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	6.88	0.00	0.00	6.88

GREENRIDGE AU5 RE 12.3.20 REGROWTH START QUALITY FOR GREY-HEADED FLYING-FOX

START SCORE:

Assessment Unit - Regional Ecosystem				Greenridge	AU5 - RE 12.3	3.20 Regrowth			
Site Reference	Benchmark		Site 974-975			Site 923-924			
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition									1
Recruitment of woody perennial species in EDL	100	100	100.0		100	100.0		100.0	
Native plant species richness - trees	4	8	200.0		4	100.0		150.0	
Native plant species richness - shrubs	4	4	100.0		9 !	125.0		112.5	
Native plant species richness - grasses	2	5	250.0		:	150.0		200.0	
Native plant species richness - forbs	8	10	125.0			87.5	2.5	106.3	
Tree canopy height	16	11	68.8			37.5		53.1	
Tree subcanopy height	8	7	87.5			37.5		62.5	
Tree canopy height (average of emergent, canopy, sub-canopy)	12	9	75.0	ł .	4.5			56.3	
Tree canopy cover (EDL)	70	57			44.5			72.5	
Subcanopy cover	20	22			3.5			63.8	
Tree canopy cover (average of emergent, canopy, sub-canopy)	45	39.5			24			70.6	
Shrub canopy cover	15	5.5] [13.3		25.0	
Native grass cover	20	9.2	46.0		1 3			115.5	
	30	85.2						165.3	
Organic litter		85.2	284.0		14		: 1		
Number of large eucalypt trees (ha)	165	8	4.8		10			5.5	
Coarse woody debris (m/ha)	890		0.0	1 '	10	0.0	1 1	0.0	
Non-native plant cover	,	5			10				
			Value	Score		Value	Score	Average	Average score
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores			0.11	1	4	0.44	1 1	0.28	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness			1		9	1	1 1	1.5	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness			1		9		4	1.5	
Site Condition Score				64			66.5		71.0
MAX Site Condition Score				130			130		130.0
Site Condition Score - out of 4									2.2
Site Context			Value	Score		Value	Score	Average	Average score
Size of patch (ha)									
Remnant			654.84	ĺ			1 1	327.4	ļ
Regrowth			33.5	10		1.09		17.27	10
Connectivity									
No. active GHFF camps within 20km			9	10	d	8		8.5	10
Context									
% GHFF foraging habitat within 20 km			17.51		2	18		17.76	
Ecological Corridors									-
Role of site location to species overall population in the state			-		1		-		
No. of active ≥ level three GHFF camps within a 20km			,		4		, ,		
Absence of threats	-			1	-	<u> </u>	_	- 	1
reserve of sireus					1				•
Site Context Score				37			25		37.00
MAX Site Context Score Site Context Score - out of 3				56			56		56
									1.98

				Greenridge	AU5 - RE 12.3	.20 Regrowth			
	Benchmark		Site 974-975			Site 923-924		Average %	
Species Stocking Rate (SSR)	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Abundance of large trees Timing of GHFF Biological Resources	165	8	4.8	2 4.5	10	6.1	10	5.5	7.25
Species Stocking Rate Score				6.5		ĺ	12.0		9.3
MAX Species Stocking Rate Score SRR Score - out of 3				20			20		20 1.39

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.32	2.18	2.20	2.31	2.22	2.46	2.18	0.51	2.05
Site Context Score (out of 3)	1.23	1.10	1.10	1.55	1.42	1.77	1.98	1.34	1.44
Species Stocking Rate Score (out of 3)	1.99	2.02	1.69	2.10	1.80	1.85	1.39	0.00	1.60
Habitat Quality score (out of 10)	5.54	5.30	4.99	5.96	5.44	6.08	5.55	1.85	5.09
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES							4.74	0.00	
Size Weighting	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	0.00	5.55	0.00	5.55

GREENRIDGE AU5 RE 12.3.20 REGROWTH QUALITY WITHOUT OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITHOUT OFFSET:

6

Assessment Unit - Regional Ecosystem					Greenridge	AU5 - RE 12.3	.20 Regrowth			
Site Reference	Benchmark			Site 974-975			Site 923-924			
	12.3.20	Ī	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition										
Recruitment of woody perennial species in EDL		100	100	100.0		100	100.0		100.0	
Native plant species richness - trees		4	8	200.0		4	100.0		150.0	
Native plant species richness - shrubs		4	4	100.0			125.0		112.5	
Native plant species richness - grasses		2	5	250.0	(:		150.0	4 4	200.0	
Native plant species richness - forbs		8	10	125.0		- 7	87.5	2.5	106.3	
Tree canopy height		16	11	68.8		6	37.5		53.1	
Tree subcanopy height		8	7	87.5			37.5	: :	62.5	
Tree canopy height (average of emergent, canopy, sub-canopy)		12	9	75.0		4.5	37.9		56.3	
Tree canopy cover (EDL)		70	57	81.4		44.5	63.6		72.5	
Subcanopy cover	1	20	22			3.5	17.5	4 4	63.8	
Tree canopy cover (average of emergent, canopy, sub-canopy)		45	39.5	87.8		24	53.3		70.6	
Shrub canopy cover		15	5.5	36.7			13.3		25.0	
Native grass cover		20	9.2	46.0	l .	37	185.0	, ,	115.5	l
Organic litter		30	85.2	284.0		14	46.7		165.3	
Number of large trees (ha)		165	8	4.8		10	6.1		5.5	
Coarse woody debris (m/ha)		890	0	0.0		-	i		0.0	
Non-native plant cover		C	5	-		10			7.5	
		_		Value	Score		Value	Score	Average	Average score
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores		_		0.11			0.44	,	0.28	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness				1		l		, ,	1.5	1
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness							1		1.5	
Site Condition Score		i			62	ì	ŀ	64.5		71.0
MAX Site Condition Score					130		l	130		130.0
Site Condition Score - out of 4							ļ			2.2
Site Context		7		Value	Score		Value	Score	Average	Average score
Size of patch (ha)					i					
Remnant				654.84	:		1 (3	327.4	i
Regrowth				33.5	10	l	1.09	ė d	17.27	1
Connectivity										
No. active GHFF camps within 20km				9	10	l	1		8.5	1
Context										
% GHFF foraging habitat within 20 km				17.51			18	4 1	17.76	
Ecological Corridors								6		
Role of site location to species overall population in the state		_								
				2		l		4	2	
No. of active ≥ level three GHFF camps within a 20km										
No. of active ≥ level three GHFF camps within a 20km										
No. of active ≥ level three GHFF camps within a 20km Absence of threats					36			24		37.00
					36 56	_		24 56		37.00 56

	Greenridge AU5 - RE 12.3.20 Regrowth											
	Benchmark		Site 974-975			Site 923-924		Average %				
Species Stocking Rate (SSR)	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score			
Abundance of large trees	165	8	4.8	2	10	6.1		5.5	2			
Timing of GHFF Biological Resources			i	4.5			10	1	7.25			
Species Stocking Rate Score				6.5			12.0		9.3			
MAX Species Stocking Rate Score				20			20		20			
SRR Score - out of 3	•			į			İ		1.39			

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.26	1.66	0.31	2.31	1.58	2.11	2.18	0.51	1.62
Site Context Score (out of 3)	1.23	1.10	0.96	1.55	1.42	1.77	1.98	1.21	1.40
Species Stocking Rate Score (out of 3)	2.29	1.72	0.00	2.10	1.80	1.85	1.39	0.00	1.39
Habitat Quality score (out of 10)	5.78	4.48	1.27	5.96	4.80	5.73	5.55	1.71	4.41
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES							4.74		
Size Weighting	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	0.00	5.55	0.00	5.55

GREENRIDGE AU5 RE 12.3.20 REGROWTH QUALITY WITH OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITH OFFSET:

6

Assessment Unit - Regional Ecosystem				Greenridge	AU5 - RE 12.3	.20 Regrowth			
Site Reference	Benchmark		Site 974-975			Site 923-924		Average %	
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score
Site Condition			1						
Recruitment of woody perennial species in EDL	10	100	100.0		100	100.0	. .	100.0	l .
Native plant species richness - trees		4 8	200.0			100.0		150.0	ė.
Native plant species richness - shrubs		4	100.0			125.0	i :	112.5	
Native plant species richness - grasses		2 5	250.0			150.0		200.0	
Native plant species richness - forbs		10	125.0	:	1	87.		106.3	•
Tree canopy height	1	11	68.8			37.5		53.1	
Tree subcanopy height		8 7	87.5			37.5		62.5	
Tree canopy height (average of emergent, canopy, sub-canopy)	1	2 9	75.0		4.5	37.5		56.3	
Tree canopy cover (EDL)	7	57	81.4		44.5	63.6		72.5	
Subcanopy cover	2	22	110.0		3.5	17.5		63.8	
Tree canopy cover (average of emergent, canopy, sub-canopy)	4	39.5	87.8	! !	24	53.3		70.6	
Shrub canopy cover	1	5.5	36.7			13.3		25.0	
Native grass cover	2	9.2	46.0		37	185.0		115.5	
Organic litter	3	85.2	284.0		14	46.		165.3	
Number of large trees (ha)	16		4.8		10	6.		5.5	
Coarse woody debris (m/ha)	89		. 0.0			0.0		0.0	j
Non-native plant cover		d 9		10	10		10	7.5	1
			Value	Score		Value	Score	Average	Average score
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores (/10)			0.11			0.4		0.28	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness (/20)			1			:	4 :	1.5	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness (/20)			1	! !			4 :	1.5	i
Site Condition Score		i		82			83		85.0
MAX Site Condition Score			i	130		i	130		130.0
Site Condition Score - out of 4			ļ.	İ		ļ	į		2.6
Site Context			Value	Score		Value	Score	Average	Average score
Size of patch (ha)							1		
Remnant			654.84	•			1	327.4	i.
Regrowth			33.5	10		1.0		17.27	1
Connectivity									
No. active GHFF camps within 20km			9	10				8.5	1
Context									
% GHFF foraging habitat within 20 km			17.51			1		17.76	
Ecological Corridors			i				-		
Role of site location to species overall population in the state									
No. of active ≥ level three GHFF camps within a 20km			. 2				4	2	
Absence of threats *			i	10			10		1
			į			į			i
							30		42.00
Site Context Score				42					
Site Context Score MAX Site Context Score				42 56		!	56		42.00 56

	Greenridge AU5 - RE 12.3.20 Regrowth										
	Benchmark		Site 974-975			Site 923-924		Average %			
Species Stocking Rate (SSR) **	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score		
Abundance of large trees	165	8	4.8	2	10	6.1		5.5	2		
Timing of GHFF Biological Resources				4.5			10		7.25		
Species Stocking Rate Score	-	Ì		6.5	Ĭ		12.0		9.3		
MAX Species Stocking Rate Score				20			20		20		
SRR Score - out of 3	•								1.39		

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.69	2.77	2.63	2.46	2.55	2.69	2.62	2.92	2.67
Site Context Score (out of 3)	1.50	1.50	1.50	1.82	1.82	2.04	2.25	2.14	1.82
Species Stocking Rate Score (out of 3)	2.29	2.32	1.69	2.40	2.10	2.15	1.39	2.10	2.05
Habitat Quality score (out of 10)	6.48	6.58	5.82	6.68	6.48	6.88	6.25	7.17	6.54
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES							4.74		
Size Weighting	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	0.00	6.25	0.00	6.25

