
QUEENSLAND DEPARTMENT OF PRIMARY INDUSTRIES QV86001

SOILS AND LAND SUITABILITY OF LEICHHARDT DOWNS SECTION, BURDEKIN RIVER IRRIGATION AREA PART A

T. E. Donnollan, J. I. McClurg and R. J. Tucker Land Resources Branch

Queensland Government Technical Report
This report is a scanned copy and some detail may be illegible or lost. Before acting on any information, readers are strongly advised to ensure that numerals, percentages and details are correct.
This report is intended to provide information only on the subject under review. There are limitations inherent in land resource studies, such as accuracy in relation to map scale and assumptions regarding socio-economic factors for land evaluation. Before acting on the information conveyed in this report, readers should ensure that they have received adequate professional information and advice specific to their enquiry.
While all care has been taken in the preparation of this report neither the Queensland Government nor its officers or staff accepts any responsibility for any loss or damage that may result from any inaccuracy or omission in the information contained herein.
© State of Queensland 1986
For information about this report contact soils@qld.gov.au

SOILS AND LAND SUITABILITY OF LEICHHARDT DOWNS SECTION, BURDEKIN RIVER IRRIGATION AREA

PART A - SUMMARY OF SOILS AND LAND SUITABILITY ASSESSMENT

T. E. Donnollan, J. I. McClurg and R. J. Tucker Land Resources Branch

Queensland Department of Primary Industries Erisbane 1986 ISSN 0811-9007

AGDEX: 524

Operating funds provided by the Queensland Water Resources Commission are gratefully acknowledged.

Queensland Department of Primary Industries GPO Box 46 Brisbane Q.~4001.

CONTENTS

		Page
LIS	F OF TABLES	iv
ABS	TRACT	1
1.	INTRODUCTION	3
2.	LANDSCAPE UNITS AND SOIL TYPES	4
3.	CHEMICAL AND PHYSICAL ATTRIBUTES OF THE SOILS	4
4.	MAPPING UNITS	19
5.	LAND SUITABILITY EVALUATION	19
6.	GUIDELINES FOR DEVELOPMENT	20
7.	FARM MANAGEMENT GUIDELINES	40
8.	ACKNOWLEDGEMENTS	41
9.	GLOSSARY	41
10.	REFERENCES	42
APPI	ENDIXES	
ı.	IRRIGATION LAND SUITABILITY CLASSES, BURDEKIN RIVER IRRIGATION AREA	43
II.	LAND SUITABILITY CLASSIFICATION, BURDEKIN RIVER IRRIGATION AREA	45

LIST OF TABLES

		Page
1.	Landscape units and major distinguishing attributes of the soil types, Leichhardt Downs Section, Burdekin River Irrigation Area.	5
2.	Ratings for soil salinity, sodicity and nutrients in the sampled soil types, Leichhardt Downs Section, Burdekin River Irrigation Area.	18
3.	Subclasses of the limiting factors and land suitability classes for sugar-cane, grain crops, small crops, mangos and rice of soil types, Leichhardt Downs Section, Burdekin River Irrigation Area.	21
4.	Land suitability classes for unique map areas, Leichhardt Downs Section, Burdekin River Irrigation Area.	25
5.	Land suitability classes, soil and land limitations and management considerations of agricultural management units, Leichhardt Downs Section, Burdekin River Irrigation Area.	32

ABSTRACT

A 1:25 000 soil survey and a land suitability evaluation were undertaken for Leichhardt Downs Section in the Burdekin River Irrigation Area. The survey, the first of a number of proposed high intensity surveys, provides information to assist the Queensland Water Resources Commission with resubdivision and farm design for the proposed irrigation areas of the Burdekin River Irrigation Area (BRIA).

Seven hundred and sixty-five unique map areas (UMAs) representing 70 different soil types on six landscape units (LUs) were mapped and are shown on the accompanying soils map. Soils of landscape units 1, 2 and 3 of alluvial origin occupy about 45% of the total area of 9711 ha. Of these, cracking clays make up 30% with sodic duplex soils occupying the remainder. Non-calcic brown soils are present on about half the area of landscape unit 5 (gently undulating rises on an intrusive rock complex) which occupies 25% of the total area. A wide range of soils occur on the miscellaneous alluvial landforms of landscape unit 6, especially on the creek and relict alluvial landforms. Landscape unit 4 (gently undulating rises on acid intrusive rocks, pediments and prior streams) only occupies 181 ha of the survey area.

The suitability of the land for sugar-cane, grain crops, small crops, mangos and rice was assessed for each UMA. An area of 7699 ha is suitable (classes 1, 2, and 3) for sugar-cane, 5644 ha for grain crops, 2764 for small crops, 2974 for mangos and 3350 ha are suitable for rice. A total of 2511 ha is suitable for both sugar-cane and grain crops as well as rice. The lands classed as unsuitable (classes 4 and 5) for irrigation of any crops comprise 1577 ha.

It is likely that some land degradation will be caused by salinisation, flooding and erosion but this can be decreased by adopting adequate protective measures in susceptible areas.

As many of the soils present a number of management problems, the development of specialised irrigation techniques will be required to ensure sustained economic crop production.

1. INTRODUCTION

This report, part A, summarises the results of the first of a series of 1:25 000 soil surveys being undertaken in the Lower Burdekin Valley. These surveys are designed to provide detailed land resource information and an assessment of land suitability to assist in resubdivision and farm design throughout the Burdekin River Irrigation Area (BRIA) by the Queensland Water Resources Commission (QWRC).

This survey area, Leichhardt Downs Section, comprises some 9711 ha and is located on the right bank of the Burdekin River. The Burdekin River forms the western boundary from approximately 36 km upstream from Home Hill in the south to the boundary of the South Burdekin Water Board Area in the north. The southern and eastern boundaries lie 200 to 500 m upslope of the Elliot Main Channel which approximately follows the 35 m contour. The lower slopes of Stokes Range form the northern boundary. A plan showing the location of the area in respect to other proposed 1:25 000 soil surveys of the BRIA is shown in Figure 1.

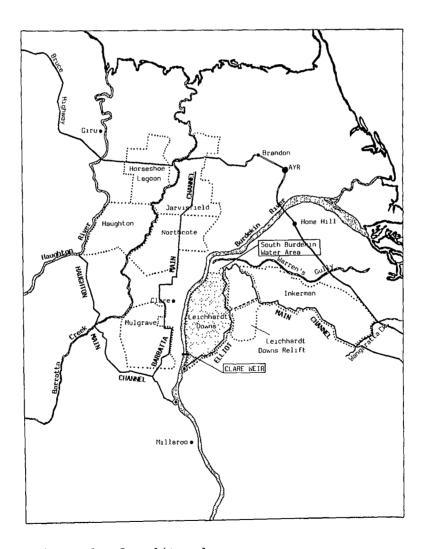


Figure 1. Locality plan

Part A presents a summary of soil and land use information that will meet the immediate needs of many users. More details of the physical environment, the soils, their physical and chemical attributes, as well as land use implications, are presented in a separate report, part B.

2. LANDSCAPE UNITS AND SOIL TYPES

Thompson (1977) identified six topographic forms separated on the basis of geological and geomorphological differences in the area during a low intensity soil survey. Soil profile classes as defined by Thompson and Reid (1982), and modified where necessary to account for the much greater density of observations carried out during this high intensity survey, were the basis for classifying soils in this survey. Since these publications above, some terms and definitions relating to the components of soil and land surveys have changed. Where appropriate, these new terms have been used in this publication. Landscape unit* replaces the term topographic form. The term soil profile class has been replaced by soil type*.

Those soil morphological characteristics considered important determinants of irrigated land use were the main criteria for determining soil types. Each soil type is identified by an alpha numeric code, a number for the landscape unit on which the soil is found, the appropriate subdivision of the primary profile form (Northcote 1979) and a letter for each separate soil type within that landscape unit and subdivision of the primary profile form. For example; for soil type 1Ugd, '1' denotes landscape unit 1; 'Ug' indicates a subdivision of the primary profile form (in this case uniform, fine textured seasonally cracking soil [cracking clay]); and 'd' separates this soil type from other fine textured, seasonally cracking soil types within landscape unit 1.

Table 1 gives a brief description of each landscape unit with its component soil types and predominant natural vegetation.

Variants were used to distinguish those profiles which were similar to an existing soil type but differed in one or more of those soil attributes which were important indicators of land use potential. Variants were distinguished by a number after the soil type symbols. The variants are listed and described on the soils map.

3. CHEMICAL AND PHYSICAL ATTRIBUTES OF THE SOILS

Twenty-five soil profiles representing 19 soil types were sampled and analysed. A number of profiles were also sampled and analysed to characterise an experimental site established within the survey area and during the survey by Thompson (1977). The more important chemical and physical attributes of these analysed soil types are summarised in Table 2.

* See glossary.

Table 1 Landscape units and major distinguishing attributes of the soil types, Leichhardt Downs Section, Burdekin River Irrigation Area

Landscape unit	Landform element	Soll type	Major distinguishing attributes	Great soil group	PPF	Predominant natural vegetation
Local alluvial plains and associated pediments	Low lying flats and drainage depressions	1 Uga	0.02m moderate self mulch over dark to grey medium clay to 0.05 - 0.15m over alkaline dark to grey medium to heavy clay to 1.5+m, moderate to strong gligal	Black earth - grey clay	Ug5•16 Ug5•24	Low open woodland of poplar gum and carbeen with cabbage gum, beefwood and broad leaf tea-tree associated with Tussock grassland of cane grass and blue grasses
		1Ugc	Hard setting surface over brown-mottled dark light to light medium clay to 0.05 - 0.10m Al horizon frequently over bleached A2 horizon to 0.08 - 0.15m over alkaline dark to grey medium to heavy clay to 1.5+m, weak glige!	Black earth - (bleached) black earth - (bleached) grey clay	Ug5•16 Ug2 Ug3•1	Low open woodland of poplar gum and cabbage gum with carbeen, beefwood and broad leaf tea-tree associated with Tussock grassland of blue grasses, brown top and cane grass
		1Ugd	0.02m weak self muich over brown-mottled grey light medium to medium clay to 0.05 - 0.15m over alkaline grey to yellow-grey medium to heavy clay to 1.5+m, weak to moderate gligal	Grey clay	Ug5•28 Ug5•24	Low open woodland of poplar gum and carbeen with cabbage gum and beefwood associated in poorly drained areas with Tussock grassland of blue grasses and cane grass with brown top and black spear grass associated.
		1Ugf	Weakly self mulching to hard setting surface over grey to dark light to light medium clay A1 horizon to 0.05 - 0.15m over bleached A2 horizon to 0.15 - 0.30m over grey medium clay to 0.40 - 0.80m over alkaline grey to yellow-brown medium to heavy clay to 1.5+m, weak to moderate gligal	(Bleached) grey clay	Ug3•2 Ug2	Low open woodland of poplar gum and cabbage gum with carbeen, beefwood and broad leaf tea-tree associated with Tussock grassland of blue grasses, black spear grass and brown top
	Pediments with linear gligal	1Uge	Depression: Weakly self mulching to hard setting surface over dark to grey light to light medium clay to 0.10 – 0.20m over alkaline dark to grey medium clay to 0.45 – 0.80m over yellow-brown to grey medium clay to 1.54m	Błack earth-grey clay	Ug5•16 Ug5•24	Low open woodland of poplar gum and cabbage gum with beefwood associated with Tussock grassland of cane grass, black spear grass and blue grasses
			Mound: 0.02m moderate self mulch over grey light to modium clay to 0.05 - 0.15m over yellow-brown to grey medium clay to 1.54m	Grey clay	Ug5 • 24 Ug5 • 28	

Table 1 (Cont'd)