GREENRIDGE AU6 RE 12.3.20 NON-REMNANT START QUALITY FOR GREY-HEADED FLYING-FOX

START SCORE:	2

Assessment Unit - Regional Ecosystem				Greenridge A	U6 - RE 12.3.2	0 Non-remnant			
Site Reference	Benchmark		Site 972-973			Site 960-961			
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition									
Recruitment of woody perennial species in EDL	100		0.0		100	100.0	4 4	50.0	3
Native plant species richness - trees	4	c	0.0	c	1 1	25.0	2.5	12.5	C
Native plant species richness - shrubs	4	c	0.0	c	1 2	50.0	2.5	25.0	2.5
Native plant species richness - grasses	2		0.0		1 1	50.0	2.9	25.0	2.5
Native plant species richness - forbs	8	3	37.5	2.5		62.5	2.5	50.0	2.5
Tree canopy height	16	c	0.0	c	1 8	50.0	4 1	25.0	3
Tree subcanopy height	8		0.0	C	1 4	25.0	4 1	12.5	C
Tree canopy height (average of emergent, canopy, sub-canopy)	12	C	0.0	C	9	41.7	1	20.8	C
Tree canopy cover (EDL)	70		0.0		12.5			8.9	
Subcanopy cover	20		0.0			0.0	1	0.0	
Tree canopy cover (average of emergent, canopy, sub-canopy)	45		0.0		6.25	13.9	1	6.9	
Shrub canopy cover	15		0.0		1 1	6.7		3.3	
Native grass cover	20	C	0.0		19	95.0	• •	47.5	
Organic litter	30	20.8	69.3	5	20	66.7	1 1	68.0	5
Number of large eucalypt trees (ha)	165		0.0	C	1 4	0.0	• •	0.0	
Coarse woody debris (m/ha)	890		0.0	C	i d	0.0		0.0	C
Non-native plant cover	(95			99		للسليا	95.0	0
			Value	Score		Value	Score	Average	Average score
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores			0		1	(1	0.0	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness			C			(: 1	0.0	
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness			,			(i '	0.0	-
Site Condition Score				7.5			30		16.5
MAX Site Condition Score Site Condition Score - out of 4				130			130		130.0 0.5
Site Condition Score - out of 4			Value	Score		Value	Score	Average	Average score
Size of patch (ha)			value	score		value	score	Average	Average score
Remnant						,	į l	0.0	
Regrowth							1 1	0.0	
Connectivity					1	·	1 -	0.0	
No. active GHFF camps within 20km			q	10				7.5	8
Context					1	`	1		
% GHFF foraging habitat within 20 km			17.43	2	,	15.81		16.62	2
Ecological Corridors		1		6					6
Role of site location to species overall population in the state		l							
No. of active ≥ level three GHFF camps within a 20km		l	3	6		1		2	4
Absence of threats				4					5
Site Context Score				28			20		25.00
MAX Site Context Score				56			56		56
Site Context Score - out of 3									1.34

	Greenridge AU6 - RE 12.3.20 Non-remnant										
	Benchmark	Site 972-973				Site 960-961		Average %			
Species Stocking Rate (SSR)	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score		
Abundance of large trees Timing of GHFF Biological Resources	165	0.0	0.0	0.0 C	(0.0	0.0	0.00	0.00		
Species Stocking Rate Score				0.0		ĺ	0.0		0.0		
MAX Species Stocking Rate Score SRR Score - out of 3				20			20		20 0.00		

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.32	2.18	2.20	2.31	2.22	2.46	2.18	0.51	2.05
Site Context Score (out of 3)	1.23	1.10	1.10	1.55	1.42	1.77	1.98	1.34	1.44
Species Stocking Rate Score (out of 3)	1.99	2.02	1.69	2.10	1.80	1.85	1.39	0.00	1.60
Habitat Quality score (out of 10)	5.54	5.30	4.99	5.96	5.44	6.08	5.55	1.85	5.09
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES								12.48	
Size Weighting	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.85	1.85

GREENRIDGE AU6 RE 12.3.20 NON-REMNANT QUALITY WITHOUT OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITHOUT OFFSET:

2

Assessment Unit - Regional Ecosystem				Greenridge A	U6 - RE 12.3.2	0 Non-remnant			
Site Reference	Benchmark		Site 972-973			Site 960-961			
	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	Average % benchmark	Average Score
Site Condition									ŀ
Recruitment of woody perennial species in EDL	10	9 (0.0	(100	100.0	4 4	50.0	
Native plant species richness - trees		4 (0.0	(1	25.0	2.5	12.5	
Native plant species richness - shrubs		4 (0.0	(2	50.0	2.5	25.0	2
Native plant species richness - grasses		2 (0.0	(1	50.0	2.5	25.0	2
Native plant species richness - forbs		8 3	37.5	2.5	5	62.5	2.5	50.0	2
Tree canopy height	1		0.0		8	50.0	4 1	25.0	(
Tree subcanopy height		8 (0.0	(2	25.0	4 1	12.5	
Tree canopy height (average of emergent, canopy, sub-canopy)	1	2 (0.0	(5	41.7	1	20.8	
Tree canopy cover (EDL)	71		0.0	(12.5			8.9	
Subcanopy cover	21		0.0	(0.0		0.0	
Tree canopy cover (average of emergent, canopy, sub-canopy)	45	5 (0.0	(6.25	13.9	4 4	6.9	
Shrub canopy cover	1	5	0.0	(1	6.7	4 4	3.3	
Native grass cover	21	9 (0.0	(19	95.0	1 1	47.5	i
Organic litter	31	20.8	69.3		20	66.7	1 1	68.0	
Number of large trees (ha)	16	5	0.0	(C	0.0	4 4	0.0	
Coarse woody debris (m/ha)	89		0.0	(0.0		0.0	(
Non-native plant cover		95		(95		(95.0	
			Value	Score		Value	Score	Average	Average score
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores				(l	(1 1	0.0	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness			0	((0.0	
Site Condition Score			į.	7.5			30		16.5
MAX Site Condition Score			i	130			130		130.0
Site Condition Score - out of 4			ŀ				!		0.5
Site Context			Value	Score		Value	Score	Average	Average score
Size of patch (ha)									
Remnant			0				i I	0.0	
Regrowth			C	(i		1 4	0.0	(
Connectivity									
No. active GHFF camps within 20km			9	10			6	7.5	
Context			!						
% GHFF foraging habitat within 20 km			17.43	- 2		15.81	4	16.62	
Ecological Corridors				•			6		
Role of site location to species overall population in the state			l						
No. of active ≥ level three GHFF camps within a 20km			3	6			1 1	2	
Absence of threats				3.5			3.5		2
Site Context Score	_		İ	27.5			19.5		22.50
MAX Site Context Score			i	56			56		56
									1.21

	Greenridge AU6 - RE 12.3.20 Non-remnant										
	Benchmark		Site 972-973			Site 960-961		Average %			
Species Stocking Rate (SSR)	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score		
Abundance of large trees	165	0.0	0.0	0.0		0.0	0.0	0.00			
Timing of GHFF Biological Resources			i	0		į	C		0.0		
Species Stocking Rate Score	-	1		0.0		ł	0.0	Ì	0.0		
MAX Species Stocking Rate Score				20			20		20		
SRR Score - out of 3	•			į		İ	İ		0.00		

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.26	1.66	0.31	2.31	1.58	2.11	2.18	0.51	1.62
Site Context Score (out of 3)	1.23	1.10	0.96	1.55	1.42	1.77	1.98	1.21	1.40
Species Stocking Rate Score (out of 3)	2.29	1.72	0.00	2.10	1.80	1.85	1.39	0.00	1.39
Habitat Quality score (out of 10)	5.78	4.48	1.27	5.96	4.80	5.73	5.55	1.71	4.41
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES								12.48	
Size Weighting	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.71	1.71

GREENRIDGE AU6 RE 12.3.20 NON-REMNANT QUALITY WITH OFFSET FOR GREY-HEADED FLYING-FOX

SCORE WITH OFFSET:

7

Assessment Unit - Regional Ecosystem				Greenridge A	U6 - RE 12.3.2	0 Non-remnant			
Site Reference	Benchmark		Site 972-973			Site 960-961		Average %	
	12.3.20	Raw Data	Raw Data		Raw Data	% Benchmark	Score	benchmark	Average So
Site Condition			•				1		
Recruitment of woody perennial species in EDL	100		0.0	9	100	100.0	5	50.0	ė
Native plant species richness - trees	4		0.0		1	25.0	5	12.5	
Native plant species richness - shrubs	4		0.0		2	50.0	5	25.0	
Native plant species richness - grasses	2		0.0		1	50.0		25.0	
Native plant species richness - forbs	8	3	37.5	5	5	62.5	5	50.0	
Tree canopy height	16		0.0		8	50.0	5	25.0	
Tree subcanopy height	8	(0.0	9	2	25.0	5	12.5	
Tree canopy height (average of emergent, canopy, sub-canopy)	12		0.0		9	41.	5	20.8	
Tree canopy cover (EDL)	70		0.0	5	12.5	17.5	5	8.9	
Subcanopy cover	20	1	0.0			1		0.0	
Tree canopy cover (average of emergent, canopy, sub-canopy)	49		0.0	9	6.25	13.5	5	6.9	
Shrub canopy cover	15		0.0	5		6.	5	3.3	
Native grass cover	20		0.0	9	19	95.0	5	47.5	
Organic litter	30	20.8	69.3		20	66.7	5	68.0	
Number of large trees (ha)	165		0.0	9		0.0	5	0.0	
Coarse woody debris (m/ha)	890		0.0	9		0.0	5	0.0	
Non-native plant cover	(95		10	95	0.0	10	95.0	,
			Value	Score		Value	Score	Average	Average so
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Flower Scores (/10)			0.26			0.26	5	0.26	
Quality and availability of GHFF Habitat: Foraging Habitat Tree Species Richness (/20)			4	10			1 10	4	É
Quality and availability of GHFF Habitat: Significant Foraging Habitat Tree Species Richness (/20)			3	10			10	3	ŧ.
Site Condition Score			į.	95			95		95.0
MAX Site Condition Score			•	130		ŀ	130		130.0
Site Condition Score - out of 4			ŧ	i			i		2.9
Site Context			Value	Score		Value	Score	Average	Average so
Size of patch (ha)									
Remnant			19.75			654.84		337.3	
Regrowth			22.02	(34.02	0	28.0	
Connectivity									
No. active GHFF camps within 20km			9	10			6	7.5	
Context			1						
% GHFF foraging habitat within 20 km			17.43	2		15.83	. 2	16.62	
Ecological Corridors				- (6		
Role of site location to species overall population in the state			!						
No. of active ≥ level three GHFF camps within a 20km			3	(1 2	2	2
Absence of threats *			i ——	9			9		
						!	Į		!
Site Context Score				33			25		40.00
MAX Site Context Score				56			56		56
Site Context Score - out of 3									2.14

	Greenridge AU6 - RE 12.3.20 Non-remnant												
	Benchmark		Site 972-973			Site 960-961	Average %						
Species Stocking Rate (SSR) **	12.3.20	Raw Data	% Benchmark	Score	Raw Data	% Benchmark	Score	benchmark	Average Score				
Abundance of large trees	165		.0 0.	0.0	(0.0	0.0	0.00	4				
Timing of GHFF Biological Resources	1		İ	10		1	10		10.00				
Species Stocking Rate Score	•		1	10.0			10.0		14.0				
MAX Species Stocking Rate Score			1	20		i	20		20				
SRR Score - out of 3	-			!					2.10				

Final habitat quality score (weighted)	Tabooba AU1 RE 12.8.16 Remnant	Tabooba AU2 RE 12.8.16 Advanced Regrowth	Tabooba AU2 RE 12.8.16 Young Regrowth	Tabooba AU4 RE 12.8.14 Remnant	Tabooba AU5 RE 12.8.14 Advanced Regrowth	Greenridge AU4 RE 12.3.20 Remnant	Greenridge AU5 RE 12.3.20 Regrowth	Greenridge AU6 RE 12.3.20 Non-remnant	Average/ Final
Site Condition score (out of 4)	2.69	2.77	2.63	2.46	2.55	2.69	2.62	2.92	2.67
Site Context Score (out of 3)	1.50	1.50	1.50	1.82	1.82	2.04	2.25	2.14	1.82
Species Stocking Rate Score (out of 3)	2.29	2.32	1.69	2.40	2.10	2.15	1.39	2.10	2.05
Habitat Quality score (out of 10)	6.48	6.58	5.82	6.68	6.48	6.88	6.25	7.17	6.54
Assessment Unit area in the offset area (ha)	49.80	145.02	48.1	50.62	19.80	28.22	4.74	12.48	358.82
Total offset area (ha) for this MNES								12.48	
Size Weighting	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	
Weighted Habitat Quality Score	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.17	7.17

Appendix M: Offset Assessment Guide outputs – Coastal swamp oak TEC

TABLE 10.2 Greenridge AU1 OAG

Matter of National Environmental Significance										
Name	Coastal Swamp Oak TEC									
EPBC Act status	Endangered									
Annual probability of extinction Based on IUCN category definitions	1.2%									

		Impact calculate	r		
		Ecological communit	ies		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of community	Yes		Area (Hectares)	15.9	
			Quality (Scale 0-10)	8	
		Total quantum of (Adjusted Hecta		12.72	
		Threatened species has	bitat		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of habitat	No		Area (Hectares)		
			Quality (Scale 0-10)		
		Total quantum of (Adjusted Hecto			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Number of features e.g. Nest hollows, habitat trees	No				
Condition of habitat Change in habitat condition, but no change in extent	No				
		Threatened species			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Birth rate e.g. Change in nest success	No				
Mortality rate e.g Change in number of road kills per year	No				
Number of individuals e.g. Individual plants/animals	No				

								0	ffset cal	culator								
					_		_			mmunities	_	_		_				
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)		Start area and	d quality	Future area and quality without offset (adjusted hectares)		Future area and quality with offset (adjusted hectares)		Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of community	Yes	12.72	Greenridge AU1	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	14.2	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.14	100%	0.14	0.11	Overall net present value	2.22	
				Time until ecological benefit	10	Start quality (scale of 0-10)	8	Future quality without offset (scale of 0-10) Future quality with offset (scale of 0-10) Future quality with offset (scale of 0-10)		2.00	85% 1.70		1.51	% of impact offset	17.47%			
								Future area with offset Future area with offset 14.1 Future area with offset					Mini	imum (90%) direct requirement me		FALSE		
Threatened species habitat																		
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset		Time Horizon (Years) Start area and quality			Future area an without of (adjusted her	fset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes			Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss <u>with</u> offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Mini	imum (90%) direct requirement me		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)		Start Val	ue	Future value w offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes											0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
			1					T	hreatened	species								
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)		Start Val	ue	Future value w offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

TABLE 10.3 Greenridge AU2 OAG

Matter of National Environmental Significance										
Name	Coastal Swamp Oak TEC									
EPBC Act status	Endangered									
Annual probability of extinction Based on IUCN category definitions	1.2%									

		Impact calculate	r		
		Ecological communit			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of community	Yes		Area (Hectares)	15.9	
			Quality (Scale 0-10)	8	
		Total quantum of (Adjusted Hecta		12.72	
		Threatened species has	bitat		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of habitat	No		Area (Hectares)		
			Quality (Scale 0-10)		
		Total quantum of (Adjusted Hecta			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	Information source	
Number of features e.g. Nest hollows, habitat trees	No				
Condition of habitat Change in habitat condition, but no change in extent	No				
		Threatened species			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Birth rate e.g. Change in nest success	No				
Mortality rate e.g Change in number of road kills per year	No				
Number of individuals e.g. Individual plants/animals	No				

								_0	ffset cal	culator								
					_		_			mmunities	_	_		_				
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)		Start area and	d quality	Future area and quality without offset (adjusted hectares)		Future area and quality with offset (adjusted hectares)		Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of community	Yes	12.72	Greenridge AU2	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	5.16	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.05	100%	0.05	0.04	Overall net present value	0.72	
				Time until ecological benefit	20	Start quality (scale of 0-10)	7	Future quality without offset (scale of 0-10)	7	Future quality with offset (scale of 0-10)	9	2.00	85%	1.70	1.34	% of impact offset	5.67%	
	Future area without offset 5.1								Future area with offset	5.2	Minimum (90%) direct offset requirement met?				FALSE			
	Threatened species habitat Total quantum of Net present																	
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)		Start area and	d quality	Future area an without of (adjusted he	ffset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes			Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss <u>with</u> offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Mini	imum (90%) direct requirement me		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)		Start Val	ue	Future value v offset		Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes											0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
		1						T	hreatened	species							1	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)		Start Val	ue	Future value v offset		Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

Matter of National Environmental Significance											
Name	Coastal Swamp Oak TEC										
EPBC Act status	Endangered										
Annual probability of extinction Based on IUCN category definitions	1.2%										

			Im	nac	et ca	len	lote) P									
	_		Ecol						-				-		-	-	-
Protected matter attributes	Attribute relevant to case?				ption				Quar	itum	of in	npact	:	Information source			
Area of community	Yes							(Are Hecto			15.	.9				
								(5	Qua Scale	lity 0-10))	8					
m m m m m m	100 00 00 00 00 00 00 00 00			(A	Adjus	ted F	lecto	- 1				72	123		100 100 100 100 100 100 100 100 100 100		
	Threatened species habitat																
Protected matter attributes	Attribute relevant to case?		De	escri	ptior	1		(Quar	itum	of in	npact	:	I		natio ırce	n
Area of habitat	No		131 131 131 131	111 111 111	100	100	300	(1	Are Hecto			(0) (0) (0) (0)	- 01	11 11 11 11			
300 July 300 July 300 July 300	100 100 100 100 100 100 100 100 100 100 100	(0) (0)	100	101	300	100 101	100	Quality (Scale 0-10)				(0) (0) (0) (1) (1)	- 11		10 21		100
					l qu a Idjus			impa ares)	act								100
Protected matter attributes	Attribute relevant to case?		De	escri	ptior	1		Quantum of impact					:	Information source			n
Number of features e.g. Nest hollows, habitat trees	No	111 681 141	101 101 101	01 10 10 01	100 100 100 100	10 10 10 10	100	11	10	11	10 10 10 10		101		100 100 100 100	10 01 10 01	100
Condition of habitat Change in habitat condition, but no change in extent	No	00 00 00 00	1001	011 1401 011 1001	100 100 100 100 100	10 16 10 10	100			101		100	100		100	01 100 01 100	100 100 100 100
		1	Th	rea	tene	d sp	ecies	S									
Protected matter attributes	Attribute relevant to case?	Description							Quar	itum	of in	npact	:	I		natio ırce	n
Birth rate e.g. Change in nest success	No	X X X X X	100		100 100 100 100 100					(1) (1) (2) (2)					100		100
Mortality rate e.g Change in number of road kills per year	No	100		10.1 10.1 10.1	134 144 181 181	16. 10. 10.		11			1	4	101		100	100 00 100 100	1111
Number of individuals e.g. Individual plants/animals	No	101	100	 	100 100 100 100 100	10 10 10 10						100	10		100	81 10 81	100

	Offset calculator																	
								Ecol	logical Co	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	l quality	Future area an without o (adjusted he	ffset	Future area and with offs (adjusted head	set	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	set Result	Cost (\$ total)
Area of community	Yes	12.72	Greenridge AU3	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	21.97	Risk of loss without offset (%)	0%	Risk of loss with offset (%)	0%	0.00	100%	0.00	0.00	Overall net present value	4.41	
101 101				Time until ecological benefit	20	Start quality (scale of 0-10)	3	Future quality without offset (scale of 0-10)	3	Future quality with offset (scale of 0-10)	6	3.00	85%	2.55	2.01	% of impact offset	34.70%	
103 123 123 124							(1) (1) (1) (1)	Future area without offset	22.0	Future area with offset cies habitat	22.0			Min	imum (90%) direc requirement me		FALSE	
		Total quantum of						Iniet	иенеи ѕре	lies midimi					Net present			
Protected matter attributes	Attribute relevant to case?	impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	l quality	Future area an without o (adjusted he	ffset	Future area an with offs (adjusted hea	set	Raw gain	Confidence in result (%)	Adjusted gain	value (adjusted hectares)	Offs	set Result	Cost (\$ total)
Area of habitat	Yes			Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Min	imum (90%) direc requirement me		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	ue	Future value v		Future value wi	ith offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes											0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No		100 100	10 00 10 10 10 10 10 10		100		00 00 00 000 000 000 000 000 000 000 0		100 100		0.00	100 00 00 100 100 00 100 100 00	0.00	0.00	0.00%	FALSE	000 020 030
		-						T	hreatened	species					-		-	-
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	ue	Future value voffset		Future value wi	ith offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No						(3 (3) (3) (3) (3) (3) (4) (3)				03 (0) (0) (3) (3) (3) (0) (0)	0.00	100 000 000 100 000 000 100 000	0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No					(6) (6)		(6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	10 10 10 10 10 10	(A) (A) (A) (A) (A) (A) (A) (A) (B) (B) (B) (B) (B) (B) (B) (B)	120 (30 03 (40 00 (00 01 (10	0.00	1001 1000 10 1001 1001 10 1001 1001 10	0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No								11 11 11 11 11 11 11 11 11 11 11 11 11		101 (10 101 (10 101 (10 101 (10	0.00	1001 1001 10 1001 1001 10 1001 1001 10 1001 1001 10	0.00	0.00	0.00%	FALSE	1001 1001 1001 1001 1001 1001 100 1001 1001 1001 1001 1001 1001 1001 1001 1001

			Summary				
	Cost (\$)						
Protected matter attributes	Quantum of impact	Net present value	% of impact offset	Direct offset adequate?	Direct offset	Other compensatory measures	Total
Birth rate	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Mortality rate	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Number of individuals	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Number of features	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Condition of habitat	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Area of habitat		0.00	0.00	FALSE	0.00	N/A	0.00
Area of community	12.72	4.41	0.35	FALSE	0.00	#DIV/0!	#DIV/0!
					\$0.00	#DIV/0!	#DIV/0!