Landscape unit	Landform element	Soll type	Major distinguishing attributes	Great soll group	PPF	Predominant natural vegetation
Local alluvial plains and associated pediments	Pediments and slightly elevated flats	1Dba	0.05 - 0.15m brown to dark clay loam A horizon bleached throughot or near base over alkaline brown medium to heavy clay B horizon to 0.35 - 0.40m over strongly alkaline yellow-brown light medium clay D horizon to 1.5+m	Solodic-solodized solonetz	Db1.33 Db1.43	Low open woodland of cabbage gum and beefwood with false sandalwood and broad leaf tea-tree associated with Open tussock grassland of blue grasses and black spear grass
		1Dya	0.05 - 0.10m grey sandy clay loam to clay loam A horizon bleached throughout or near base over alkaline grey medium clay B horizon to 0.50 - 0.90m over strongly alkaline grey to brown medium clay B horizon to 1.5+m	Solodic-solodized solonetz	Dy2•43 Dy2•33	Low to tall shrubland of false sandalwood and beefwood or Low open woodland of cabbage gum, poplar gum and scattered false sandalwood with Open tussock grassland of black spear grass and blue grasses
		10уь	0.10 - 0.15m dark to brown sandy loam to clay loam A horlzon bleached throughout or near base over alkaline grey light to light medium clay B horlzon to 0.40 - 0.60m over strongly alkaline yellow-brown to light grey sandy clay loam to sandy clay D horlzon to 1.5+m	Solodic-solodized solonetz	Dy2.43	Low woodland to low open woodland of cabbage gum, poplar gum, carbeen, beefwood and false sandalwood with Tussock grassland of black spear grass and blue grasses
		1Dyc	0.05 - 0.10m brown-mottled dark to brown clay loam A1 horizon over bleached A2 horizon to 0.10 - 0.15m over alkaline grey medium to heavy clay B horizon to 0.40 - 0.80m over strongly alkaline grey to yellow-brown medium clay B horizon to 1.5+m	Solodic-solodized solonatz	Dy2•43 Dy2•33	Low open woodland of cabbage gum, poplar gum and beefwood with carbeen and false sandelwood associated with Tussock grassland of blue grasses and black spear grass
		1 Dda	0.05 - 0.10m brown-mottled dark to grey clay loam A1 horizon over bleached A2 horizon to 0.10 - 0.15m over alkaline dark medium to heavy clay 8 horizon to 0.60 - 1.20m over grey light to medium clay 8 or D horizon to 1.5+m	Solodic—solodized solonetz	Dd1.43 Dd1.33	Low open woodland of poplar gum and carbeen with cabbage gum, beefwood and willow wattle associated with Tussock grassland of black spear grass and blue grasses with kangaroo grass associated
Burdekin River alluvial plain	Low lying flats	2Uga	0.01 - 0.02m weak to moderate self mulch over grey to dark medium to heavy clay to 0.05 - 0.10m over alkeline grey to dark medium to heavy clay to 1.00 - 1.35m over brown medium to heavy clay to 1.5+m, weak gligal	Grey clay - black earth	Ug5+25 Ug5+29 Ug5+15	Low open woodland to low woodland of carbeen and poplar gum with broad leaf tea-tree and beefwood associated with Tussock grassiand of cane grass and blue grasses

Table 1 (Cont'd)

Landscape unit	Landform element	Soll type	Major distinguishing attributes	Great soll group	PPF	Predominant natural vegetation
Burdekin River aliuviai piain	Low lying flats	2Ugb	0.01 - 0.02m weak to moderate self mulch over dark to grey light to light medium clay to 0.05 - 0.10m over alkaline dark to grey medium to heavy clay to 0.75 - 1.00m over brown light to medium clay D horizon to 1.5+m, weak gligal	Black earth - grey clay	Ug5•17 Ug5•2	Low open woodland of poplar gum and carbeen with broad leaf tea-tree associated with Tussock grassland of cane grass and blue grasses
		2Ugc	Weakly self mulching to hardsetting surface over brown-mottled dark to grey light to light medium clay to 0.05 - 0.10m over alkaline grey medium to heavy clay to 1.5+m, weak to moderate gligal	Grey clay	Ug5•28 Ug5•29	Low open woodland to low woodland of poplar gum with cabbage gum, carbeen, broad leaf tea-tree and beefwood associated with Tussock grassland of cane and blue grasses
		2Ugd	Weakly self mulching to hard setting surface over bleached brown-mottled grey light to light medium clay to 0.10 - 0.25m over brown-mottled grey medium to heavy clay to 1.00 - 1.20 m over yellow-brown to grey light to medium clay to 1.54m, strongly alkaline at and below 0.90 - 1.20m, moderate to strong gligal	(Bleached) grey clay	Ug3•2 Ug2	Low open woodland to low woodland or occasionally woodland of poplar gum and carbeen with broad leaf tea-tree associated with Tussock grassland of blue grasses, kangaroo grass and black spear grass
		2Uge	Weakly self mulching to hard setting surface over occasionally bleached brown-mottled dark grey light to light medium clay to 0.05 - 0.25 m over brown - mottled grey medium to heavy clay to 0.80 - 1.30m over brown to grey light to medium clay to 1.54m, strongly alkaline above or at 0.60m, weak to moderate gligal	Grey clay - (bleached) grey clay	Ug5.29 Ug5.25 Ug5.28 Ug3.2	Low open woodland to low woodland of poplar gum with carbeen and cabbage gum associated with Tussock grassland of blue grasses, black spear grass and kangaroo grass
		2Ugg	0.01 - 0.02m moderate self mulch over grey medium to heavy clay to 0.10 - 0.20m over grey medium to heavy clay to 1.20 - 1.40m over yellow-brown to grey medium to heavy clay to 1.54m, strongly alkaline at and below 0.60 - 0.90m, moderate to strong gilgal	Grey clay	Ug5•29 Ug5•24 Ug5•28	Low open woodland to low woodland of poplar gum with carbeen and broad leaf tea-tree associated with Tussock grassland of blue grasses and cane grass
		2Ugh	0.01 - 0.02m moderate self mulch over brown- mottled grey medium to heavy clay to 0.10 - 0.15m over grey medium to heavy clay to 1.5+m, strongly alkaline at and below 0.30m, moderate to strong gligal	Grey clay	Ug5•28 Ug5•24	Isolated trees to low open woodland of carbeen, poplar gum and cabbage gum with Tussock grassland of blue grasses, cane grass and Filinders grass

Table 1 (Cont'd)

Landscape unit	Landform element	Soii type	Major distinguishing attributes	Great soll group	PPF	Predominant natural vegetation
Burdekin River alluvial plain	Low lying flats	2Dyc	0.05 - 0.10m brown-mottled dark to grey loam Al horizon over bleached A2 horizon to 0.12 - 0.25m over alkaline brown-mottled grey medium to heavy clay B horizon to 1.10 - 1.30m over grey to yellow-brown light to medium clay D horizon to 1.5+m, moderate to strong gligal	Solodic-solodized solonetz	Dy3.33 Dy3.43	Low open woodland to open woodland of poplar gum and cabbage gum with Tussock grassland of blue grasses, black spear grass and kangaroo grass
	Slightly elevated flats	2Dba	0.03 - 0.05m brown clay loam A1 horizon over bleached A2 horizon to 0.05 - 0.10m over brown medium clay B horizon to 1.00 - 1.5+m over brown sandy clay to light - medium clay D horizon to 1.5+m, strongly alkaline at and below 0.30m	Solodic-solodized solonetz	Db1.43 Db1.33	Low to tail shrubland of false sandalwood and beefwood with cabbage gum, poplar gum and carbeen associated with Open to sparse tussock grassland of blue grasses, black spear grass, purple top Rhodes grass and button grass
		2Dbb	0.05 - 0.15m dark to brown clay loam A1 horizon over bleached A2 horizon to 0.12 - 0.20m over brown medium clay B horizon to 1.20 - 1.5+m over brown sandy clay to light-medium clay D horizon to 1.5+m, strongly alkaline above or at 0.60m	Solodic-solodized solonetz	061.33 Db1.43	Low open woodland of poplar gum, carbeen and cabbage gum with beefwood and mimosa associated with Tussock grassland of purple top Rhodes grass, black spear grass and blue grasses
		2Dbc	0.05 - 0.20m brown-mottled dark to grey loam to clay loam Al horizon over bleached A2 horizon to 0.20 - 0.35m over brown-mottled grey to brown medium clay 8 horizon to 1.00 - 1.5+m over brown sandy clay to light medium clay D horizon to 1.5+m, strongly alkaline at and below 0.90 - 1.20m	Solodic-solodized solonetz	Dy3.43 Dy3.33 Db2.43 Db2.33	Low open woodland to low woodland of poplar gum, carbeen and cabbage gum with Tussock grassland of black spear grass, blue grasses and kangaroo grass
		2Dbd	0.10 - 0.20m dark to brown loam to fine sandy clay loam A1 horizon over bleached A2 horizon to 0.20 - 0.35m over grey to brown medium to heavy clay B horizon to 0.70 - 1.00m over brown light to medium clay D horizon to 1.5+m, strongly alkaline at and below 0.60m	Solodic-solodized solonetz	Dy2-43 Dy2-33 Db1-43 Db1-33	Low open woodland to woodland of cabbage gum, carbeen and poplar gum with Tussock grassland of black spear grass, blue grasses and kangaroo grass
		2Dbe	0.05 - 0.10m brown-mottled dark to grey loam to clay loam Al horizon over bleached A2 horizon to 0.12 - 0.20m over red-mottled brown medium to heavy clay B horizon to 1.15 -1.25m over brown light to medium clay D horizon to 1.5+m, strongly alkaline at and below 0.90 - 1.20m	Solodic-solodized solonetz	Db2•43 Db2•33	Low open woodland to open woodland of poplar gum, cabbage gum and carbeen with beefwood associated with Tussock grassland of black spear grass, blue grasses and kangaroo grass

Table 1 (Cont'd)

Landscape uni†	Landform element	Soil type	Major distinguishing attributes	Great soil group	PPF	Predominant natural vegetation
Burdekin River alluvial plain	Slightly elevated flats	2Dya	0.05 - 0.10m brown-mottled dark to brown clay loam A horizon bleached throughout or near base over grey medium to heavy clay B horizon to 0.90 - 1.5+m over brown sandy clay to light medium clay D horizon to 1.5+m, strongly alkaline at and below 0.60m	Solodic-solodized solonetz	Dy2-33 Dy2-43	Low open woodland to woodland of poplar gum, cabbage gum and carbeen with beefwood and broad leaf tea-tree associated with Tussock grassland of blue grasses and kangaroo grass
		2Dyb	0.05 - 0.10m brown-mottled dark grey to brown loam to clay loam A1 horizon over bleached A2 horizon to 0.12 - 0.20m over grey medium to heavy clay B horizon to 0.90 - 1.5+m over brown light to medium clay D horizon to 1.5+m, strongly alkaline above or at 0.60m	Solodic-solodized solonetz	Dy2-33 Dy2-43	Low open woodland of cabbage gum and poplar gum with beefwood associated with Tussock grassland of black spear grass, blue grasses and purple top Rhodes grass
		2Ddb	0.05 - 0.12m brown-mottled dark to grey loam to clay loam A1 horizon bleached throughout or near base over dark to grey modium to heavy clay 8 horizon to 0.65 - 1.00m over brown light to medium clay D horizon to 1.5+m, strongly alkaline at and below 0.30m	Solodic=solodized solonetz	Dd1•33 Dy2•33 Dd1•43	Low open woodland of beefwood, cabbage gum and poplar gum or low to tall shrubland of false sandalwood and beefwood with Open tussock grassland of black spear grass, blue grasses, purple top Rhodes grass and kangaroo grass
Local alluvial	Plain	3Uga	0.02m moderate medium self mulch over dark heavy clay to 0.90 - 1.20m over grey heavy clay to 1.5+m, strongly alkaline above or at 0.60m, carbonate present above or at 0.75m, moderate to strong gligal	Black earth	Ug5•16	Tussock grassland of came grass and blue grasses
		3Ugd	0.02m strong coarse self mulch over dark heavy clay to 0.75 to 1.20m over grey heavy clay to 1.54m, strongly alkaline at or below 0.90m, carbonate present below 0.75m, moderate to strong gligal	Black earth	Ug5•16	Tussock grassland of cane grass and blue grasses with brown top and Flinders grass associated
		3Uge	0.02m week self mulch over brown-mottled dark medium clay to 0.10 - 0.15m over alkaline dark heavy clay to 0.90 - 1.20m over brown light to medium clay D horizon to 1.5+m, week to moderate gligal	Błack earth	Ug5•17	Tussock grassland of cane grass and blue grasses

Table 1 (Cont'd)