Offsets Assessment Guide

For use in determining offsets under the Environment Protection and Biodiversity Conservation Act 19 2 October 2012

Matter of National Environ	nmental Significance
Name	Coastal Swamp Oak TEC
EPBC Act status	Endangered
Annual probability of extinction Based on IUCN category definitions	1.2%

		I	_	
		Impact calculato Ecological communit		
Protected matter attributes	Attribute relevant to case?	Description Description	Quantum of impact	Information source
Area of community	Yes		Area (Hectares)	
			Quality (Scale 0-10)	
		Total quantum of (Adjusted Hecta	res) 12.72	
		Threatened species had	bitat	
Protected matter attributes	Attribute relevant to case?	Description	Information source	
Area of habitat	No	0.02 0.02	Area (Hectares)	
	100 de 100 101 de 101 101 de 101	(6) (0) (00) (00) (00)	Quality (Scale 0-10)	
		Total quantum of (Adjusted Hecta	•	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of impact	Information source
Number of features e.g. Nest hollows, habitat trees	No	10.0 10.0	Mart Mart	00. 00. 00. 00. 00. 00. 00. 00. 00. 00.
Condition of habitat Change in habitat condition, but no change in extent	No	N	C	10
		Threatened species	1	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of impact	Information source
Birth rate e.g. Change in nest success	No	10	C	
Mortality rate e.g Change in number of road kills per year	No		100 100 101 100	600 000 000 000 600 000 000 000 100 000 000 000
Number of individuals e.g. Individual plants/animals	No	11 10 11 10 10 10 10 10	121 121 121 122 123 124	101 103 104 105

								C	ffset cal	culator								
								Eco	logical Co.	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Hori: (Years)	zon	Start area and	d quality	Future area ar without o (adjusted he	ffset	Future area an with offs (adjusted hea	set	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	set Result	Cost (\$ total)
Area of community	Yes	12.72	Greenridge AU4	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	28.19	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.28	100%	0.28	0.22	Overall net present value	4.41	
100 100				Time until ecological benefit	10	Start quality (scale of 0-10)	8	Future quality without offset (scale of 0-10)	7	Future quality with offset (scale of 0-10)	9	2.00	85%	1.70	1.51	% of impact offset	34.68%	
								Future area without offset	27.9	Future area with offset	28.2			Min	imum (90%) direc requirement me		FALSE	
								Three	atened spe	cies habitat								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Hori: (Years)	zon	Start area and	d quality	Future area ar without o (adjusted he	ffset	Future area an with offs (adjusted hea	set	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	set Result	Cost (\$ total)
Area of habitat	Yes			Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
100 100 100 the 100		300 (300 (300 (300 (300 (300 (300 (300		Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	[M] [M] [M] [M] [M] [M] [M] [M] [M] [M]
								Future area without offset	0.0	Future area with offset	0.0) [00 00 00 00 00 00 00 00	Min	imum (90%) direc requirement me		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Va	lue	Future value offset		Future value w	ith offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes											0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No					100 201 001 00 100 100 100 100 100 100 100 100 100 100 100 100		100 100		10 10 10 10 10 10 10 10 10 10 10 10 10 1		0.00	1001 1001 100 	0.00	0.00	0.00%	FALSE	100 100
	1			_		1		1	hreatened	species		T		T		1		
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	con	Start Va	lue	Future value offset		Future value w	ith offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No										(1) (1) (1) (1) (1) (1) (1) (1)	0.00		0.00	0.00	0.00%	FALSE	+10 +10 +10 +10 +10 +10 +10 +10 +10 +10
Mortality rate e.g Change in number of road kills per year	No			01 01 01 01 01 01 01 01 01 01		(0) (0) (0) (1) (0) (0) (0) (1) (0) (0) (0) (1)		(0.) (0.) (0.) (0.) (0.) (0.) (0.) (0.)		100 (20 (0) (0) 100 (0) (0) (0) 100 (0) (0) (0)		0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No		000 101 000 100 0 1 001 001 001 001 0 1 001 101 001 0	10		100 100		12 12 12 12 12 12 12 12		100 (00) (0) (0) (0) (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (1)		0.00	001 001 00 1 100 000 1	0.00	0.00	0.00%	FALSE	1001 001 101 00 100 100 100 100 100 100 100 100 100 100 100 100

	Summary													
Protected matter attributes	Quantum of impact	Net present value	% of impact offset	Direct offset adequate?	Direct offset	Other compensatory measures	Total							
Birth rate	0.00	0.00	0.00	FALSE	0.00	N/A	0.00							
Mortality rate	0.00	0.00	0.00	FALSE	0.00	N/A	0.00							
Number of individuals	0.00	0.00	0.00	FALSE	0.00	N/A	0.00							
Number of features	0.00	0.00	0.00	FALSE	0.00	N/A	0.00							
Condition of habitat	0.00	0.00	0.00	FALSE	0.00	N/A	0.00							
Area of habitat		0.00	0.00	FALSE	0.00	N/A	0.00							
Area of community	12.72	4.41	0.35	FALSE	0.00	#DIV/0!	#DIV/0!							
					\$0.00	#DIV/0!	#DIV/0!							

Matter of National Environ	nmental Significance
Name	Coastal Swamp Oak TEC
EPBC Act status	Endangered
Annual probability of extinction Based on IUCN category definitions	1.2%

		Impact calculate				
		Ecological communi	ties			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source	
Area of community	Yes		Area (Hectares)	15.9		
			Quality (Scale 0-10)	8		
		Total quantum of (Adjusted Hecto		12.72		
		Threatened species ha	bitat			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source	
Area of habitat	No		Area (Hectares)			
W W W W W W W W W W W W W W W W W W W		12	Quality (Scale 0-10)			
10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 to 10	Total quantum of (Adjusted Hecto				
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source	
Number of features e.g. Nest hollows, habitat trees	No					
Condition of habitat Change in habitat condition, but no change in extent	No					
		Threatened species	5			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source	
Birth rate e.g. Change in nest success	No					
Mortality rate e.g Change in number of road kills per year	No					
Number of individuals e.g. Individual plants/animals	No					

									ffset cal									
								Ecol	logical Co	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Hori: (Years)		Start area and	d quality	Future area an without o (adjusted he	ffset	Future area an with off (adjusted he	set	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Off	set Result	Cost (\$ total)
Area of community	Yes	12.72	Greenrdige AU5	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	4.74	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.05	100%	0.05	0.04	Overall net present value	0.66	
100 (00 00 00 00 00 00 00 00 00 00 00 00				Time until ecological benefit	20	Start quality (scale of 0-10)	7	Future quality without offset (scale of 0-10)	7	Future quality with offset (scale of 0-10)	9	2.00	85%	1.70	1.34	% of impact offset	5.20%	11 11 11 11 11 11 11 11 11 11 11 11 11
								Future area without offset	4.7	Future area with offset	4.7		100 100 100 100 100 100 100 100 100	Min	requirement m		FALSE	101 101 101 101 101 101 101 101 101
	T.							Three	itened spe	cies habitat		,						
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Hori: (Years)		Start area and	d quality	Future area an without o (adjusted he	ffset	Future area an with off (adjusted he	set	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Off	set Result	Cost (\$ total)
Area of habitat	Yes			Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
100 100				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0		100 100 100 100 100 100 100 100 100 100 100	Min	nimum (90%) dire requirement m		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time hori: (years)		Start Val	lue	Future value offset		Future value w	ith offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes											0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
				•		•		T	hreatened	species				•			•	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz		Start Va	lue	Future value offset		Future value w	ith offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

			Summary				
	Cost (\$)						
Protected matter attributes	Quantum of impact	Net present value	% of impact offset	Direct offset adequate?	Direct offset	Other compensatory measures	Total
Birth rate	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Mortality rate	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Number of individuals	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Number of features	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Condition of habitat	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Area of habitat		0.00	0.00	FALSE	0.00	N/A	0.00
Area of community	12.72	0.66	0.05	FALSE	0.00	#DIV/0!	#DIV/0!
		-			\$0.00	#DIV/0!	#DIV/0!

Offsets Assessment Guide

For use in determining offsets under the Environment Protection and Biodiversity Conservation Act 19 2 October 2012

Matter of National Environ	mental Significance
Name	Coastal Swamp Oak TEC
EPBC Act status	Endangered
Annual probability of extinction Based on IUCN category definitions	1.2%

		Import coloulate	**		
	_	Impact calculate Ecological communit		_	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of community	Yes		Area (Hectares)	15.9	
	Quality (Scale 0-10)				
		Total quantum of (Adjusted Hecto		12.72	
		Threatened species has	bitat		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of habitat	No		Area (Hectares)		
		3	Quality (Scale 0-10)		N W W W
		Total quantum of (Adjusted Hecto			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Number of features e.g. Nest hollows, habitat trees	No				
Condition of habitat Change in habitat condition, but no change in extent	No				
		Threatened species	3		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Birth rate e.g. Change in nest success	No				
Mortality rate e.g Change in number of road kills per year	No				
Number of individuals e.g. Individual plants/animals	No				

									ffset cal									
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Hori: (Years)	on	Start area and	d quality	Future area ar without o (adjusted he	d quality	mmunities Future area ar with off (adjusted he	set	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Off	set Result	Cost (\$ total)
Area of community	Yes	12.72	Greenridge AU6	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	12.47	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.12	100%	0.12	0.10	Overall net present value	5.87	
				Time until ecological benefit	20	Start quality (scale of 0-10)	2	Future quality without offset (scale of 0-10)	2	Future quality with offset (scale of 0-10)	9	7.00	85%	5.95	4.69	% of impact offset	46.19%	
				15				Future area without offset	12.3	Future area with offset cies habitat	12.5	110 111		Min	imum (90%) direc requirement m		FALSE	
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	d quality	Future area ar without o	d quality	Future area ar with off (adjusted he	set	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Off	set Result	Cost (\$ total)
Area of habitat	Yes			Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
			100 100	Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
						1 10 10 10 10 10 10 10 10 10 10 10 10 10		Future area without offset	0.0	Future area with offset	0.0			Min	imum (90%) dired		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Va	llue	Future value offset		Future value w	rith offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes											0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Va	ilue	Future value offset		Future value w	rith offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

			Summary				
						Cost (\$)	
Protected matter attributes	Quantum of impact	Net present value	% of impact offset	Direct offset adequate?	Direct offset	Other compensatory measures	Total
Birth rate	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Mortality rate	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Number of individuals	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Number of features	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Condition of habitat	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Area of habitat		0.00	0.00	FALSE	0.00	N/A	0.00
Area of community	12.72	5.87	0.46	FALSE	0.00	#DIV/0!	#DIV/0!
					\$0.00	#DIV/0!	#DIV/0!

Appendix N: Offset Assessment Guide outputs – Koala habitat

TABLE 10.9 Tabooba AU1 OAG

Matter of National Environm	nental Significance
Name	Koala
EPBC Act status	Vulnerable
Annual probability of extinction Based on IUCN category definitions	0.2%

		Impact calculate	r		
		Ecological communit	ies		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of community	Yes		Area (Hectares)		
			Quality (Scale 0-10)		
		Total quantum of (Adjusted Hecto	res)	0.00	
		Threatened species has	bitat		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of habitat	Yes		Area (Hectares)	73.81	
			Quality (Scale 0-10)	7	
		Total quantum of (Adjusted Hecta		51.67	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Number of features e.g. Nest hollows, habitat trees	Yes				
Condition of habitat Change in habitat condition, but no change in extent	No				
		Threatened species			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Birth rate e.g. Change in nest success	No				
Mortality rate e.g Change in number of road kills per year	No				
Number of individuals e.g. Individual plants/animals	No				

								0	ffset cal	culator								
								Eco	logical Co	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	con	Start area and	d quality	Future area an without of (adjusted he	fset	Future area and with offs (adjusted hea	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of community	No			Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss <u>with</u> offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Mini	imum (90%) direc requirement m		FALSE	
								Three	itened spe	cies habitat		_				1		
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	d quality	Future area an without of (adjusted he	fset	Future area and with offs (adjusted hea	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes	51.67	Tabooba AU1	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	49.8	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.50	100%	0.50	0.48	Overall net present value	4.54	
				Time until ecological benefit	10	Start quality (scale of 0-10)	8	Future quality without offset (scale of 0-10)	8	Future quality with offset (scale of 0-10)	9	1.00	85%	0.85	0.83	% of impact offset	8.78%	
								Future area without offset	49.3	Future area with offset	49.8			Mini	imum (90%) direc requirement m		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	lue	Future value v offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes	0.00										0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
								T	hreatenea	species							1	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	lue	Future value v offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals c.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