Landscape unit	Landform element	Soil type	Major distinguishing attributes	Great soil group	PPF	Predominant natural vegetation
Local alluvial plain	Plain	3Ugf	0.01 - 0.02m weak self mulch over dark slity clay to 0.10 - 0.30m over alkaline dark medium clay to 0.80 - 1.00m over dark to grey medium to heavy clay to 1.5+m	Black earth	Ug5•16	Low open woodland of carbeen and poplar gum with grey bloodwood associated with Tussock grassland of blue grasses, Rhodes grass, black spear grass and cane grass
	Plain margins bordering other land- scape units	3Ugk	0.01 - 0.02m weak to moderate self mulch over brown-mottled grey medium clay to 0.10 - 0.15m over alkaline grey to yellow- grey medium clay to 1.20 - 1.5m over yellow light-medium to medium clay 2BC horizon to 1.5+m, moderate to strong gligal	Gray clay	Ug5•2 Ug5•28	Low open woodland of poplar gum and carbeen with broad leaf tea-tree associated with Tussock grassland of cane grass and blue grasses with para-grass associated
Gently undul- ating rises on acld intrusive rocks, pediments and prior streams	Pediments	4Ucc	0.10 - 0.30m dark to brown coarse sand to sandy loam A1 horizon over bleached A2 horizon to 0.40 - 0.90m over acid grey to yellow-brown coarse sand to sandy loam B horizon to 1.00 - 1.54m, over coarse sand or hard rock to 1.54m	No suitable group, affinities with podzoł	Uc2-12 Uc2-21	Woodland to low woodland of cabbage gum, poplar gum and grey bloodwood with quinine bush and broad leaf tea-tree associated with Open tussock grassland of black spear grass and glant spear grass
	Pediments and prior streams	4Dba	0.05 - 0.20m brown sandy loam to sandy clay loam Al horizon over bleached A2 horizon to 0.20 - 0.25m over alkaline brown medium clay B horizon to 0.45 - 1.54m, over coarse sand D horizon to 1.54m	Solodic-solodized solonetz	Db1.43 Db1.33	Open woodland of poplar gum, grey Ironbark, red bloodwood and cabbage gum with beefwood associated with Open tussock grassland of glant spear grass, black spear grass, wire grass and blue grasses
		4Dyg	0.10 - 0.20m dark to yellow-brown loam to clay loam Al horizon over bleached A2 horizon to 0.15 - 0.30m over grey to yellow-brown medium clay B horizon to 0.80 - 1.54m over sandy clay to light clay D horizons or rock, alkaline at and below 0.60m	Solodic-solodized solonetz	Dy2•33 Dy2•43	Low open woodland to woodland of cabbage gum, grey ironbark, poplar gum and broad leaf tea-tree with bulloak and false sandalwood associated with Tussock to open tussock grassland of black spear grass, kangaroo and blue grasses with wire grass and purple top Rhodes grass associated

Table 1 (Cont'd)

Landscape unit	Landform element	Soll type	Major distinguishing attributes	Great soll group	PPF	Predominant natural vegetation
Gently undul- ating rises on acid intrusive rocks, pediments and prior streams	Pediments and prior streams	4Dyh	0.10 - 0.20m dark to grey light sandy clay loam to clay loam Al horizon over bleached A2 horizon to 0.15 - 0.30m over brown-mottled grey medium clay B horizon to 0.75 - 1.5+m over gravelly sandy clay to light clay D horizon or rock, alkaline at and below 0.30m	Solodic-solodized solonetz	Dy3•43 Dy3•33	Low open woodland to woodland of carbeen, cabbage gum and broad leaf teatree with beefwood, grey Ironbark and false sandalwood associated with Open tussock grassland of purple top Rhodes grass, love grass, wire grass and blue grasses
Gently undul- ating rises on an intrusive rock complex	No fixed slope position	5Uga	0.02m moderate to strong self mulch over dark medium to heavy clay to 0.05 - 0.12m over alkaline dark to grey medium to heavy clay to 0.70 - 1.00m over decomposing rock	Black earth	Ug5 • 12 Ug5 • 14	Isolated trees to low open woodland of cabbage gum, grey Ironbark and poplar gum with carbeen associated with Tussock grassland of blue grasses, cane grass and Rhodes grasses
		5Ugb	Weakly self mulching to hard setting surface over grey to dark light to light medium clay Al horizon to 0.10 - 0.20m occasionally over bleached A2 to 0.15 - 0.25m, over alkaline grey to dark medium clay to 0.40 - 0.80m over grey to yellow-brown medium clay to 0.70 - 1.0m over decomposing rock	Grey clay - black earth - (bleached) grey clay	Ug5•22 Ug5•14 Ug3•2	Isolated trees to low open woodland of cabbage gum and poplar gum with grey ironbark and grey and red bloodwood associated with Tussock grassland of black spear grass, blue grasses and cane grass
	Upper and mid slopes	5Dra	0.15 - 0.30m dark to brown clay loam A horizon over acid to neutral red medium clay to 0.70 - 1.20m over decomposing rock	Non-calcic brown soll	Dr2-12 Dr2-11	Low open woodland to low woodland of grey fronbark and red bloodwood with poplar gum and grey bloodwood associated with Tussock grassland of black spear grass, glant spear grass, kangaroo grass and blue grasses
		5Dya	0.15 - 0.25m dark to brown sandy clay loam to clay loam A horizon over acid to neutral yellow-brown medium clay to 0.70 - 1.00m over decomposing rock	No sultable group, yellow equivalent of non-calcic brown soil	Dy2-12 Dy2-11	Low open woodland to low woodland of poplar gum, red bloodwood and grey tronbark with carbeen and grey bloodwood associated with Tussock grassland of black spear grass, glant spear grass and kangaroo grass

Table 1 (Cont'd)

Landscape unit	Landform element	Soll type	Major distinguishing attributes	Great soll group	PPF	Predominant natural vegetation
Gently undul- ating rises on an intrusive rock complex	Mid to lower slopes	5Dyb	0.10 - 0.20m dark to brown clay loam A horizon over alkaline yellow-brown light medium to medium clay to 0.90 - 1.30m over decomposing rock	No sultable group	Dy2-13	Low open to low woodland of poplar gum, cabbage gum and grey bloodwood with scattered beefwood, red bloodwood and grey ironbark associated with Tussock grassland of black spear grass, glant spear grass, kangaroo grass and blue grasses
		5Dyf~ 5Ugc	Linear gilgal complex with shelf, depression and narrow mound			Low open woodland of cabbage gum and poplar gum
			Shelf: (5Dyf) 0.10 - 0.15m grey clay loam A1 horizon over bleached A2 horizon to 0.15 - 0.20m over alkaline grey medium clay B horizon to 0.80 - 1.10m over decomposing rock Depression: (5Ugc) Weakly self mulching to hard setting surface over dark light to light medium clay A1 horizon to	Solodic-solodized solonetz Black earth - (bleached) black earth	Dy2.43 Dy2.33 Ug5.14 Ug3.1	Tussock grassland to open tussock grassland of black spear grass, blue grasses, and cane grass with kangaroo grass, brown top and Panlcum spp. associated
			0.10 - 0.15m occasionally over bleached A2 horizon to 0.15 - 0.20m over alkaline dark medium clay to 0.50 - 0.90m over grey to brown medium clay to 0.50 - 1.10m over decomposing rock		Ug5•13	
	Lower slopes	5Dyc	0.10 - 0.20m brown-mottled dark to brown sandy clay loam to clay loam A1 horizon over bleached A2 horizon to 0.15 - 0.30m over alkaline grey medium clay B horizon to 0.40 - 1.20m over grey to yellow-grey medium clay to 0.80 - 1.50m over decomposing rock or colluvia	Solodic-solodized solonetz	Dy2•43 Dy2•33	Low open woodland of cabbage gum, poplar gum and beefwood with carbeen associated with Tussock to open tussock grassland of black spear grass, Rhodes grass and blue grasses with wire grass associated
		5Dyd	0.05 - 0.10m dark to grey sandy clay loam to clay loam A1 horizon over bleached A2 horizon to 0.10 - 0.12m over strongly alkaline grey to yellow-brown medium clay B horizon to 0.70 - 1.20m over decomposing rock or colluvia	Solodic-solodized solonetz	Dy2-43 Dy2-33	Low open woodland of cabbage gum and poplar gum with false sandalwood and beefwood associated. or Tall shrubland to tall open shrubland of false sandalwood with Open tussock grassland of black spear grass Rhodes grass and blue grasses

Table 1 (Cont'd)

Landscape unit	Landform element	Soll type	Major distinguishing attributes	Great soil group	PPF	Predominant natural vegetation
Miscellaneous alluvial land- forms (A) Burdekin River alluvial landform	Leveo	6Ucc	0.05 - 0.50m dark to brown sand to fine sandy loam A1 horizon over grey, brown or yellow A12 or A2 horizon to 0.50 - 1.10 over acid to neutral brown to yellow sand to sandy clay loam A3 or B horizon to 1.5+m	No suitable group, affinities with siliceous sands - earthy sands	Uc5.21 Uc5.11 Uc5.23 Uc4.22	Open woodland to open forest of poplar gum, carbeen, grey bloodwood and Burdekin plum with broad leaf tea-tree, cocky apple, pandanus, prickly pine and quinine bush associated with Tussock grassland of glant spear grass, black spear grass and brown sorghum with golden beard grass and blue grasses associated
		6Uma	0.15 - 0.40m dark to brown sandy loam to clay loam A horizon over acid to neutral brown sandy loam to clay loam B horizon to 0.80 - 1.10m over brown sandy loam to sandy clay loam D horizon to 1.5+m	No sultable group, affinities with yellow earth	Um5 • 52 Gn2 • 22 Gn2 • 41 Uc5 • 22	Woodland to low open woodland of carbeen, poplar gum and grey bloodwood with batswing coral tree, cocky apple, Burdekin plum and Leichhardt tree associated With Tussock grassland of black spear grass, glant spear grass, and brown sorghum
		6Gnd	0.15 - 0.30m grey to brown sandy loam to clay loam A1 horizon over brown to yellow-brown fine sandy loam to clay loam A2 or A3 horizon to 0.50 - 1.20m over neutral brown to yellow clay loam to light clay B horizon to 1.54m	No suitable group, affinities with yellow podzolic soll	Gn3.75 Gn3.72 Gn3.22	Woodland to open woodland of carbeen, cabbage gum and poplar gum with red and grey bloodwood and ocky apple associated With Tussock grassland of black spear grass, glant spear grass and brown sorghum
		6Dbc	0.10 - 0.20m dark to brown fine sandy loam to fine sandy clay loam A1 horizon over frequently bleached A2 horizon to 0.20 - 0.40m over neutral brown medium clay B horizon to 0.90 - 1.5+m over brown to grey sandy loam to light medium clay D horizon	No suitable group, affinities with brown podzolic soi!	Db1.32 Db1.22	Woodland to low woodland of poplar gum, grey bloodwood and carbeen with cocky apple associated with Tussock grassland of black spear grass, glant spear grass, brown sorghum and kangaroo grass
		6Db f	0.05 - 0.25m dark to brown sandy loam to loam fine sandy A1 horizon over yellow-brown to grey fine sandy loam to fine sandy clay loam A2 or A3 horizon to 0.20 - 0.40m over neutral brown to yellow-brown fine sandy clay to medium clay B horizon to 0.80 - 1.40m over sandy clay loam to fine sandy clay D horizon to 1.5+m	Brown podzołic soli	Db1.22 Db1.12 Dy2.12	Open woodland to woodland of poplar gum, grey and red bloodwood, carbeen and grey ironbark with cocky apple associated with Tussock grassland of blue grasses, black spear grass and glant spear grass with golden beard grass associated

Table 1 (Cont'd)

Landscape unit	Landform element	Soll type	Major distinguishing ättributes	Great soll group	PPF	Predominant natural vegetation
Miscellaneous alluvial land- forms A. Burdekin River alluvial landforms	Backplain	6Umb2	0.20 - 0.30m dark to grey loam fine sandy to fine sandy clay loam A horizon over acid to neutral dark to yellow-brown clay loam to light clay B horizon to 0.55 - 0.75m over neutral brown to grey fine sandy clay loam to medium clay D horizons to 1.50+m	No suitable group	Um5 • 52 Um6 • 31 Gn 3 • 91	Woodland of poplar gum, grey bloodwood and carbeen with cocky apple associated with Tussock grassland of brown sorghum, black spear grass and glant spear grass
		6Ugc	Hard setting surface over brown-mottled dark to grey light clay A1 horizon to 0.10 - 0.20m over bleached A2 horizon to 0.15 - 0.30m over alkaline grey medium clay B horizon to 0.75 - 1.5+m over grey to brown light clay D horizon to 1.5+m	(Bleached) grey clay No sultable group	Ug2 Ug3•2 Uf3	Low open woodland to low woodland of cabbage gum, poplar gum and carbeen with cocky apple associated with Tussock grassland of blue grasses, kangaroo grass and black spear grass
		6Gna	0.20 - 0.40m dark clay loam A horizon over neutral brown to dark light to medium clay B horizon to 0.90 - 1.20m over brown sandy clay loam to sandy clay D horizon to 1.54m	No suitable group, affinities with prairle soil	Gn3•22 Gn3•92 Gn3•42 Dd1•12	Low open woodland to low woodland of carbeen, cabbage gum, poplar gum and grey bloodwood with coral tree, Leichhardt tree and cocky apple associated with Tussock grassland of glant spear grass, black spear grass and brown sorghum
		6Gnø	0.15 - 0.35m dark to grey clay loam A1 horizon over bleached A2 horizon to 0.25 - 0.50m over alkaline dark to grey light clay B horizon to 1.5+m	No suitable group	Gn 3 • 49 Gn 3 • 03 Gn 3 • 06	Low open woodland to open woodland of poplar gum and cabbage gum with grey bloodwood and cocky apple associated with Tussock grassland of black spear grass and glant spear grass with blady grass and brown sorghum associated
		бОЬЬ	0.10 - 0.25m dark to brown loam to clay loam A1 horizon over bleached A2 horizon to 0.30 - 0.40m over alkaline grey to brown or dark medium clay B horizon to 1.00 - 1.20m over brown to yellow-brown light to light medium clay D horizon to 1.5+m	Solodic soll	Dy2.43 Dy2.33 Db1.33 Dd1.33	Low open woodland to low woodland of poplar gum, cabbage gum, carbeen and grey bloodwood with cocky apple associated with Tussock grassland of black spear grass, glant spear grass and brown sorghum
Miscellaneous alluvial landforms B. Creek and relict alluvial landforms	Prior streams	6Uca	0.10 - 0.30m dark coarse sand to sandy loam A horizon over acid to neutral brown coarse sand to sandy loam to 0.80 - 1.00m over mottled sand D horizon to 1.5+m	No suitable group affinities with earthy sands - siliceous sands	Uc5•11 Uc5•21	Low open to low woodland of pandanus, broad leaf tee-tree and grey bloodwood with cocky apple and poplar gum associated with Tussock grassland of glant spear grass and black spear grass

Table 1 (Cont'd)

Landscape unit	Landform element	Soll type	Major distinguishing attributes	Great soll group	PPF	Predominant natural vegetation
Miscellaneous alluvial landforms B. Creek and relict alluvial landforms	Levees	6Uga	Hard setting to weakly self mulching surface over dark light to light medium clay to 0.05 - 0.20m over alkaline dark to grey medium clay to 1.00 - 1.50+m over grey sandy clay to medium clay D horizon to 1.5+m	Black marth-gray clay	Ug5•17 Ug5•16 Ug5•2	Open woodland to woodland of poplar gum, cabbage gum and grey bloodwood with carbeen and red bloodwood associated with Tussock grassland of black spear grass and blue grasses
		6Drc	0.10 - 0.20m dark to grey loam to clay loam A1 horizon over bleached A2 horizon to 0.20 - 0.50m over alkaline yellow-mottled red to brown medium to heavy clay B horizon to 1.00 - 1.35m over red-brown sandy clay to medium clay D horizon to 1.5+m	Solodic~solodized solonetz	0r3.33 0r3.43	Open woodland to woodland of grey bloodwood and poplar gum with carbeen, cabbage gum, cocky apple and beefwood associated with Tussock grassland of black spear grass, blue grasses and glant spear grass with kangaroo grass associated
		6Dbe	0.05 - 0.15m brown-mottled dark to brown fine sandy loam to fine sandy clay loam A1 horizon over bleached A2 horizon to 0.10 - 0.20m over neutral to alkaline yellow-mottled brown medium to heavy clay B horizon to 0.55 - 0.70m over brown to yellow-brown loamy sand to light medium clay D horizons to 1.5+m	Red-brown earth	Db2.33 Db2.43 Db2.32	Open woodland to open forest of poplar gum, carbeen and red and grey bloodwood with beefwood and cocky apple associated. Occasionally open forest of tea-tree with Tussock grassland of blue grasses, black spear grass and golden beard grass
		6Dbh	0.05 - 0.15m grey to brown loam to clay loam A1 horizon over bleached A2 horizon to 0.10 - 0.25m over alkaline brown light to medium clay B horizon to 0.60 - 1.00m over brown clay loam to medium clay D horizon to 1.5+m	Solodic-solodized solonetz	Db1.43 Db1.33	Low open woodland to low woodland of beefwood, false sandalwood and carbeen with cabbage gum and grey Ironbark associated or Tall open shrubland of beefwood occurs with Open tussock grassland of purple top Rhodes grass and blue grasses
	Floodouts, fans and levees	6Ufa	0.10 - 0.30m brown to dark sandy clay to light clay A horizon over alkaline dark medium clay B horizon to 1.5+m	No sultable group, affinities with chernozem	Uf6•32	Low open woodland of carbeen, poplar gum and cabbage gum with beefwood and cocky apple associated with Tussock grassland of Rhodes grasses, black spear grass and blue grasses

Table 1 (Cont'd)

Landscape unit	Landform element	Soll type	Major distinguishing attributes	Great soll group	PPF	Predominant natural vegetation
Miscellaneous aljuvial land- forms B. Creek and relict aljuvial landforms	Floodouts, fans and levees	6Ufd	0-15 - 0-45m dark light to light medium clay A horizon over acid to neutral dark to brown light to light medium clay B horizon to 0-70 - 1-5m over brown to yellow sand to loamy sand D horizon to 1-5+m	Prairie soli	Uf6•32 Uf6•31	Open woodland of poplar gum, grey bloodwood and carbeen with cocky apple associated with Tussock grassland of blue grasses and black spear grass
		6Ufe	0.05 - 0.30m brown-mottled dark to grey light to medium clay A horizon over acid to alkaline grey to brown sand Di horizon to 0.30 - 0.70m over neutral to alkaline sand to clay D horizons to 1.5+m	Alluvial soil	Uf6•22 Uf6•23	Open woodland to woodland of poplar gum, cabbage gum and tea-tree spp. with parkinsonla associated with Tussock grassland of blue grasses and black spear grass with brown sorghum associated
		6Dba	0.10 - 0.20m dark to brown sandy loam to sandy clay loam A1 horizon over bleached A2 horizon to 0.15 - 0.30m over alkaline brown medium clay B horizon to 1.5+m	Solodic-solodized solonetz	Db1.43 Db1.33	Low open to low woodland of carbeen, grey bloodwood and cabbage gum with poplar gum, whitewood, beefwood and mimosa associated with Tussock grassland of black spear grass, blue grasses and Rhodes grasses
		6Dyb	0.15 - 0.30m dark to brown sandy loam A1 horizon over bleached A2 horizon to 0.30 - 0.60m over neutral yellow-mottled yellow- brown sandy clay to medium clay B horizon to 1.5+m	Soloth-solodic soll	Dy3•32 Dy3•42	Open woodland of poplar gum and grey bloodwood with carbeen, cocky apple and cabbage gum assoclated with Tussock grassland of black spear grass, blue grasses and glant spear grass
		6Dye	0.20 - 0.40m dark to brown loamy sand to sandy loam A1 horizon over bleached A2 horizon to 0.30 - 0.80m over alkaline yellow-mottled grey to yellow-brown medium clay B horizon to 1.54m	Solodic-solodized solonetz	Dy3.43 Dy3.33	Open woodland to low open woodland of poplar gum, grey bloodwood and tea-tree spp. with beefwood and cabbage gum associated with Tussock grassland of black spear grass and glant spear grass
		6Dy f	0.10 - 0.25m grey to dark loam to clay loam A1 horizon over bleached A2 horizon to 0.25 - 0.50m over alkaline brown-mottled yellow-brown to brown medium clay B horizon to 1.20 - 1.50+m over brown light to light medium clay D horizon to 1.5+m	Solodic-solodized solonetz	Dy3•43 Dy3•33 Db2•43	Woodland to low woodland of poplar gum and grey bloodwood with cocky apple associated with Tussock grassland of black spear grass, glant spear grass and kangaroo grass

Table 1 (Cont'd)

Landscape unit	Landform element	Soll type	Mejor distinguishing attributes	Great soll group	PPF	Predominant natural vegetation
Miscellaneous alluvial land- forms B. Creek and relict alluvial landforms	Floodouts, fans and levees	6Dyg	0.05 - 0.10m grey to brown or dark loam to clay loam A1 horizon over bleached A2 horizon to 0.10 - 0.20m over alkaline brown-mottled grey to yellow medium to heavy clay B horizon to 0.70 - 1.20m over yellow-brown to grey fine sandy clay loam to light medium clay D horizon to 1.5+m	Solodic-solodized solonetz	Dy3-43 Dy3-33	Low open to open woodland of carbeen, cabbage gum, poplar gum, beefwood and false sandalwood with grey bloodwood and cocky apple associated with Open tussock grassland of black spear grass and purple top Rhodes grass
		6Dyh	0.15 - 0.30m dark to brown sand to sandy loam A1 horizon over bleached A2 horizon to 0.20 - 0.50m over alkaline yellow- mottled grey medium clay B horizon to 1.5+m	Solodic-solodized solonetz	Dy3.43 Dy3.33	Low open to open woodland of poplar gum, cabbage gum, carbeen and beefwood with grey bloodwood, false sandalwood, dead finish, chinee apple and cocky apple associated with Tussock grassland of black spear grass and love grass with blue grasses and purple top Rhodes grass associated
		6DyJ	0.05 - 0.20m dark to grey sandy loam to clay loam A horizon bleached throughout or near base over grey medium to heavy clay B horizon to 1.00 - 1.50m over grey to yellow-brown sandy loam to medium clay D horizon to 1.54m, strongly alkaline at and below 0.30m	Solodic-solodized solonetz	Dy2•43 Dy2•33	Low open to open woodland of poplar gum, cabbage gum and beefwood with false sandalwood, carbeen, grey bloodwood and corkwood associated with Open tussock grassland of blue grasses, glant spear grass, black spear grass and purple top Rhodes grass
		6Ddb	0.15 - 0.30m dark to grey coarse sand to sandy loam AI horizon over bleached A2 horizon to 0.25 - 0.50m over alkaline grey to dark medium to heavy clay to 1.54m	Solodic soll	Dy2•43 Dd1•33	Low open woodland of poplar gum, carbeen, cabbage gum and beefwood with grey bloodwood and cocky apple associated with Tussock grassland of blue grasses and black spear grass
	Closed depressions	6Dda	0.10 - 0.15m dark to brown clay loam A1 horizon over bleached A2 horizon to 0.15 - 0.25m over alkaline dark medium clay B horizon to 0.70 - 1.10m over grey to dark clay loam to 11ght medium clay D horizon to 1.5+m	Solodic~solodized solonetz	Dd1 • 43 Dd1 • 33	Low open woodland to open woodland of poplar gum, carbeen, cabbage gum and beefwood with grey bloodwood associated with Tussock grassland of black spear grass, blue grasses and Rhodes grasses

Table 2 Ratings* for salinity, sodicity and nutrients in sampled soil types, Leichhardt Downs Section, Burdekin River Irrigation Area

Soll	Soll salinity	Sodicity	,	Extractab	le phosphorus	Extractable	Copper	Zinc	Manganese	Total	Organic	Total
+,pe		0 • 2-0 • 3m	0-8-0-9m	Acid	Blcarbonate	potasslum				nltrogen	carbon	sulphur
1 Uga	v.low	non-sodic	sodic	low	v.low	high	medium	medium	medium	low	medium	medium
1 Ugd	v.low	non-sodic	sodic	v. low	v- low	low	muibem	low	medium	low	low	-
1Ugf	muibem	sodic	strongly sodic	v.low	v.low	medium	medium	low	high	low	low	low
1Dyc	hlgh	strongly sodic	strongly sodic	v.low	v.low	low	med tum	low	medium	low	low	low
1 Dda	low	strongly sodic	strongly sodic	v.low	v.low	medium	medium	low	h i gh	low	łow	low
2Uga	v.low	non-sodic	sodic	v-low	v-low	low	medium	medium	medium	low	low	-
2Ugc	v.low	non-sodic	sodic	v-low	wo{•v	high	-	-	-	low	low	low
2Ugd	v.low	non-sodic	sodic	medlum	low	h i gh	medium	medium	medium	low	med∣um	medium
2Ugh	v. low	non-sodic	sod1c	low	low	h i gh	medlum	low	medium	low	low	low
2Dbb	łow	strongly sodic	strongly sodic	v.low	low	h i gh	-	-	-	low	-	medium
2Dba	med1um	strongly sodic	strongly sodic	low	medium	med i um	-	-	-	low	low	low
2Dya	medium	strongly sodic	strongly sodic	v-low	v.low	mu i bem	medium	low	medium	medium	low	low
2Dyb	med1um	strongly sodic	strongly sodic	low	low	mulbem	medium	low	medium	medium	low	low
3Uga	v.low	non-sodic	sodic	low	v•low	h i gh	-	-	-	low	low	low
3Uga8	v. low	non-sodic	sodic	low	v• tow	high	medium	medlum	medium	low	low	low
3Ugd	v.low	non-sodic	sodic	low	v+low	hlgh	-	-	-	v.low	low	low
5Uga	v.low	non-sod1c	non-sodic	med1um	low	medium	medium	low	medium	low	low	low
5Ugb	v.low	non-sodic	non-sodic	v.low	v-low	med l um	medium	low	medlum	low	low	medium
5Ugc	medIum	sodic	strongly sodic	v.low	v. tow	low	medium	low	hīgh	low	low	low
5Dra	v-low	non-sod1c	non-sodic	low	low	medium	medium	medium	hīgh	low	low	low
5Dya	v.low	non-sodic	non-sodic	medium	low	medium	-	-	-	low	low	low
5Dyb	v•low	non-sodic	sodic	medlum	low	medium	-	-	-	low	low	low
5Dyc	high	strongly sodic	strongly sodic	low	v. low	medium	medium	v. low	medium	low	low	low
5Dyf	high	sodic	strongly sodic	v. low	v.low	low	medlum	v.low	medium	v.low	v.low	łow
6Dbb	v-low	non-sodic	sodic	high	medium	hīgh	med i um	medlum	hlgh	mulbem	medium	medium
6Dbh	medium	strongly sodic	strongly sodic	low	low	high	med!um	medium	medium	low	low	low

4. MAPPING UNITS

Mapping units were named after the major soil type found in each unit. Individual map units delineated on the map were called unique map areas (UMAs) and each given a number.