TABLE 10.10 Tabooba AU2 OAG

Matter of National Environm	nental Significance
Name	Koala
EPBC Act status	Vulnerable
Annual probability of extinction Based on IUCN category definitions	0.2%

		Impact calculate	r		
		Ecological communit	ies		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of community	Yes		Area (Hectares)		
			Quality (Scale 0-10)		
		Total quantum of (Adjusted Hecto		0.00	
		Threatened species has	bitat		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of habitat	Yes		Area (Hectares)	73.81	
			Quality (Scale 0-10)	7	
		Total quantum of (Adjusted Hecta		51.67	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Number of features e.g. Nest hollows, habitat trees	Yes				
Condition of habitat Change in habitat condition, but no change in extent	No				
		Threatened species			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Birth rate e.g. Change in nest success	No				
Mortality rate e.g. Change in number of road kills per year	No				
Number of individuals e.g. Individual plants/animals	No				

								0	ffset cal	culator								
								Ecol	logical Co	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)		Start area and	d quality	Future area an without of (adjusted he	ffset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of community	Yes	0.00		Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Mini	imum (90%) direc requirement m		FALSE	
								Three	itened spe	cies habitat				,			•	
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)		Start area and	d quality	Future area an without of (adjusted he	ffset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes	51.67	Tabooba AU2	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	145.02	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	1.45	100%	1.45	1.39	Overall net present value	25.04	
				Time until ecological benefit	10	Start quality (scale of 0-10)	6	Future quality without offset (scale of 0-10)	6	Future quality with offset (scale of 0-10)	8	2.00	85%	1.70	1.67	% of impact offset	48.46%	
								Future area without offset	143.6	Future area with offset	145.0			Mini	imum (90%) direc requirement m		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)		Start Val	ue	Future value v offset		Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes	0.00										0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
								T	hreatened	species								
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)		Start Val	ue	Future value v offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

TABLE 10.11 Tabooba AU3 OAG

Offsets Assessment Guide
For use in determining offsets under the Environment Protection and Biodiversity Conservation Act 1999
2 October 2012

Matter of National Environmental Significance EPBC Act status

		Impact calculate	r		
		Ecological communit			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of community	Yes		Area (Hectares)		
			Quality (Scale 0-10)		
		Total quantum of (Adjusted Hecto	res)	0.00	
		Threatened species ha	bitat		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of habitat	Yes		Area (Hectares)	73.81	
			Quality (Scale 0-10)	7	
		Total quantum of (Adjusted Hecto		51.67	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Number of features e.g. Nest hollows, habitat trees	Yes				
Condition of habitat Change in habitat condition, but no change in extent	No				
		Threatened species			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Birth rate e.g. Change in nest success	No				
Mortality rate e.g Change in number of road kills per year	No				
Number of individuals e.g. Individual plants/animals	No				

								0	ffset cal	culator								
								Eco	logical Co	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	con	Start area and	d quality	Future area an without of (adjusted he	fset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of community	No			Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Mini	imum (90%) direc requirement m		FALSE	
	1							Three	itened spe	cies habitat						1		
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	d quality	Future area an without of (adjusted he	fset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes	51.67	Tabooba AU3	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	48.1	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.48	100%	0.48	0.46	Overall net present value	15.88	
				Time until ecological benefit	20	Start quality (scale of 0-10)	4	Future quality without offset (scale of 0-10)	3	Future quality with offset (scale of 0-10)	7	4.00	85%	3.40	3.27	% of impact offset	30.73%	
								Future area without offset	47.6	Future area with offset	48.1			Mini	imum (90%) direc requirement m		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz	on	Start Val	lue	Future value v offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes	0.00										0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
								T	hreatenea	species								
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horize (years)	on	Start Val	lue	Future value v offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

TABLE 10.12 Tabooba AU4 OAG

Offsets Assessment Guide
For use in determining offsets under the Environment Protection and Biodiversity Conservation Act 1999
2 October 2012

Matter of National Environmental Significance EPBC Act status Vulnerable

		Impact calculato	r		
		Ecological communit			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of community	Yes		Area (Hectares)		
			Quality (Scale 0-10)		
		Total quantum of i (Adjusted Hecto	res)	0.00	
		Threatened species has	bitat		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of habitat	Yes		Area (Hectares)	73.81	
			Quality (Scale 0-10)	7	
		Total quantum of i (Adjusted Hecto		51.67	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Number of features e.g. Nest hollows, habitat trees	Yes				
Condition of habitat Change in habitat condition, but no change in extent	No				
		Threatened species			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Birth rate e.g. Change in nest success	No				
Mortality rate e.g Change in number of road kills per year	No				
Number of individuals e.g. Individual plants/animals	No				

								0	ffset cal	culator								
										mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	l quality	Future area an without of (adjusted her	fset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of community	No			Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Mini	imum (90%) direc requirement m		FALSE	
	1							Threa	itened spe	cies habitat								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)					d quality ifset ctares)	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes	51.67	Tabooba AU4	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	50.62	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.51	100%	0.51	0.49	Overall net present value	0.39	
				Time until ecological benefit	10	Start quality (scale of 0-10)	8	Future quality without offset (scale of 0-10)	8	Future quality with offset (scale of 0-10)	8	0.00	85%	0.00	0.00	% of impact offset	0.75%	
								Future area without offset	50.1	Future area with offset			Mini	imum (90%) direc requirement m		FALSE		
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	ue	Future value w	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	No											0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
			1					T	hreatened	species								
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	ue	Future value w offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No										0.00		0.00	0.00	0.00%	FALSE		
Mortality rate e.g Change in number of road kills per year	No										0.00		0.00	0.00	0.00%	FALSE		
Number of individuals e.g. Individual plants/animals	No										0.00		0.00	0.00	0.00%	FALSE		

TABLE 10.13 Tabooba AU5 OAG

Matter of National Environmental Significance								
Name	Koala							
EPBC Act status	Vulnerable							
Annual probability of extinction Based on IUCN category definitions	0.2%							

		Impact calculate	r		
		Ecological communit			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of community	Yes		Area (Hectares)		
			Quality (Scale 0-10)		
		Total quantum of (Adjusted Hecto	res)	0.00	
		Threatened species has	bitat		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of habitat	Yes		Area (Hectares)	73.81	
			Quality (Scale 0-10)	7	
		Total quantum of (Adjusted Hecto		51.67	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Number of features e.g. Nest hollows, habitat trees	Yes				
Condition of habitat Change in habitat condition, but no change in extent	No				
		Threatened species			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Birth rate e.g. Change in nest success	No				
Mortality rate e.g Change in number of road kills per year	No				
Number of individuals e.g. Individual plants/animals	No				

		Offset calculator																
								Ecol	logical Co	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horizo (Years)	on	Start area and	d quality	Future area an without of (adjusted her	ffset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of community	Yes	0.00		Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Mini	mum (90%) direct requirement me		FALSE	
								Threa	itened spe	cies habitat								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horizo (Years)	on	Start area and	d quality	Future area an without of (adjusted her	ffset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes	51.67	Tabooba AU5	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	19.8	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.20	100%	0.20	0.19	Overall net present value	3.42	
				Time until ecological benefit	10	Start quality (scale of 0-10)	7	Future quality without offset (scale of 0-10)	6	Future quality with offset (scale of 0-10)	8	2.00	85%	1.70	1.67	% of impact offset	6.62%	
								Future area without offset	19.6	Future area with offset	19.8			Mini	mum (90%) direct requirement me		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horizo	on	Start Val	ue	Future value w offset		Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes	0.00										0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
								T	hreatened	species								
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horizo	on	Start Val	ue	Future value w offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

Matter of National Environmental Significance								
Name	Koala							
EPBC Act status	Vulnerable							
Annual probability of extinction Based on IUCN category definitions	0.2%							

		Impact calculato	r	
		Ecological communit	ies	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of impact	Information source
Area of community	Yes		Area (Hectares)	
			Quality (Scale 0-10)	
	i iii iii	Total quantum of (Adjusted Hecto	res) 0.00	
		Threatened species had	bitat	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of impact	Information source
Area of habitat	Yes		Area (Hectares) 73.81	
11 11 01 11 11 11 11 11	100 00	100 100	Quality (Scale 0-10)	001 101 1001 301 101 1011 001 101 1011
(0 (0 0)	1 100 100	Total quantum of (Adjusted Hecto		000 (000) (000) 000 (000) (000)
Protected matter attributes	Attribute relevant to case?	Description	Quantum of impact	Information source
Number of features e.g. Nest hollows, habitat trees	Yes			
Condition of habitat Change in habitat condition, but no change in extent	No			
		Threatened species		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of impact	Information source
Birth rate e.g. Change in nest success	No			100 100 100 100 100 100
Mortality rate e.g Change in number of road kills per year	No	100 100 100 100 100 100 100 100 100 100 100 100	101 102 001 003 010 101 102 101 101 101 001 001	100 100 100 100 100 100 100 100 100
Number of individuals e.g. Individual plants/animals	No	100 100 100 100 100 100 100 100 100 100		000 000 1000 000 000 1000 000 000 1000

								0	ffset cal	culator								
								Ecol	logical Co	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	ton	Start area and	d quality	Future area an without or (adjusted he	d quality ffset	Future area and with offs (adjusted her	set	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	set Result	Cost (\$ total)
Area of community	Yes	0.00		Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
					100			Future area without offset	0.0	Future area with offset	0.0			Min	imum (90%) direc requirement m		FALSE	
								Three	atened spe	cies habitat								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	ton	Start area and	d quality	Future area an without of (adjusted he	ffset	Future area and with offs (adjusted hea	set	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Off	set Result	Cost (\$ total)
Area of habitat	Yes	51.67	Greenridge AU4	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	28.2	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.28	100%	0.28	0.27	Overall net present value	0.22	
00 000 000 000 00 000 000 000 00 000 00	20 (0 (Time until ecological benefit	10	Start quality (scale of 0-10)	8	Future quality without offset (scale of 0-10)	8	Future quality with offset (scale of 0-10)	8	0.00	85%	0.00	0.00	% of impact offset	0.42%	0 000 000 0 000 000 0 000 000
	(1) (1) (1 (6) (6)						101 10 34 34	Future area without offset	27.9	Future area with offset	28.2		101 101 101 100	Min	imum (90%) direc requirement m		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	lue	Future value v offset	vithout	Future value wi	ith offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes	0.00										0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No		() (3) (3) (3) (1) (3) (3) (3)		100	(i) (ii) (ii)						0.00		0.00	0.00	0.00%	FALSE	
									hreatened	species								
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	con	Start Val	lue	Future value v offset	vithout	Future value wi	ith offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No									100 (00) 1 100 (00) 1		0.00	00 00 00 00	0.00	0.00	0.00%	FALSE	(1)0.1 0.1 (0 0.0 0.0 (1 0.0 0.0
Mortality rate e.g Change in number of road kills per year	No		01 101 101 100 C1 001 101 100 O1 101 100 100			10 (10 (10) 11 (10) (11) 10 (10) (10)				1001 1000 1 1001 1001 100 1001 1000 1		0.00	100 100 100 100 100 100	0.00	0.00	0.00%	FALSE	000 1000 1000 01 1000 1000 00 1000 1000
Number of individuals e.g. Individual plants/animals	No					X 100 100 X 100 100 X 100 100	100 100	1000 1000 1000 1000 1000 1000		101 100 1 101 100 1		0.00		0.00	0.00	0.00%	FALSE	0. 00. 00. 0. 00. 00.