Simple UMAs were named after the dominant soil type when it occupied more than 70% of the area. Complex areas where soil types could not be separated at the 1:25 000 scale were mapped as compound UMAs. Compound UMAs were named after the two most commonly occuring soil types, with the one that occupied the largest area being named first.

5. LAND SUITABILITY EVALUATION

Each UMA was allocated a separate land suitability class for sugar-cane, grain crops, small crops, mangos and rice.

The land suitability classification contains five classes based on an increasing limitation to crop growth, increasing requirement for water use efficiency to achieve satisfactory crop establishment and growth, increasing requirement for modifications to existing land in preparation for irrigation, and increasing degradation hazard.

The five classes are:

- 1. Land suitable for irrigation with no or minor limitations.
- 2. Land suitable for irrigation with slight limitations.
- 3. Land suitable for irrigation with moderate limitations.
- 4. Land currently unsuitable for irrigation.
- 5. Land unsuitable for irrigation.

The classes are defined in more detail in Appendix 1.

Sixteen limiting factors involving both soil and land attributes considered important for crop growth and irrigation management were used as the basis for determining land suitability. Subclasses, usually from 2 to 5, were allocated to each limiting factor depending on the degree of severity of the limitation.

The maximum subclass of one or more limiting factors was used to determine the class for a particular UMA. Where a number of limiting factors had the same subclass, appraisal of the effects of interactions between these factors was considered in order to determine whether this land should be downgraded to the next class.

Two classifications were used, one for rice, the other for crop groups other than rice. The classification for crop groups other than rice was developed primarily for determining the suitability of land for grain crops. To allocate a separate suitability class for the other crop groups (that is sugar-cane, small crops and mangos), the effects of the subclasses of the limiting factors on the growth and management of each of the respective crop groups were considered.

The classifications used to determine land suitability are shown in Appendix 2.

Table 3 lists subclasses of the limiting factors and land suitability classes for the soil types for each crop group.

Limiting factors as well as the range of subclasses assigned to a simple UMA may vary from that of the soil type depending on minor soil types within the UMA or variations due to soil and land attributes not normally associated with the soil type. Limiting factors of the two major soil types as well as the minor soil types were considered when allocating a suitability class to a complex UMA.

Land suitability classes specific to the UMAs of the study area as well as their respective areas are listed in Table 4.

Soil types with similar land suitability classes, soil and land limitations and management requirements were grouped into agricultural management units. Table 5 lists the agricultural management units with their land suitability classes, soil and land limitations; and outlines important management considerations.

6. GUIDELINES FOR DEVELOPMENT

A number of important planning strategies need to be followed in the resubdivision and farm design stage of irrigation development to enable economic crop production to be sustained on subsequent farms and ensure long-term stability of land resources. Measures to decrease the effects of potential degradation must be undertaken in the development of an area for irrigation. The distribution of soils and the suitability of land on individual farms must also be considered during subdivisional planning to ensure farms are economically viable.

Degradation hazards of concern on Leichhardt Downs Section include:

- salinisation, including both regional (rise in groundwater with subsequent salinisation on a regional level) and toposequence salinisation (rise in groundwater with subsequent salinisation on lower slopes of intake areas);
- erosion; and
- o flooding.

Farm subdivisional considerations include:

- complex soil distribution; and
- o use of class 4 and 5 lands.

Table 3 Subclasses of limiting factors and land suitability classes for sugar-cane, grain crops, small crops, mangoes and rice for soil types of Leichhardt Downs Section, Burdekin River Irrigation Area

Soll type			Subcla	sses o	f imi	ting f	actors	for o	crops (other	than	rice				Lar	nd suitabi	ility clas	sses	Subcla		of III		factors	Land suitability
	d	pb	ps	pd	pt	sa	so	†	n	٢	g	w	θ	f	1 0	Sugar cane	Grain crops	Small crops	Mangoes	+	g	f	Р	sa pd	Rice
1Uga, 1Ugd 1Ugc, 1Ugf			3				3*		2		2	3		2-3		2	3	4	4	2-3	2				2-3
1Uge			3	3			3	2	2		2		2			3	3	4	4	5	2		2		5
1Dya		4	3-4			3	3-4	2	2				2			3	4	4	5	2-4					2-4
1Dyb		3-4	3-4			3	4	2	2				2			3	4	4	5	2-4			5		5
1Dyc, 1Dda		3-4	3-4			3	3-4	2	2				2			3	4	4	5	2-4					2-4
10ba		3-4	3-4				4	2	2				2			3	4	4	5	2-4					2-4
2Uga			3				3*		2					2-3		2	3	4	4				2		2
2Ugb			3						2		2	3		3		2	3	4	4		2	2	2		2
2Ugd, 2Ugg, 2Ugc			3						2		2	3		2-3		2	3	4	4		2		2		2
2Uge			3				3*		2		2	3		2-3		2	3	4	4		2		2		2
2Ugh			3				3		2		2	3		2-3		2	3	4	4		2		2		2
2Dyc		3	3				3		2		2	3		2-3		2	3	5	4		2	2		2	2
2Dba, 2Ddb	:	4	4				4		2							4	5	5	5	2				2	2
20bb, 20yb		3	3			3	3-4		2					2		2	3	4	4	2-3				2	2-3
2Dy a		4	3-4			3	3-4		2					2		3	4	5	4	2					2
20bc, 20bd		2	3				3	2	2				2			2	3	3	3	2-3			3		3

Table 3 (Cont'd)

Soll type			Subcla		of limi	ting f	actors	for a	rops o	ther	than	rice		-		_	La	and sultab	ility cla	sses	Subc	lasses		limitin	g fact	tors	Land suitability
	d	pb	ps	pd	p†	sa	so	+	n	г	g	w	e	f	1	٥	Sugar	Grain crops	Small crops	Mangoes	+	g	f		sa	pd	RIce
2Dbe		3	3						2								2	3	4	4	2						2
3Uga, 3Uga8 3Ugk			3				3*		2		2	3		3			2	3	4	4		2	2	2			2
3Ugd, 3Uge			3						2		2	3		3			2	3	4	4		2	2	2			2
3Ugf			2						2					3			2	3	3	4			2	2			2
4Ucc			3	4	4			3	3				2		4		4	4	4	3	5			5			5
4Dyg		2-3	3				3*	2-3	3				3				4	4	4	4	5			5			5
4Db a		2-3	3				3-4	2-3	3				3				4	4	4	4	5			5			5
4Dy h		2-3	3				4	2	2-3				3				4	4	4	5	5			5			5
5Uga	2		3	**				2-3					3				2	3	4	4	5			5			5
5Ugb	2		3	**			3*	3					3				2	3	4	4	5			5			5
5Dra, 5Dya	2		3	**			3	2				3		3			3	3	2	1	5			5			5
5Dyb			3					3	2				3				3	3	3	2	5			5			5
5Dyc		2-3	3-4				3-4	2	2				2-3			4	4	4	4	4	5			5			5
5Dyd		4	4				4	2	2				2			4	4	4	4	4	4-5			5			5
5Dyf - 5Ugc	2	2-3	3	3			3	2-3	2				3				3	3	4	4	5			5			5
6Ucc			3	4	3-4			2	2						4		3	4	3	2	3			5		ŀ	5
6Uma, 6Umb, 6Gnd			2					2									2	2	2	2	3			5			5

ERRATA Table 3. The subclasses of limiting factors for crops other than rice for soil type 5 Dra 5 Dya are 2 for d, 3 for ps, 3 for t, 2 for n, 3 for e, and 3 for i.

1 3

Table 3 (Cont'd)

Soll type			Subcl	asses	of lin	niting	factor	s for	сгор с	other	tha	n rice			 		Land suital		sses	Subcl		of I		ng fact	ors	Land sultability
	d	рЪ	ps	pd	p†	sa	so	+	n	r	9	j w	е	f	1 0	Sugar	Grain crops	Small crops	Mangoes	+	9	f	Р	sa	pd	RIce
5Dbc, 6Dbf		2	2					2	· <u>-</u>							2	2	2	2	3			5			5
5Ugc			3					2				3		3		2	3	4	4			2	2		4	4
5Gn a			3					2	2				2			2	3	2	2	4			5			5
5Gne			2					2	2				2			2	3	2	2	4			5			5
5Dbb		2	3				3*	2								2	3	3	3	2-3			5			5
5Uca			3	4	4			2	2						4	4	5	4	3	5			5			5
5Uga			2					3	2				3	4		3	4	4	4	5			5			5
5Drc		2	3						2							2	3	3	2	2			4			4
5Dbe		3	3					2								2	3	3	3	5			5			5
5Dbh		3	4				4	2	2				2			4	4	4	5	5			5			5
SUfa, 6Ufd, SUfe			3	4				2				3	2	4		5	5	5	3	5			5			5
5Dba		2-3	3				3	2					2			2	3	3	3	4			3			4
5Dyb		2	3	4	2			2	2							3	4	4	3	3			5			5
5Dye			3	4	2			2	2				2			3	4	4	3	5			5			5
5Dy f		2	3					2	2							3	4	3	3	5			5			5
Dyg		3	3				3	2	2				2			3	4	4	4	4			4			5
5Dyh		2	3	4			3	2	2				2			3	4	4	4	5			3		4	5

Table 3 (Cont'd)

Soll type			Subc	lasses	of IIn	niting ———	facto	s for	сгорѕ	other	than	rice					La	and suital	ollity cla	sses	Subc	lasses		imitir rice	g fac	tors	Land suitability
	d	рb	ps	pd	p†	sa	so	t	n	г ———	g	w	е	f	i	0	Sugar cane	Grain crops	Small crops	Mangoes	†	9 ,	f	Р	şa	pd	Rice
6Dyj		3	4	3			4	2	2				2	3			4	4	4	4	5			5			5
6Ddb		2	3	3			3	2	2				2				3	4	3	3	3			5			5
6Dda		3	3	4			3	2	2			3					3	4	3	3	3			5			5

^{*} Some soil types do not have a sodicity rating as defined in the land suitability classification.

^{**} These soil types sometimes have a pd subclass of 4 depending on the presence of other soil types

with markedly different permeabilities.

Table 4 - Land suitability classes for unique map areas, Leichhardt Downs Section, Burdekin River Irrigation Area.

UMA No.	UMA r	name	Area ha	Land suit. C G S M R *	UMA No.	UMA n		Area ha	Land suit. C G S M R
	6UmaE 4R 4DygE	2Dyc 4Dyg 2Dya 4Dyg	ha - 5.70.1885.70.15.684.43881.34.51.992.32.61.55.06.76.981.1.34.1.15.47.1.54.71.281.5.49.44.3.4	* R - 555235555455255555555555555555555555555		1Ugd 1Ugc 1Ugc 1Ugc 5Dyd 2Dbb 2Dyc 2Ugc 4Dyh 4Dba 3Uga 6Dyh 2Ddb 6Dyf 6Dyf 6Dyf 6Dyf 6Dyf 6Dyg 6Dyg 6Dyg 6Dyg 6Dyg 6Dyg 6Dyg 6Dyg		ha - 6.78 1.23 2.02 4.39 3.50 1.12 0.87 8.88 8.85 6.01 1.33 1.66 6.02 1.12 1.55 2.88 8.85 6.02 1.16 1.91 6.02 1.00 9.27 2.14 6.18 4.00 9.27 2.14 6.18 4.50 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.2	R:3445222225525545455555555545355344554455
46 48 49 50 51 53 54 55 56 57 58	1Dya 1Ugf 5Dyc 1Dba 5Dyc1 5Dyd 1Uga 1Dyc 1Ugd 5Uga 1Ugf 3Uga 5Dyc		2.3 8.6 2.7 5.9 6.9 37.3 18.8 26.4 2.3 1.6 463.2 3.9	34445533334444434433334444444444444444	102 103 104 105 106 107 108 109 110 111 112	1Dyc 1Uge 5Dyb 5Dyc 1Ugd 1Uga 1Dyc 1Uge 5Dyc 1Dyc 1Dyc	1 09a	4.79 4.56 6.67 14.28 0.85 11.3	4 4 4 4 4 4 5 5 5 5 4 5 4 4 4 4 5 5 5 4 5 4 5 5 5 4 5 4 5 5 5 4 5 5 5 4 5

^{*} C- Sugar-cane G- Grain crops S- Small crops M- Mangoes R- Rice

Table 4 (Continued)

	<u>-</u>	
114 1Dyc	5.1 15.67 15.67 15.67 10.62 10.7 10.62 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 4 (Continued)

UMA No.	UMA 1		Area ha	Land suit. C G S M R	UMA No.	UMA 1	name	Area ha	Land suit. C G S M R
231 232 233 234	2Uga 2Ugc 2Dbb 6Drc	2Dya	3.4 24.1 52.8 7.3	2 3 4 4 2 3 4 5 4 2 2 3 4 4 5 2 3 3 2 5	290 291 292 293	5UgaE 5Uga 5Dya 5Dra		6.1 1.9 8.3 9.6	5 5 5 5 5 3 4 5 4 5 3 3 3 1 5 3 3 2 1 5
235 236 237 238 239	2Ugc 2Dyb 2Ugh 2Uga 2UgaE	2Uge	5.2 41.6 14.5 49.5 17.3	3 4 5 4 2 3 4 4 4 3 2 3 4 4 2 2 3 5 5 5 5	294 295 296 297 298	5Dya 5Dra 5Dyc 5Dya 5Dyd		63.4 72.0 9.1 3.4 2.5	3 3 2 1 5 3 3 2 1 5 4 4 4 4 5 3 3 2 1 5 4 4 4 4 5
240 241 242 243 244	6Dbh 2Dyc 2Dyb 2Dya 2Uge		96.4 18.2 11.2 19.7 13.3	4 4 4 5 5 2 3 5 4 4 2 3 4 4 2 3 4 5 4 2 2 3 4 4 2	299 300 301 302 303	5R 5R E 2Dba 2Uga 2Dyb		3.1 10.9 11.0 16.3 109.5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
245 246 247 248 249	6Dba 2Ugg 6Gne 6Ufe 6Ufe	6Dyh	47.7 20.8 1.0 28.6 5.9	2 3 3 3 4 2 3 4 4 2 4 4 3 3 5 5 5 5 3 5 5 5 5 4 5	304 305 306 307 308	2Dya 2Dya 2Ugh 2DybE 2Dyb		2.8 19.6 37.0 71.3 2.5	3 4 5 4 4 3 4 5 4 2 2 3 4 4 2 5 5 5 5 5 3 4 4 4 5
250 251 252 253 254	6Dda2 1Uga 6Dye 6Uma2 2Dbc		0.6 2.5 3.3 36.1 34.6	3 4 4 3 5 3 4 4 4 4 4 4 4 3 5 2 2 2 2 5 2 3 2 3 3	309 310 311 312 313	2Dya 2Dyb 2Dyb 2Ugg 2Ugg	2Uge	2.2 1.7 12.0 14.1 7.4	3 4 5 4 4 2 3 4 4 2 2 3 4 4 3 2 3 4 4 3 2 3 4 4 2
255 256 257 258 259	2Dbd 2Dyb 2Uge 2Dyc 2Dyb		15.4 11.4 7.1 8.7 11.5	2 3 3 3 5 2 3 4 4 5 2 3 4 4 3 3 3 5 4 3 2 3 4 4 2	314 315 316 317 318	2Uga 2DybE 2Ugd 2Dba 2DbeE	2Dba	3.5 4.3 6.0 1.2 0.7	2 3 4 4 2 5 5 5 5 5 3 4 5 5 3 4 5 5 5 5 5 5 5 5 5
260 261 262 263 264	2Dya 2Dyb 2DbbE 2Ugd 2Dyb		22.8 7.4 6.8 6.9 32.5	3 4 5 4 2 2 3 4 4 2 5 5 5 5 5 2 3 5 4 2 2 3 4 4 2	319 320 321 322 323	2Dbe 6Drc 6DrcE 6UgaE 6UgaE		0.6 6.1 0.5 0.9	2 3 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
265 266 267 268 269	2Dba 6Drc 6Drc 2Dba 2DbbE		1.0 3.0 1.1 0.8 0.7	4 5 5 5 2 2 3 3 2 4 2 3 3 2 4 4 5 5 5 2 5 5 5 5 5	324 325 326 327 328	2Dyb 6Drc 2Dbb 2Uge 2Ugb		30.9 2.1 10.1 13.3 3.3	2 3 4 4 2 2 3 3 2 4 2 3 4 4 5 3 4 5 4 5 2 3 4 4 2
270 271 274 275 276	2DbbE 2DyaE 2Dya 2Dyb 6Drc		1.1 6.1 1.6 4.2 0.7	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	329 330 331 332 333	2UgbE 2Ugg 2Ugb 3Ugd 2Dyc		2.1 13.2 17.2 7.7 1.3	5 5 5 5 5 5 2 3 4 4 2 2 2 3 5 4 2 2 3 5 4 2
277 278 279 280 281	2Dba 2Ugd 2Dba 2Dba 2UggE	2Dba 2DycE	1.1 0.7 0.5 3.0 4.3	4 5 5 5 2 4 5 5 5 2 4 5 5 5 2 4 5 5 5 2 5 5 5 5 5	334 335 336 337 338	2Dbc 2Dyb 2Uge 2Dyc 2UgbE	2Ugg	2.3 1.5 1.2 4.4 6.5	3 3 4 4 3 2 3 4 4 2 2 3 4 4 2 3 4 5 4 3 5 5 5 5 5
282 283 284 285	2Ugg 2DbbE 2Dya 2Dya	,	8.0 1.4 0.7 13.0	3 4 4 4 3 5 5 5 5 5 5 5 5 5 5	339 340 341 342	2Ugb 5Dyb 5Dra 5Dya	50.00	1.7 13.8 187.8 10.5 15.2	5 5 5 5 5 5 2 3 5 4 3 3 3 2 5 3 3 2 1 5 4 4 4 4 5
286 287 288 289	2Ugd 2Dba 5DraR 2Dyb	2Dya	0.8 22.2 3.8 4.5	3 4 5 4 5 2 3 5 5 5 5 4 5 5 5 5 5 2 3 4 4 2	343 344 345 346	5Dyb 6Ddb 6Drc 1Ugd	5Dyc 1Dyc	0.5 5.9 10.1	3 4 3 4 5 2 3 3 2 5 3 4 4 5 3

Table 4 (Continued)

UMA No. UI	MA name	Area ha	Land suit. C G S M R	UMA No.	UMA	name	Area ha	Land suit. C G S M R
No. UI 347 6Gn 348 5Dy 348 5Dy 359 5Dy 351 1Ug 352 3Ug 353 2Ug 355 2Ug 355 2Db 357 2Db 358 2Db 361 5Dy 361 5Dy 362 5Dy 363 2Dd 364 2Ug 365 2Db 367 2Db 369 2Ug 370 2Ug 371 5Dy 371 5Dy 372 6Dy 371 5Dy 372 6Dy 373 2Ug 377 2Dy 377 2Dy 377 2Dy 377 2Dy 378 2Ug 377 2Dy 378 2Ug 379 2Db 380 5Dy 381 5Dr 382 1Ug 383 2Ug 385 2Dg 388 2Ug 387 2Ug 388 2Ug 387 2Ug 388 2Ug 387 2Ug 388 2Ug 387 2Ug	d b3 c3 c e g h e h b E SUga a c b a 2Ugd b E b A 2Ddb h a g a h b c a f e E e b a g a	ha 	R - 55555222225455555444455544553333332343252252 R - 5555522222545555544445555544444444544545454555554445555	No404 405 406 407 408 409 410 4112 413 414 415 416 417 418 421 422 423 424 425 427 428 433 433 434 435 436 437 438 438 439 441 441 441 441 441 441 441 441 441 44	3Ugk 5Dyd 5Dyd 5Dyd 5Dyd 5Dya 5Dya 5Dra 5Dra 5Dygb 5Dy		ha - 913.11795.3122.812479831.99.025.32225.62.4798325.7825.7976.601.8144.98	R - 3552355555555555555555555555555555555
385 2Dý 386 1Ug	b aE g aE ab b a 5Dra aa aad eE e c dE bE ja	$\begin{array}{c} 12.4 \\ 13.4 \end{array}$	25253555555535 354553555555535 35354344234554455544 44333534455544 455544 455544 455544 455544 455544 4555344 4555344 4555344	442 443	1Ugc 1Ugc	1Uga 5Ugc 5Ugc	2.4 2.9	2 3 4 4 3 2 3 4 4 2

Table 4 (Continued)

UMA No.	UMA name	Area ha	Land suit. C G S M R	UMA No.		name	Area ha	Land suit. C G S M R
233456789012456789012456789001245678901245678901245678901245678901245678901245678901245678900124567890124567890012456789000000000000000000000000000000000000	5Dra 5Uga 5Uga 5Uga 5Uga 5Uga 5Uga 5Uga 5Ug	43.752.482.6738.140.9558.752.6285.72.36.984.33.344.9.60.70.50.93.90.90.90.90.90.90.90.90.90.90.90.90.90.	- 33433343355533553355334323343333334323334333334443444	5190 52122345 522122345 52215 52215 52216	5Dyb 5Dyc 5Dyc 5Dyc 5Uga 5Dyc 5Uga 5Dyc 5Dyc 5Dyc 5Dyc 5Dyc 5Dyc 5Dyc 5Dyc	5Uga 5Dra 5Uga 5Uga 5Uga 5Uga 5Uga 5Uga	12.19.24.53.04.5.5.4.0.5.0.8.0.5.9.7.0.5.0.1.6.3.8.3.7.6.5.1.1.4.7.3.0.7.4.4.6.1.4.9.3.4.3.0.1.0.2.2.1.3.2.2.2.1.3.2.2.2.2.2.2.2.2.2.2.2	34333344333433334443332333333333333244243433333422444444

Table 4 (Continued)

UMA No.	UMA 1	name	Area ha	Land suit. C G S M R	UMA No.	UMA 1	name	Area ha	Land suit. C G S M R
576 577 578 579 580 581 582 583 584 585 586 587 588 589	1Uga 6Uga 2Dyb 5Dra 6Dyj 1Uga 1Ugc 5Dra 6Ufa 6Dyg 5Uga 6Dyj 5Dyc 6Dyg	6Uga	3.1 8.9 62.9 9.9 15.4 10.6 0.7 44.6 5.5 6.4 3.2 4.3	2 3 4 4 4 5 5 5 5 5 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	633 634 635 636 637 638 639 640 641 642 643 645 646	6Ufa 6Dbb 5DycE 5DycE 5Dyc 6UgaE 6Uma 5Dya 1Ugd 6Ucc 6Dyg3 6Umb2 5mb2 5Dra1	6Uga 5Dra	18.8 1.9 0.7 1.7 4.4 20.9 13.9 19.6 15.0 0.8 2.4 2.2	3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
590 591 592 593 594 595 596 597 598	1Ugc 5Dyc 1Uga 1Dyc 1Dyc 6Gna 1Dyc 5Dyb		1.2 5.2 6.3 3.7 1.2 2.3 1.1 7.5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	647 648 649 650 651 652 653 654 655	5Dyc 5Dyc5 5Dyc 5Dyb 5UgaR 5Uga 5Uga 5Uga	5Dra 5Dra 5Dra	2.5 3.1 9.3 3.5 0.4 1.0 1.2 0.9	4 4 5 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5
598 599 6001 6002 6003 6004 6005 6006 6007	6Dyj 1Uga 1Ugc 5Dya1 5Dyc 6Dda 1Dyc 5Uga 5DycE 5Dyc 5Uga	5R	12.5 3.7 3.7 1.4 9.1 1.6 5.3 1.8 2.0 2.0	3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	656 657 658 659 660 661 662 663 664 665	5Uga 5Uga 5Uga 5Dya 6Dbb 5Dra 5Uga 5Dya 5Dya 5Dya 5Dyb	6Ugc 5Ugb 5Dra 5Uga 5Uga	1.7 0.9 25.0 27.0 2.9 2.3 38.2 4.1 4.1 8.3	3 4 4 4 1 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
609 610 611 612 613 614 615 616 617 618	5Dyc 1Ugc 5Dyb 5Dra 5Dyc 5Ugb 6Uma 1Dyc 1Dyc 5Dyb 1Dyc	5Uga	9.7 0.4 1.9 0.9 5.0 1.8 255.9 2.1 55.1 6.0 16.5	4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	666 667 668 669 670 671 672 673 674 675	5Dra 5Dyb 5Ugb 5Dra 2Dyb 2DybE 5Dra 5Dyc 1Dyc 1Dyc 5Dra	5Ugb 5Ugb	0.7	3 4 4 3 5 5 5 5 5 3 3 4 4 3 3 4 5 5 5 5
620 621 622 623 624 625 626 627 628 629 630 631	5Dyc 1Ugc 1Ugc 1Dyc 5Dyc 5Dra 5DycE 6UgaE 1Dyc 5Dyd 1Dyc 6Dyg 6UgaE	5Ugb 1Ugc	2.7 2.8 1.6 5.3	4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	677 678 679 680 681 682 683 684 685 686 687 688	5Dyc 5Dra3 6Dbe 1Dyc 1Ugc 1UgcE 6Gna 5Dyc 5Dyc 5Dra 5Dra1 5Dyc1	5Ugb1 1Ugc 5R 5R	5.3 4.9 2.8	4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 4 (Continued)