Summary	
	Cost (\$)

Offsets Assessment Guide

For use in determining offsets under the Environment Protection and Biodiversity Conservation Act 19 2 October 2012

Matter of National Environmental Significance								
Name	Koala							
EPBC Act status	Vulnerable							
Annual probability of extinction Based on IUCN category definitions	0.2%							

		Impact calculate	nr				
		Ecological communi					
Protected matter attributes	Attribute relevant to case?	Description	Quantum of imp	pact	Information source		
Area of community	Yes		Area (Hectares)				
			Quality (Scale 0-10)				
		Total quantum of (Adjusted Hecto	ares)	0.00			
		Threatened species ha	bitat				
Protected matter attributes	Attribute relevant to case?	Description	Quantum of imp	pact	Information source		
Area of habitat	Yes		Area (Hectares)	73.81			
	10 10 10	10 10 10 10 10 10 10 10	Quality (Scale 0-10)	7			
		Total quantum of (Adjusted Hecto		51.67			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of imp	pact	Information source		
Number of features e.g. Nest hollows, habitat trees	Yes						
Condition of habitat Change in habitat condition, but no change in extent	No	11 12 13 14 15 15 15 15 15 15 15	M	101 (0)	X		
		Threatened specie	S				
Protected matter attributes	Attribute relevant to case?	Description	Quantum of imp	pact	Information source		
Birth rate e.g. Change in nest success	No			<u> </u>			
Mortality rate e.g Change in number of road kills per year	No	00 00 00 00 00 00 00 00 00 00 00 00 00					
Number of individuals e.g. Individual plants/animals	No	NA NA NA NA NA NA NA NA	m m m m		1		

				Offset calculator														
								Ecol	logical Col	nmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Hori: (Years)		Start area and	d quality	Future area an without o (adjusted he	ffset	Future area an with offs (adjusted hea	set	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	set Result	Cost (\$ total)
Area of community	Yes	0.00		Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
							10 10 10 10 10 10 10 10 10 10 10 10 10 1	Future area without offset	0.0	Future area with offset	0.0			Min	requirement me		FALSE	
								Three	itened spe	cies habitat								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)		Start area and	d quality	Future area an without o (adjusted he	ffset	Future area an with offs (adjusted hea	set	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	set Result	Cost (\$ total)
Area of habitat	Yes	51.67	Greenridge AU5	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	4.74	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.05	100%	0.05	0.05	Overall net present value	0.81	
mit mit mit die der	for (or 100	NO 000 000 000 00		Time until ecological benefit	20	Start quality (scale of 0-10)	7	Future quality without offset (scale of 0-10)	7	Future quality with offset (scale of 0-10)	9	2.00	85%	1.70	1.63	% of impact offset	1.56%	
							11 11 11 11 11 11 11 11 11 11 11 11 11	Future area without offset	4.7	Future area with offset	4.7			Min	nimum (90%) direc requirement me		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	con	Start Val	lue	Future value v		Future value w	ith offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes	0.00										0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No		000 001 007 000 000 000 000 000 000 000	11 01 01 01 01 01 01 01 01 01 01 01 01 0		100 100		101 101 101 102 103		100 101 10 100		0.00	(00) (00) (00 (00) (00) (00 (00) (00) (0	0.00	0.00	0.00%	FALSE	1000 1000
								T	hreatened	species								
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	con	Start Val	lue	Future value v	without	Future value w	ith offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No						0 (0 (0) (1 (0) (0) (1 (0) (0)		101 - 101 101 - 101 201 - 201 101 - 201		103 (20 104 (34 103 (36 100 (30	0.00	100 100 100 100 100 100 100 100 100 100 100	0.00	0.00	0.00%	FALSE	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
Mortality rate e.g Change in number of road kills per year	No			6 6 6 6 6 6 6 6 6 6		(0.00 10.00		(iii iii iii iii iii iii iii iii iii ii			10 00 00 00 00 00	0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No			22			1 100 1200 1 100 1200 1 100 1000 1 100 1000 1 100 1000	10	200 200 200 200 200 200 201 200 201 200	100 (00) 101 (00) 100 (00) 101 (00) 100 (00) 101 (00) 100 (00) 101 (00)	100 000 100 000 100 000 100 000 100 000	0.00		0.00	0.00	0.00%	FALSE	1000 1001 1005 005 1000 1000 1000 100 1000 1001 1005 005 1000 1000

			Summary				
			Cost (\$)				
Protected matter attributes	Quantum of impact	Net present value	% of impact offset Direct offse adequate?		Direct offset	Other compensatory measures	Total
Birth rate	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Mortality rate	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Number of individuals	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Number of features	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Condition of habitat	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
Area of habitat	51.67	0.81	0.02	FALSE	0.00	#DIV/0!	#DIV/0!
Area of community	0.00	0.00	0.00	FALSE	0.00	N/A	0.00
	•				\$0.00	#DIV/0!	#DIV/0!

Matter of National Environmental Significance								
Name	Koala							
EPBC Act status	Vulnerable							
Annual probability of extinction Based on IUCN category definitions	0.2%							

		Impact calculate	or					
		Ecological communi	ties					
Protected matter attributes	Attribute relevant to case?	Description	Quantum of imp	pact	Information source			
Area of community	Yes		Area (Hectares)					
			Quality (Scale 0-10)				100	
	333 (31)	Total quantum of (Adjusted Hecto		0.00			1374	
		Threatened species ha	bitat					
Protected matter attributes	Attribute relevant to case?	Description	Quantum of imp	pact	lr	sour		
Area of habitat	Yes		Area (Hectares)	73.81				
10 10 10 10 10 10 10 10 10 10 10 10	300 (00)	100 100	Quality (Scale 0-10)	7	001 014 014	HI 1411 HI	100 130 100	
100 AV 10	000 000 000 000 000 000	Total quantum of (Adjusted Hecto		51.67	(0) (0)	101	100 100 100	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of imp	pact	Information source			
Number of features e.g. Nest hollows, habitat trees	Yes							
Condition of habitat Change in habitat condition, but no change in extent	No				11. 11.	103 103 100	133	
		Threatened specie	s					
Protected matter attributes	Attribute relevant to case?	Description	Quantum of imp	pact	lr	Information source		
Birth rate e.g. Change in nest success	No	10 10 10 10 10 10 10 10	100 100 000 100 100 000	(0)	101 100	101	300 300	
Mortality rate e.g Change in number of road kills per year	No	100 100 101 100 100 100 100 100 100 100 100 100	(10) (10) (1) (1) (1) (2) (0) (0) (0)	101	1011 1011 1011	000 000 000	(80) (80) (80)	
Number of individuals e.g. Individual plants/animals	No	100 100 101 101 100 100 101 101 100 100	101 101 101	(i) (ii)	101 101 101	101	(M) (M)	

								0	ffset cal	culator								
								Ecol	ogical Co.	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)		Start area and	d quality	Future area an without of (adjusted her	fset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of community	Yes	0.00		Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Mini	imum (90%) direct requirement me		FALSE	
								Three	itened spe	cies habitat								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)		Start area and	d quality	Future area an without of (adjusted her	fset	Future area and with offs (adjusted hea	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes	51.67	Greenridge AU6	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	12.47	Risk of loss without offset (%)	0%	Risk of loss with offset (%)	0%	0.00	100%	0.00	0.00	Overall net present value	3.06	
	the the c			Time until ecological benefit	20	Start quality (scale of 0-10)	4	Future quality without offset (scale of 0-10)	4	Future quality with offset (scale of 0-10)	7	3.00	85%	2.55	2.45	% of impact offset	5.91%	100 100 100 100 100 100
01 100 100 101 1 03 100 101 100	00 00 0 00 000		11 10 10 10 10 10 10 10	100 100 100 100 100 100	(1) (1) (4) (4)		01.	Future area without offset	12.5	Future area with offset	12.5	(i) (ii)	101 01	Mini	imum (90%) direct requirement me		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Va	lue	Future value w offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes	0.00										0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No				12		10 10 10 0				() () () ()	0.00		0.00	0.00	0.00%	FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Va	lue	Future value w	hreatened vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No		n no no no	10 10 10 10 10 10		0 00 00	11 11			120) 100 12 100 100 10		0.00	101 101 100 100	0.00	0.00	0.00%	FALSE	100 100 100 100 100 100
Mortality rate e.g Change in number of road kills per year	No		1111 1111 1111 11 1111 1111 1111 1111 1111 1111	100 101 101 101 101 101 100 100 100		0 0 00 0 0 0 0 0 0	11 12 12 13 13 14	300 (00)			0 (63) 3 (60 0 (00)	0.00	101 100	0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No		11 100 001 100 11 101 001 100 11 101 001 100	M M M M M M M M M M			10 10	101 (00)	10 10	1001 1001 100 1001 1000 14	0 (0) (1 (40) (1 (0)	0.00	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.00	0.00	0.00%	FALSE	

Summary	
	Cost (\$)

Appendix O: Offset Assessment Guide outputs – GHFF habitat

TABLE 10.18 Tabooba AU1 OAG

Offsets Assessment Guide
For use in determining offsets under the Environment Protection and Biodiversity Conservation Act 1999
2 October 2012

Matter of National Environmental Significance Grey-headed flying-fox EPBC Act status Vulnerable

		Impact calculate	r																								
		Ecological communit																									
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source																						
Area of community	Yes		Area (Hectares)																								
			Quality (Scale 0-10)																								
		Total quantum of (Adjusted Hecto	res)	0.00																							
		Threatened species has	bitat																								
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source																						
Area of habitat	Yes		Area (Hectares)	68.76																							
			Quality (Scale 0-10)	7																							
		Total quantum of (Adjusted Hecto		48.13																							
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source																						
Number of features e.g. Nest hollows, habitat trees	Yes																										
Condition of habitat Change in habitat condition, but no change in extent	No																										
		Threatened species																									
Protected matter attributes	Attribute relevant to case?	Description	Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Information source
Birth rate e.g. Change in nest success	No																										
Mortality rate e.g Change in number of road kills per year	No																										
Number of individuals e.g. Individual plants/animals	No																										

								0	ffset cal	culator								
								Ecol	ogical Co.	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	d quality	Future area and quality without offset (adjusted hectares) Future area and quality with offset (adjusted hectares) Ra		Raw gain	Confidence in result (%)	Adjusted gain			et Result	Cost (\$ total)		
Area of community	No			Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Minimum (90%) direct offset requirement met?			FALSE	
								Threa	tened spe	cies habitat								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	d quality	Future area and without of (adjusted head	fset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes	48.13	Tabooba AUI	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	49.8	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.50	100%	0.50	0.48	Overall net present value	0.29	
				Time until ecological benefit	10	Start quality (scale of 0-10)	6	Future quality without offset (scale of 0-10)	6	Future quality with offset (scale of 0-10)	6	0.00	85%	0.00	0.00	% of impact offset	0.60%	
								Future area without offset	49.3	Future area with offset	49.8			Mini	imum (90%) direct requirement me		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horizo (years)	on	Start Val	ue	Future value w	ithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes	0.00										0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
								T	reatened	species								
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz	on	Start Val	ue	Future value w offset	ithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

TABLE 10.19 Tabooba AU2 OAG

Matter of National Environmental Significance									
Name	Grey-headed flying-fox								
EPBC Act status	Vulnerable								
Annual probability of extinction Based on IUCN category definitions	0.2%								

		Impact calculato	r																				
		Ecological communit	ies																				
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source																		
Area of community	Yes		Area (Hectares)																				
			Quality (Scale 0-10)																				
		Total quantum of (Adjusted Hecto		0.00																			
		Threatened species has	bitat																				
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source																		
Area of habitat	Yes		Area (Hectares)	68.76																			
			Quality (Scale 0-10)	7																			
		Total quantum of (Adjusted Hecta		48.13																			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source																		
Number of features e.g. Nest hollows, habitat trees	Yes																						
Condition of habitat Change in habitat condition, but no change in extent	No																						
		Threatened species																					
Protected matter attributes	Attribute relevant to case?	Description	Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Quantum of impact		Information source
Birth rate e.g. Change in nest success	No																						
Mortality rate e.g Change in number of road kills per year	No																						
Number of individuals e.g. Individual plants/animals	No																						