UMA No.	UMA 1	name	Area ha	Land suit. C G S M R
690 691 692 693 694 695 697 698 7001 7023 704 707 708 709 711 712 713	5Dra 5Dra 5Dra 5Dyc 5Dyc 5Dyc 5Dyc 5Dya 5Dyc 5Dyb 1Uga 1Dyc 5Dya 2DybE 2UghE 1Dyc 2Ddb 1Uga 6Gnd 6Gnd 2Dbc 6Gnd 6Gnd 6Gnd 6Gnd 6Gnd 6Gnd 6Gnd 6Gnd	5R	0.8 0.7 1.7 2.0 8.9 1.1 0.5 1.0 1.5 1.0 1.3 1.0 17.9 1.8 2.15 1.8 9.8	55555555555555555555555555555555555555
713 714 715 716 717 718 719 720 721 722 723	6GndE 2Uge 5Ugb 5Uga 5Uga 5Uga 6Gne 6Gna 5Dyc 1Ugf 5Dya	5Dyc	9.8 1.6 4.3 1.3 0.2 0.2 2.1 80.0 9.8 21.4	44445
724 725 726 727 728 729 730 731 732 733	5Uya 5Uga 6Dbb 6UmaC 6Dbb 6DbbE 6Ugc 6DbbE 5Dyc 1UgaE 1Uga	5Dra	1.0 6.6 115.2 75.5 18.2 9.7 3.0 3.9 16.4 3.9 6.8	555555555555545554 4444224551422225545545 44442245524222545545 444433443435354544 442244 33244334353545443333 42224
734 735 736 737 738 739 740 741	5Dra3 5Dra 5Dra 5Dra 5Uga 5Ugb 6Gna 1Uga 1Ugd	5Uga	7.0 4.2 2.0 9.0 5.6 2.5 0.7 0.9	2 3 4 4 5
742 743 744 745 746	1Dyc 1Ugd 1Dya 5R 1DycE	1Ugd	9.8 1.3 1.1 0.2 4.1	2 3 4 4 5 5 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4

UMA No.	UMA :	name	Area ha	Land suit.
747 748 749 750 751 7552 756 757 758 759 761 762 763 764 765 767 768 769 771 772 773 774	1Dba 1Dba 1Dba 1Dba 1UgcE 6Dbb 6Ucc 6Dbf 6Dbb 6Dbb 6Dbb 6Dbb 6Dbb 6Dbb 6Dbb	5Uga R	2.48 2.17 10.7.19 10.7.7.5 10.58 11.7.19 10.58 11.7.13 10.58	3355555555555555555555555555555555555

32

Table 5 Land suitability classes, soil and land limitations and management considerations for agricultural management units, Leichhardt Downs Section, Burdekin River Irrigation Area

Agricultural	1	and sul	tab t	y classes		Soil and land li		Management considerations	
management units	Sugar cane		Small crops	Mangoes	Rice	Physical	Chemlcal*		
luga, lugc, lugd, lugf	2	3	4	4	2-3	GligeT to 0.30 m Waterlogging Flooding in some areas	Low general fertility with very low phosphorus levels Often strongly alkaline by 0.30 m Sodic to strongly sodic below 0.50 m Medium to high salt levels at 0.50 - 0.90 m.	Seedling emergence Wet season land preparation and harvesting Precision levelling required for adequate surface drainage Narrow range of optimum molsture for tillage operations. Uneven crop stand due to soil variability after levelling.	
1Uge	3	3	4	4	5	Soil variability Linear gligal Large pebbles and cobbles on surface of mounds Slope > 1% Susceptible to erosion	Low general fertility with very low phosphorus levels Mound often strongly alkaline by 0.30 m Strongly sodic at and below 0.50 - 0.60 m Medium to high sait levels at 0.50 - 0.90 m.	Seedling emergence Erosion control practices required irrigatin furrows may have to be positioned across the slope to decrease slope gradient Stone picking may be required in some areas for eas of tiliage operations and harvesting of crops close to the soll surface. Uneven crop stand due to soll variability	
1Dya, 1Dyc 1Dda, 1Dba	3	4	4	5	2-4	Shallow A horizon Surface crusting B horizon of very low permeability Low PANC** Soil variability Slope >0.5% in some areas Susceptible to erosion	Low general fertility with very low phosphorus levels Often strongly alkaline by 0.30 m Strongly sodic at and below 0.20 - 0.30 m High to very high salt levels at 0.50 - 0.60 m (Note, 10da may have only medium to high levels)	Seedling emergence Soil profile amendment required to increase PAWC for crops otherthan rice Fertility problems associated with exposure of B horizon on levelling Uneven crop stand due to soil variability Irrigation furrows may have to be positioned across the slope to decrease slope gradient on higher slopes Dispersive B horizons Erosion control measures required on higher slopes High management inputs required.	
1 Дуб	3	4	4	5	5	Shallow A horizon Surface crusting Soil variability Slope >0.5% in some areas Susceptible to enosion D horizons coarser than light clay below 0.40 - 0.60 m Low PAWC	Low general fertility with very low phosphorus levels Often strongly alkaline at 0.30 m Strongly sodic at and below 0.20 - 0.30 m Very high sait levels at 0.80 - 0.90 m	Seedling emergence Fertility problems associated with exposure of B horizon on levelling Uneven crop stand due to soll variability Unsuitable for rice growing due to rapid internal drainage below 0.40 - 0.60 m Irrigation furrows may have to be positioned across the slope to decrease slope gradient on higher slop Dispersive B horizon Erosion control measures required on higher slopes High management inputs required.	

Table 5 (Cont'd)

Agrīculturāl management units	L: Sugar cana	Grain		es classe Mangoes	-	Soll and la Physical	nd limitations Chemical*	Management considerations
2Uga, 2Ugb	2	3	4	4	2	Low lying areas with low gradients Flooding	Low general fertility with very low phosphorus levels Sodic at and below 0.50 - 0.60 m. Low to medium salt levels at 0.80 - 0.90 m	Seedling emergence Precision levelling required for adequate surface drainage Wet season land preparation and harvesting Narrow range of optimum moisture for tillage operations.
2Ugc, 2Ugd, 2Uge	2	3	4	4	2	Low lying areas with low gradients Waterlogging Gligal to 0.30 m Flooding Surface crusting	Low general fertility Sodic at 0.50 - 0.60 m and usually strongly sodic by 1.10 - 1.20 m Medium salt levels at 0.80 - 0.90 m	Seedling emergence Precision levelling required for adequate surface drainage Wet season land preparation and harvesting Narrow range of optimum moisture for tillage operations Uneven crop stand due to soil variability after levelling.
2Ugg	2	3	4	4	2	Low lying areas with low gradients Waterlogging Gligal to 0.30 m Flooding	Low general fertility with very low phosphorus levels Sodic at and below 0.50 - 0.60 m Medium sait levels at 0.80 - 1.10 m	Seedling emergence Precision levelling required for adequate surface drainage Wet season land preparation and harvesting Narrow range of optimum moisture for tillage operations.
2Ugh	2	3	4	4	2	Low lying areas with low gradients Waterlogging Gilgal to 0.30 m Flooding	Low general fertility with very low phosphorus levels Strongly alkaline by 0.30 m Sodic by 0.50 - 0.60 m and strongly sodic at and below 1.10 - 1.20 m Medium to high salt levels at 0.80 - 0.90 m.	Seedling emergence Fertility problems associated with exposure of strongly alkaline B horizons of mound after levelling Uneven crop stand due to levelling Precision levelling required for adequate surface drainage Wet season land preparation and harvesting Narrow range of optimum moisture for tillage operations.
2Dyc	2	3	5	4	2	Low lying areas with low gradients Waterlogging Gilgal to 0.30 m Flooding Surface crusting	Low general fertility with very low phosphorus levels Sodic by 0.50 - 0.60 m and strongly sodic by 1.10 - 1.20 m Medium salt levels at 0.80 - 0.90 m	Seedling emergence Precision levelling required for adequate surface drainage Wet soason land preparation and harvesting Uneven crop stand due to soil variability after levelling.

Table 5 (Cont'd)

Agricultural management units		Grain		ty classes Mangoes		Soll and land Physical	l limitations Chemical*	Management considerations
20ba	4	5	5	5	2	Shallow A horizon Surface crusting B horizon of very low Permeability Low PAWC*	Low general fertility with very low phosphorus levels Strongly alkaline by 0.30 m Strongly sodic at and below 0.20 - 0.30 m High salt levels at 0.50 - 0.60 m	Seedling emergence Soil profile amendment required to Increase PAWC for crops ofter than rice Exposure of strongly sodic B horizon on levelling and cultivation Dispersive B horizons High management inputs required.
2Dya	3	4	5	4	2	Shallow A horizon Surface crusting B horizon of very low permeability Low PAWC	Low general fertility with very low phosphorus levels Strongly sodic at and below 0.20 - 0.30 m High salt levels at 0.80 - 0.90 m	Seedling emergence Soil profile amendment required to increase PAWC for crops other than rice Exposure of strongly sodic B horizon on levelling and cultivation Uneven crop stand due to levelling Dispersive B horizons High management inputs required.
20yb, 20bb, 20be	2	3	4	4	2-3	Surface crusting B horizon of very low permeability Low PAWC Flooding in some areas	Low general fertility with low to very low phosphorus levels Strongly sodic at and below 0.20 - 0.50 m (except for 2Dbe) Medium to very high sait levels at 0.50 - 0.60 m (Dbe has only low sait levels)	Seedling emergence Soil profile amendment required to increase PAWC for crops other than rice Strongly sodic B horizon may be exposed on levelling and cultivation Dispersive B horizon Erosion control measures required in some areas.
20bc, 20bd	2	3	3	3	3	Surface crusting Flooding	Low general fertility with very low phosphorus levels May be strongly sodic at and below 0.50 - 0.60 m Low to high sait levels at 0.80 - 0.90 m	Seedling emergence Wet season land preparation and harvesting Erosion control measures required in some areas.
3Uga, 3Uga8, 3Ugd, 3Uge, 3Ugk	2	3	4	4	2	Low lying areas with low gradients Waterlogging Flooding Gligal to 0.30 m	Low general fertility with low to very low phosphorus levels Strongly alkaline at 0.30 m in some areas (3Uga, 3Uga8, 3Ugk) Sodic by 0.90 - 1.20 m Low to medium salt levels at 1.10 - 1.20 m.	Seedling emergence Precision levelling required for adequate surface drainage Wet season land preparation and harvesting Narrow range of optimum moisture for fillage operations Susceptible to secondary salinisation on edge of plains.
3Ugf	2	3	3	4	2	Low lying areas with low gradients Flooding	Strongly sodic at and below 0.80 - 0.90 m May have very high salt levels at 0.80 - 0.90 m.	Precision levelling required for adequate surface drainage Wet season land preparation and harvesting Narrow range of optimum moisture for tiliage operations.