								0	ffset cal	culator								
								Ecol	logical Co	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	Start area and quality		Future area and quality without offset (adjusted hectares)		Future area and quality with offset (adjusted hectares)		Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of community	Yes	0.00		Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Mini	imum (90%) direc requirement m		FALSE	
								Three	itened spe	cies habitat				,			•	
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	con	Start area and	d quality	Future area an without of (adjusted he	ffset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes	48.13	Tabooba AU2	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	145.02	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	1.45	100%	1.45	1.39	Overall net present value	36.86	
				Time until ecological benefit	10	Start quality (scale of 0-10)	5	Future quality without offset (scale of 0-10)	4	Future quality with offset (scale of 0-10)	7	3.00	85%	2.55	2.50	% of impact offset	76.58%	
								Future area without offset	143.6	Future area with offset	145.0			Mini	imum (90%) direc requirement m		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	lue	Future value v offset		Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes	0.00										0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
						_		T	hreatened	species								
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	lue	Future value v offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

TABLE 10.20 Tabooba AU3 OAG

Offsets Assessment Guide
For use in determining offsets under the Environment Protection and Biodiversity Conservation Act 1999
2 October 2012

Matter of National Environmental Significance Grey-headed flying-fox EPBC Act status Vulnerable

		Impact calculate	r		
		Ecological communit			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of community	Yes		Area (Hectares)		
			Quality (Scale 0-10)		
		Total quantum of (Adjusted Hecto	res)	0.00	
		Threatened species has	bitat		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of habitat	Yes		Area (Hectares)	68.76	
			Quality (Scale 0-10)	7	
		Total quantum of (Adjusted Hecto		48.13	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Number of features e.g. Nest hollows, habitat trees	Yes				
Condition of habitat Change in habitat condition, but no change in extent	No				
		Threatened species			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Birth rate e.g. Change in nest success	No				
Mortality rate e.g Change in number of road kills per year	No				
Number of individuals e.g. Individual plants/animals	No				

								0	ffset cal	culator								
								Eco	logical Co	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	d quality	without of	Future area and quality without offset (adjusted hectares) Future area and quality with offset (adjusted hectares) Ra (adjusted hectares)		Raw gain	Confidence in result (%) Adjusted gain		Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)	
Area of community	Yes	0.00		Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Mini	imum (90%) direc requirement m		FALSE	
								Three	itened spe	cies habitat						1		
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	d quality	Future area an without of (adjusted he	ffset	Future area and with offs (adjusted hea	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes	48.13	Tabooba AU3	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	48.1	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.48	100%	0.48	0.46	Overall net present value	19.72	
				Time until ecological benefit	20	Start quality (scale of 0-10)	5	Future quality without offset (scale of 0-10)	1	Future quality with offset (scale of 0-10)	6	5.00	85%	4.25	4.08	% of impact offset	40.98%	
								Future area without offset	47.6	Future area with offset	48.1			Mini	imum (90%) direc requirement m		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz	on	Start Val	lue	Future value v offset		Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes	0.00										0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
								T	hreatenea	species								
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz	on	Start Val	lue	Future value v offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

TABLE 10.21 Tabooba AU21

Matter of National Environmental Significance								
Name	Grey-headed flying-fox							
EPBC Act status	Vulnerable							
Annual probability of extinction Based on IUCN category definitions	0.2%							

Impact calculator											
		Ecological communit	ies								
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source						
Area of community	Yes		Area (Hectares)								
			Quality (Scale 0-10)								
		Total quantum of (Adjusted Hecto	res)	0.00							
		Threatened species has	bitat								
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source						
Area of habitat	Yes		Area (Hectares)	68.76							
			7								
		Total quantum of (Adjusted Hecto		48.13							
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source						
Number of features e.g. Nest hollows, habitat trees	Yes										
Condition of habitat Change in habitat condition, but no change in extent	No										
		Threatened species									
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source						
Birth rate e.g. Change in nest success	No										
Mortality rate e.g Change in number of road kills per year	No										
Number of individuals e.g. Individual plants/animals	No										

								0	ffset cal	rulator								
									ogical Co									
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	l quality	Future area and without of (adjusted hea	d quality fset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of community	Yes	0.00		Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss <u>with</u> offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Mini	mum (90%) direct requirement me		FALSE	
								Threa	tened spe	cies habitat								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	l quality	Future area and without of (adjusted hea	fset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes	48.13	Tabooba AU4	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	50.62	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.51	100%	0.51	0.49	Overall net present value	4.52	
				Time until ecological benefit	10	Start quality (scale of 0-10)	6	Future quality without offset (scale of 0-10)	6	Future quality with offset (scale of 0-10)	7	1.00	85%	0.85	0.83	% of impact offset	9.38%	
								Future area without offset	50.1	Future area with offset	50.6			Mini	mum (90%) direct requirement me		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	ue	Future value w offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes	0.00										0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
								T	hreatened	species								
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	ue	Future value w offset	rithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

TABLE 10.22 Tabooba AU22

Matter of National Environn	nental Significance
Name	Grey-headed flying-fox
EPBC Act status	Vulnerable
Annual probability of extinction Based on IUCN category definitions	0.2%

		Impact calculate			
		Ecological communit	ies		
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Area of community	Yes		Area (Hectares)		
			Quality (Scale 0-10)		
		Total quantum of (Adjusted Hecto		0.00	
		Threatened species has	bitat		
Protected matter attributes	Attribute relevant to case?	Description	impact	Information source	
Area of habitat	Yes		Area (Hectares)	68.76	
			Quality (Scale 0-10)	7	
		Total quantum of (Adjusted Hecto		48.13	
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Number of features e.g. Nest hollows, habitat trees	Yes				
Condition of habitat Change in habitat condition, but no change in extent	No				
		Threatened species			
Protected matter attributes	Attribute relevant to case?	Description	Quantum of	impact	Information source
Birth rate e.g. Change in nest success	No				
Mortality rate e.g Change in number of road kills per year	No				
Number of individuals e.g. Individual plants/animals	No				

									ffset cal									
								Ecol	logical Co	mmunities								
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	d quality	Future area an without of (adjusted he	ffset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of community	Yes	0.00		Risk-related time horizon (max. 20 years)		Start area (hectores)		Risk of loss without offset (%)		Risk of loss <u>with</u> offset (%)		0.00		0.00	0.00	Overall net present value	0.00	
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%	
								Future area without offset	0.0	Future area with offset	0.0			Mini	imum (90%) direc requirement mo		FALSE	
			-			•		Three	itened spe	cies habitat	-						*	
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	con	Start area and	d quality	Future area an without of (adjusted he	ffset	Future area and with offs (adjusted hec	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result	Cost (\$ total)
Area of habitat	Yes	48.13	Tabooba AU5	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	19.8	Risk of loss without offset (%)	1%	Risk of loss <u>with</u> offset (%)	0%	0.20	100%	0.20	0.19	Overall net present value	1.75	
				Time until ecological benefit	10	Start quality (scale of 0-10)	5	Future quality without offset (scale of 0-10)	5	Future quality with offset (scale of 0-10)	6	1.00	85%	0.85	0.83	% of impact offset	3.63%	
								Future area without offset	19.6	Future area with offset	19.8			Mini	imum (90%) direc requirement m		FALSE	
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	lue	Future value v offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Number of features e.g. Nest hollows, habitat trees	Yes	0.00										0.00		0.00	0.00	0.00%	FALSE	
Condition of habitat Change in habitat condition, but no change in extent	No											0.00		0.00	0.00	0.00%	FALSE	
								T	hreatened	species								
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horiz (years)	on	Start Val	lue	Future value v offset		Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met?	Cost (\$ total)
Birth rate e.g. Change in nest success	No											0.00		0.00	0.00	0.00%	FALSE	
Mortality rate e.g Change in number of road kills per year	No											0.00		0.00	0.00	0.00%	FALSE	
Number of individuals e.g. Individual plants/animals	No											0.00		0.00	0.00	0.00%	FALSE	

Matter of National Environ	mental Significance
Name	Grey-headed flying-fox
EPBC Act status	Vulnerable
Annual probability of extinction Based on IUCN category definitions	0.2%

]	Impa	t cal	culato	r							
						E	cologic	al con	ımunit	ies							
	ected n			Attribut relevant case?			Descri	ption		Qu	ıantum	of ir	mpact	Information source			
Area of	comm	anity		Yes							Area ctares)						
(1) (1) (1))))))			100		100			100		uality le 0-10)			**			
	130 100 100	100 100 100	10		100		(A	djusted	d Hecta	- 1			0.00)))))) ())	200 200 200 200	 	
			Ļ		_	Thi	reatene	d spec	ries ha	bitat							
	ected n			Attribut relevant case?			Descri	ption		Qu	iantum	of ir	mpact	lı	nforma sourc		
Area of	habita	t		Yes							Area ctares)		68.76				
11 64 11	101 101 101		100	10 100 100	000 000	100	100	100	120				7	301 1603 301	310 310)III 144 144	
01	10 10 10			100	10	-		l quant	tum of	impact			48.13	111	300)H 	
Prote	ected n		DX.	Attribut relevant case?				Description			ıantum	of ir	npact	.23511	nforma	tion	
Number			1			100	H		1		10				10	100	
irees	iioiiows	, naonat					1075	L cit	Lab-	-121	-40	100		377	701	100	
Conditi	on of h	abitat	1			100	14	14	10	-	-	Į.		100	100	100	
Change in but no ch		condition extent	۱	No		100	10	11	6	100	10	11	: III	10.	100	100	
							Threa	tened :	species								
Protected matter attributes				Attribut relevant case?		Description Quantum					ıantum	of ir	npact	Information source			
	Birth rate .g. Change in nest success			No		10 10 10	(30) (30)	10	10. 10.	100	101	11	1111	100	10 100	100	
g Chang	Mortality rate .g Change in number of oad kills per year			No		100	100 100 100	10	(i) (i) (ii)		(0) (0)	11	101	10. 10.	111	100 100 100	
e.g. Indivi	Number of individuals			No		100	100	100 1341 1141	100 100 100	100	6		- 11	10.	III.	100	
	nts/animals		0				11.00	3343	14.0				1000		1000	1000	

								0	ffset cal	culator							
	Attributes consumantly Yes 0.00 The proposed offset file consumantly The proposed offset file consumant																
Protected matter attributes	relevant to	impact (Adjusted	Proposed offset			Start area and quality		without of	fset	with offs	et	Raw gain	in result		value (adjusted	Offs	et Result
Area of community				horizon				without offset		offset		0.00		0.00	0.00	present	0.00
				ecological				without offset		with offset		0.00		0.00	0.00		0.00%
								without offset		with offset	0.0			Mini			FALSE
		Total augustum of				1		I	ieneu spe	l l					Not procent		
Protected matter attributes	relevant to	impact (Adjusted	Proposed offset			Start area and	d quality	without of	fset	with offs	et	Raw gain	in result		value (adjusted	Offs	et Result
Area of habitat	Yes	48.13	Greenridge AU4	horizon	20		28.22	without offset	1%	offset	0%	0.28	100%	0.28	0.27	present	2.52
	(1)	(31. 16.1 13.1 [31. 31. 31.1	m m m m	ecological	10		6	without offset	6	with offset	7	1.00	85%	0.85	0.83		5.23%
	00 00	E	00 DH 00 DH						27.9		28.2			Mini			FALSE
Protected matter attributes	relevant to		Proposed offset			Start Val	lue		ithout	Future value wit	th offset	Raw gain	in result				direct offset
Number of features e.g. Nest hollows, habitat trees	Yes											0.00		0.00	0.00	0.00%	FALSE
Condition of habitat Change in habitat condition, but no change in extent	No							Low Lawi				0.00		0.00	0.00	0.00%	FALSE
								T	reatened	species							
Protected matter attributes	relevant to		Proposed offset			Start Val	lue		ithout	Future value wit	th offset	Raw gain	in result				direct offset
Birth rate e.g. Change in nest success	No		m m m m	100 100 100		m m m	111 11	100 100 100 100	11 10	00 00 00	0 00	0.00	100 III 101 III	0.00	0.00	0.00%	FALSE
Mortality rate e.g Change in number of road kills per year	No				100					ni di di	1 (3)	0.00	31 31	0.00	0.00	0.00%	FALSE
Number of individuals e.g. Individual plants/animals	No							1123. USA 112. USA 112. USA 112. USA 112. USA 112. USA 112. USA 112. USA 112. USA 112. USA 112. USA 112. USA 1		101 101 10		0.00	00 00 00 00	0.00	0.00	0.00%	FALSE

Matter of National Environ	mental Significance
Name	Grey-headed flying-fox
EPBC Act status	Vulnerable
Annual probability of extinction Based on IUCN category definitions	0.2%

						1	mpa	t cal	culato	r									
							cologic												
	ected n			Attribut relevant case?			Descri	ption		Qu	ıantum	of in	npact	ı	nforma sourc				
Area of	comm	unity		Yes							Area ctares)								
1 111	100	000 000		100		100	100		1000		uality le 0-10)								
);;; ;;;; ;;;;)// (), (),	 					l quant djusted		impact res)			0.00) (1) (1) (1)	100			
						Thi	eatene	d spec	ies ha	bitat				_					
	ected n			Attribut relevant case?			Descri	ption		Qı	ıantum	of in	npact	ı	nforma sourc				
Area of	habita	t		Yes							Area ctares)		68.76						
	101 101 101		301 201 301	10) 134) 163)	300	100	100	100	120		uality le 0-10)		7	::: ::::::::::::::::::::::::::::::::::	101 201 311				
100	100	101	001 100	(0)	10	1		l quant		impact res)			48.13))))))	300	1111			
Prot	ected n	natter	Local	Attribut relevant case?			Descri			Quantum of			npact	2451300	nforma	tion			
Number e.g. Nest trees										3.3		111			111				
Conditi Change ir but no ch	n habitat	condition,		No		12.	1								111	101 101 100			
							Threa	tened :	species			-100							
	Protected matter attributes			Attribut relevant case?		Threatened species Description				Qu	ıantum	of in	npact	Information source					
Birth ra e.g. Chan		st success		No		10 30	100)0. (0.0)	100	383	100	100	101	101	101 101	100			
Mortalit e.g Chang road kills	ge in nui			No		10.	100	100			10	100	1001 1001 1001	111 211 211		10. 101 101			
Number e.g. Indivi plants/ani	idual	ividuals		No		100	100	100 100 100 100	(i) (i)	35.5	(0) (0)	10 61 11	100	101 101	111	101 101 101			

								0	ffset cale	culator							
								Ecol	ogical Co	mmunities							
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	l quality	Future area an without of (adjusted her	ffset	Future area and with offs (adjusted hea	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result
Area of community	Yes	0.00		Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%
								Future area without offset	0.0	Future area with offset cies habitat	0.0			Mini	mum (90%) direc requirement mo		FALSE
				1				Inrec	neneu spe	cies navitai							
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horiz (Years)	on	Start area and	l quality	Future area an without of (adjusted her	ffset	Future area and with offs (adjusted hea	et	Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result
Area of habitat	Yes	48.13	Greenridge AU5	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	4.74	Risk of loss without offset (%)	1%	Risk of loss with offset (%)	0%	0.05	100%	0.05	0.05	Overall net present value	0.03
		in in in		Time until ecological benefit	20	Start quality (scale of 0-10)	6	Future quality without offset (scale of 0-10)	6	Future quality with offset (scale of 0-10)	6	0.00	85%	0.00	0.00	% of impact offset	0.06%
		E					101 10	Future area without offset	4.7	Future area with offset	4.7	H H	101 (01 101 (10)	Mini	mum (90%) direc requirement mo		FALSE
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horizo	on	Start Val	ue	Future value w offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90% direct offset requirement met
Number of features e.g. Nest hollows, habitat trees	Yes											0.00		0.00	0.00	0.00%	FALSE
Condition of habitat Change in habitat condition, but no change in extent	No							[[[[[[[[[[[[[[[[[[[[0.00	11 11 11 11 11 11 11 11 11 11 11 11 11	0.00	0.00	0.00%	FALSE
								T.	hreatened	species							
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horizo	on	Start Val	ue	Future value w offset	vithout	Future value wi	th offset	Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90%) direct offset requirement met
Birth rate e.g. Change in nest success	No				01 00 01	0 0 00 0 00 00	101 11			100 (0) 1.0 (00 10) (0	((0)	0.00	11 31 103 10	0.00	0.00	0.00%	FALSE
Mortality rate e.g Change in number of road kills per year	No		101 101 100 101 101 101 101 101 101 101 101 101	(0) (0) (0)	(1) (1) (0)		H H				0 (0) 1 (0) 0 (0)	0.00	1000 1001 111 111 110 110	0.00	0.00	0.00%	FALSE
Number of individuals e.g. Individual plants/animals	No		0. 0.1 0.1 0.1 0. 0.0 10 10 0. 0.0 0.1 0.1					100 (10) 100 (10) 101 (10)		1961 1961 19 1961 1961 19		0.00	00 00 100 100 101 101	0.00	0.00	0.00%	FALSE

Matter of National Environ	mental Significance
Name	Grey-headed flying-fox
EPBC Act status	Vulnerable
Annual probability of extinction Based on IUCN category definitions	0.2%

]	mpa	et cale	culato	r						
							cologic									
	ected n			Attribut relevant case?	to		Descri	ption		Qu	antum	of ir	npact	ı	nforma sour	
Area of	comm	unity		Yes							Area ctares)					
)))))))	000	***	-		100	100		10		uality le 0-10)					111
	100) (1) (1) (1)	10	100				l quant djusted		impact res)			0.00		111	111
						Thi	eatene	d spec	ies ha	bitat						
	ected n			Attribut relevant case?			Descri	ption		Qu	antum	of ir	npact	ı	nforma sour	
Area of	habita	t		Yes							Area ctares)		68.76			
111 632 111	101 101 101		100	100 100 100	1000	100 100 100		100		Quality (Scale 0-10)			7	:::: :::::::::::::::::::::::::::::::::	300 300 300)))
101	100	10	(0) (0) (0)	101 101	10	1		impact res)			48.13))))))) (1) (1))H		
Prote	ected n	natter	128	Attribut relevant case?			Descri		rrecto		antum	of ir	npact	2451300	nforma	tion
Number e.g. Nest l			Ī			100		100		1					100	
Conditie Change in out no cha	habitat	condition,		No											110	100
out no en	unge m	CALCIN					L.II	100	L.J.		1	I.				
Protected matter attributes		Ī	Attribut relevant case?							antum	of ir	npact	Information source			
Birth rate .g. Change in nest success			1	No		10.	100))) ()))	100	100	00	11	100	21 201	10	100
Mortality rate .g Change in number of oad kills per year				No		100	(31) (31) (31)	100 (01)	(i) (i) (ii)		(i) (ii) (ii)	11		31 31 31	1111	100 100 100
Number of individuals e.g. Individual olants/animals			No		100	(0)	100 100 100	(1) (2)	9		11) (1)) (1) (1)	30. 30. 31	100	100 100 01	

								0	ffset cale	culator							
								Ecol	ogical Co	mmunities							
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horizon (Years)		Start area and quality		Future area and quality without offset (adjusted hectares)		Future area and quality with offset (adjusted hectares)		Raw gain	Confidence in result (%)	Adjusted gain	Net present value (adjusted hectares)	Offs	et Result
Area of community	Yes	0.00		Risk-related time horizon (max. 20 years)		Start area (hectares)		Risk of loss without offset (%)		Risk of loss with offset (%)		0.00		0.00	0.00	Overall net present value	0.00
				Time until ecological benefit		Start quality (scale of 0-10)		Future quality without offset (scale of 0-10)		Future quality with offset (scale of 0-10)		0.00		0.00	0.00	% of impact offset	0.00%
								Future area without offset	0.0	Future area with offset cies habitat			Minimum (90%) direct offset requirement met?		FALSE		
	1	Total months of		r				1 11111	пеней эре	cies naona					Mat annual		
Protected matter attributes	Attribute relevant to case?	Total quantum of impact (Adjusted Hectares)	Proposed offset	Time Horizon (Years)		Start area and quality		Future area and quality without offset (adjusted hectares)		Future area and quality with offset (adjusted hectares)		Raw gain	Confidence in result (%)	Adjusted gain	value (adjusted hectares)	Offs	et Result
Area of habitat	Yes	48.13	Greenridge AU6	Risk-related time horizon (max. 20 years)	20	Start area (hectares)	12.48	Risk of loss without offset (%)	0%	Risk of loss with offset (%)	0%	0.00	100%	0.00	0.00	Overall net present value	5.10
		101 101 101		Time until ecological benefit	20	Start quality (scale of 0-10)	2	Future quality without offset (scale of 0-10)	2	Future quality with offset (scale of 0-10)	7	5.00	85%	4.25	4.08	% of impact offset	10.59%
0 10 10 10 1		RI 30 30	OR OR OR OR					Future area without offset	12.5	Future area with offset	12.5		10. 01. 30. 10	Mini	imum (90%) direc requirement me		FALSE
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horizon (years)		Start Value		Future value without offset		Future value with offset		Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90% direct offset requirement met
Number of features e.g. Nest hollows, habitat trees	Yes											0.00		0.00	0.00	0.00%	FALSE
Condition of habitat Change in habitat condition, but no change in extent	No							[[[[[[[[[[[[[[[[[[[[0.00	11 11 11 11 11 11 11 11 11 11 11 11 11	0.00	0.00	0.00%	FALSE
								T	hreatened	species							
Protected matter attributes	Attribute relevant to case?	Quantum of impact	Proposed offset	Time horizon (years)		Start Value		Future value without offset		Future value with offset		Raw gain	Confidence in result (%)	Adjusted gain	Net present value	% of impact offset	Minimum (90% direct offset requirement met
Birth rate e.g. Change in nest success	No				01 00	0 0 00 0 00 00	101 11			100 (0) 1.0 (00 10) (0	((0)	0.00	01 00 100 10	0.00	0.00	0.00%	FALSE
Mortality rate e.g Change in number of road kills per year	No		101 101 100 101 101 101 101 101 101 101 101 101	(2) (2) (3)	0		H H				0 (0) 1 (0) 0 (0)	0.00	1000 1001 111 111 110 110	0.00	0.00	0.00%	FALSE
Number of individuals e.g. Individual plants/animals	No		0. 0. 0. 0. 0. 0. 0. 10 10 10 0. 10 10 10			10 10 10 10 10 10 10 10 10 10 10 10 10 1	10. 10 10. 10 10. 10	101 (01) 101 (01)		1961 1961 18 1961 1861 18		0.00	00 00 10 00 01 00	0.00	0.00	0.00%	FALSE