Table 5 (Cont'd)

Agricultural management units		Grain		ry classes Mangoes		Soil and Land Li Physical	mi†ations Chemical*	Management considerations
4UccR	4	4	4	3	4	Surface crusting Large pebbles and cobble throughout profile Low PAWC Soil variability Slopes >1% Susceptible to erosion	Low general fertility with very low phosphorus levels.	Seedling emergence Erosion control measures required Flood irrigation unsuitable, spray or trickle irrigation recommended Downslope seepage may occur if excessive intake occurs upslope on these soils Stone picking required.
4Dyg, 4Dyh, 4Dba	4	4	4	4	5	Surface crusting 8 horizon of very 1ow permeability Low PANC Slopes usually >1\$ Susceptible to erosion	Low general fertility with very low phosphorus levels Strongly sodic at and below 0.30 - 0.60 m Medium to high sait levels at 0.50 - 0.60 m.	Seedling emergence Soll profile amendment required to increase PAWC Uneven crop stand due to soil variability Susceptible to secondary salinisation in some areas Eroslon control measures required.
50ra, 50ya	3	3	2	1	5	Surface crusting Slopes >1% Susceptible to erosion Soil depth <1m Surface stone in some areas Permeable subsoils	Low general fertility with low to very low phosphorus levels.	Seedling emergence Spray or trickle irrigation recommended to decrease deep drainage losses and prevent secondary salinisation down slope Erosion control practices required Stone picking required in some areas for ease of tillage operations and harvesting of crops close to surface
5Dyb	3	3	3	2	5	Surface crusting Slopes >1\$ Susceptible to erosion Surface stone in some areas	Low general fertility with low phosphorus levels Sodic at and below 0.80 - 0.90 m.	Seedling emergence Erosion control practices required Non-saline seeps may develop if deep drainage losses are not prevented upslope Stone picking required in some areas.
5Dyc, 5Dyd	4	4	4	4	5	Surface crusting Susceptible to erosion B horizon of very low permeability Low PAWC	Low general fertility with low to very low phosphorus levels Strongly sodic at and below 0.20 - 0.50 m High to very high salt levels at 0.50 - 0.60 m	Seedling emergence Susceptible to secondary salinisation Soil profile amendment required to increase PAWC Erosion control practices required.
5Uga, 5Ugb	2	3	4	4	5	Slopes In some areas >1% Susceptible to erosion on higher slopes Soil depth <1m Soil variability, small areas often associated with 5Dra Surface stone in some areas	Low general ferfillty with low phosphorus lavels.	Seedling emergence Erosion control practices required on higher slopes Small areas are often closely associated with soils of different management requirements. Stone picking required in some areas for ease of tillage operations and harvesting of crops close to the surface.

Table 5 (Cont'd)

Agricultural		_and sul	tabili:	ty classes		Soll and land !!	mitations	Management considerations
management units		Grain		Mangoes		Physica:	Chemica;*	-
5Dyf-5Ugc	3	3	4	4	5	Soil variability Surface crusting Slopes often >1% B horizon of very low permeability Low PAWC of 5Dyf	Low general fertility with very low phosphorus levels Strongly sodic at and below 0.50 - 0.60 m Very high sait levels at 0.50 - 0.60 m	Seedling emergence Different soils within complex have different management requirements Erosion control practices required on higher slopes Profile amendment may be required to increase PAWC of 5Dyf.
6Ucc	3	4	3	2	5	Soil variability Low PAWC High Inflitration rates Uneven slopes in some areas Flooding	Low general fertility with very low phosphorus levels.	Seedling emergence Frequent Irrigation required, sprinkler or trickle irrigation recommended Erosion control measures required in some areas.
6Uma, 6Umb, 6Gnd, 6Dbc, 6Dbf	2	2	2	2	5	Surface crusting Irregular slopes in some areas		Seedling emergence Fairly frequent irrigations required.
6Gna, 6Gne	2	3	2	2	5	Surface crusting Low PAWC Slopes >0.5≸ In some areas		Seedling emergence Fairly frequent irrigations required Precision levelling required in some areas.
6Dbb, 6Dba	2	3	3	3	4	Surface crusting Slopes >0.5% in some areas Soil variability in some areas	Sodic at and below 0.50 - 0.60 m.	Seedling emergence Profile amendment may be required to increase PAWC in B horizon.
6Ugc	2	3	4	4	4	Waterlogging Flooding		Seedling emergence Wet season land preparation and harvesting Narrow range of optimum moisture for tillage operations.
6Uca	4	5	4	3	5	Soil variability Very low PAWC High infiltration rates	Low general fertility with very low phosphorus levels.	Seedling emergence Long narrow mapping units closely associated with soils of widely different management requirements Frequent irrigations required, sprinkler or trickle irrigation recommended intake areas.
6Uga	3	4	4	4	5	Soli variability Irregular slopes Flooding Susceptible to erosive flooding		Wet season land preparation and harvesting Erosion control measures required Uneven crop stand due to soll variability Wet season flooding.

Table 5 (Cont'd)

Agricultural management units		Grain		y classes Mangoes		Soil and land Physical	! m †a†ions Chemica ≠	Management considerations
6Ufa, 6Ufd, 6Ufe	5	5	5	3	5	Flooding Soil variability Susceptible to erosive flooding Irregular slopes		Frequent wet season flooding Wet season land preparation and harvesting Range of soils within units have different management requirements Erosion control measures required Uneven crop stand due to soil variability.
6Drc	2	3	3	2	4	Surface crusting Low PAWC Soil variability	Low general fertility with low phosphorus levels May be sodic at and below 0.90 - 1.20 m	Seedling emergence Some units closely associated with soils of different management requirements.
6Dbe	2	3	3	3	5	Surface crusting Low PAWC Flooding		Seedling emergence Wet season land preparation and harvesting Erosion control measures required.
6Dbh	4	4	4	4	5	Surface crusting B horizon of very low permeability Low PAWC	Low general fertility with low phosphorus levels Strongly sodic at and below 0.20 - 0.30 m High sait levels at 0.50 - 0.60 m	Seedling emergence Profile amendment required to increase PAWC Exposure of strongly sodic B horizon on levelling and cultivation Dispersive B horizons.
6Dуь, 6Dуө,	3	4	4	3	5	Soil variability Low PAWC in A horizon	Low general fertility Medium salt levels by 0.90 - 1.20 m.	Seedling emergence Soils within units have different management requirements Uneven crop stand due to soil variability.
6Dyf	3	4	3	3	5	Soil variability Surface crusting Upper B horizon of low permeability	Low general fertility with very low phosphorus levels.	Seedling emergence Uneven crop stand due to soil variability.
6Dyh, 6Dyg	3	4	4	4	5	Soil variability Surface crusting Upper B horizons of low permeability Low PAWC	Low general fertility May be strongly sodic at 0.20 - 0.30 m.	Seedling emergence Small creas closely associated with soils of Widely different management requirements Strongly sodic B horizons may be exposed on levelling and cultivation Uneven crop stand due to soil variability.

Table 5 (Cont'd)

Agricultural	ı	and sul	tabilit	y classes		Soil and lan	d limitations	Management considerations	
management unlts	Sugar cane	Grain crops		Mangoes	Rice	Physical	Chemical*		
6Dy.J	4	4	4	4	5	Soli variability Flooding Low PANC Susceptible to erosive flooding Surface crusting	Low general fertility with very low phosphorus levels Strongly sodic by 0.20 - 0.30 m High sait levels at 0.50 - 0.60 m.	Seedling emergence Soils within units have different management requirements Exposure of strongly sodic B horizons on levellin and cultivation Uneven crop stand due to soil variability. Frequent wet season flooding Erosion control measures required.	
6Dda, 6Ddb	3	4	3	3	5	Soil variability Surface crusting	Low general fertility with very low phosphorus levels May be strongly sodic at and below 0.50 - 0.60 m High sait levels at 0.80 - 0.90 m.	Seedling emergence Small areas often closely associated with soils of widely different management requirements Uneven crop stand due to soil variability. Erosion control measures required in some areas.	

^{*} Soil salinity rating as weighted average root-zone salinity to 0.9 m from predicted ECse values after Shaw et al. (1986).
Sodicity ratings after Northcote and Skene (1972). Other ratings after Bruce and Rayment (1982).

^{**} Plant available water capacity.

Guidelines for irrigation development and farm subdivision are outlined below.

6.1 Degradation hazards

6.1.1 Salinisation

- Leakage from channels must be kept to an acceptable level to avoid deep drainage losses with subsequent rises in groundwater. Particular attention must be given to those parts of channels which are located in intake areas of landscape units 4 and 5 and prior stream areas of landscape unit 6.
- Discharge areas are potential areas of secondary salinisation and should be excluded from irrigable areas of farms.
- Provision must be made for the location of intercept drains immediately upslope of expected discharge areas; for example, on soil types 5Dyc or on lower slopes of landscape unit 1 at the interface with landscape unit 3.
- Farm boundaries should coincide with slope concavities or drainage ways wherever practical, as these areas are most at risk from rising groundwaters.

6.1.2 Erosion

- Creeks and major drainage depressions must be protected by adequate buffer zones and should be retained as drainage reserves and be adequately maintained.
- Any land, outside a reserve, which is degraded by gully erosion must be rehabilitated before inclusion within farms. Gullies must be filled with suitable soil, compacted, allowed to consolidate, and then be levelled.
- Within reserves, existing gullies migrating from creeks and drainage depressions must be stabilised to prevent further progression.
- Adequate provision must be made for sufficient land on farms, additional to the irrigable area, to accomodate internal farm roads, supply channels, drains and necessary erosion control works.

6.1.3 Flooding

- The drainage system of the developed area must be designed so that depth and length of inundation is minimised to reduce crop damage or loss.
- Roads, tram lines, water supply channels and drains must be located so that natural drainage is not impeded.

6.2 Farm subdivisional considerations

6.2.1 Complex soil distribution

- Areas with dyke rocks exposed on the surface associated with complex patterns of soils or salinisation hazard should be excluded from irrigable areas of farms.
- Where possible, large contiguous areas with complex patterns of managerially different soils, and which, with irrigation development, may adversely affect suitable lands downslope, should be excluded from farm design and set aside as reserves.

6.2.2 Land suitability classes

- All lands of classes 4 and 5 should be excluded from irrigable areas of farms.
- Farm boundaries within areas of suitable land (that is, classes 1, 2 and 3) should be located so that soils with similar management requirements can be grouped into relatively large areas.

7. FARM MANAGEMENT GUIDELINES

Suitable on-farm management strategies are also needed to ensure sustained economic crop production and assist in resource stability. Management considerations for the agricultural management units of the area have been given in Table 5. Some guidelines for farm management in regard to decreasing the incidence of salinisation and erosion are given below.

7.1 Salinisation

- Spray or trickle irrigation or special furrow irrigation techniques should be used on intake areas to minimise deep drainage losses to groundwater with subsequent secondary salinisation downslope.
- Precision levelling must be undertaken, especially on near-level landscapes, to ensure that surface drainage is not impeded so as to minimise accession to groundwater and subsequent regional salinisation.
- On-farm channels and drains must be appropriately designed and prepared so that drainage losses to groundwater are kept to a minimum.
- Only necessary clearing of vegetation on sloping lands must be undertaken. Increasing vegetation in non-irrigated areas is advisable.
- The construction of on-farm water storages is not advisable unless these storages are to be lined to reduce losses to groundwater.

7.2 Erosion

- · All drainage ways must be grassed and adequately maintained.
- The gradient and length of irrigation furrows must be such that soil losses are kept to an acceptable level. On sloping lands, furrows may have to be angled across the maximum slope.
- · Bare fallows should be avoided on sloping lands during the wet season.

8. ACKNOWLEDGEMENTS

The authors wish to thank:

- Mr Ron McDonald for his assistance and advice during the survey;
- Mr Kerry Rosenthal for filing and sorting the data on computer;
- Mrs Sharon Wallace for her excellent drafting of the map;
- Mr Dennis Baker and the technical staff of Agricultural Chemistry Branch for soil analyses of the sampled profiles;
- o Mr Ken Day for editing the report;
- the farm hands, especially Mr Barry Robinson, who assisted with the field work; and
- the stenographers, especially Mrs C. Payne, Miss J. Collett and Miss D. Hanfling, for typing the report.

9. GLOSSARY

landscape unit

A natural unit of land in which a particular soil or association of soils is developed from a single rock type (consolidated or unconsolidated) or complex of rock types. The soils bear a constant relationship with a limited range of landform elements or native vegetation communities and there is a similar drainage net throughout the soil landscape. These relationships have developed as a result of interactions between climate, rock types and geomorphic history (adapted from Thompson and Moore 1984).

soil type

A three-dimensional soil body such that any profile within the body has a similar number and arrangement of major horizons whose attributes, primarily morphological, are within a defined range. All profiles within the soil type have similar parent materials (R. C. McDonald, personal communication).

10. REFERENCES

Baker, D. E., Rayment, G. E. and Reid, R. E. (1983), Predictive relationships between pH and sodicity in soils of tropical Queensland, Communications in Soil Science and Plant Analysis 14:1063-73.

Bruce, R. C. and Rayment, G. E. (1982), Analytical methods and interpretations used by the Agricultural Chemistry Branch for soil and land use surveys, Queensland Department of Primary Industries Bulletin QB82004.

Gardner, E. A. and Coughlan, K. J. (1982), Physical factors determining soil suitability for irrigation crop production in the Burdekin-Elliot River area, Queensland Department of Primary Industries, Agricultural Chemistry Branch, Technical Report 20.

Northcote, K. H and Skene, D. J. M. (1972), Australian soils with saline and sodic properties, CSIRO Australian Division of Soils, Soil Publication 27.

Northcote, K. H. (1979), A factual key for the recognition of Australian soils, 4th edition, Rellim Technical Publication, Glenside, South Australia.

Shaw, R. J., Hughes, K. K., Dowling, A. J. and Thorburn, P. J. (1986), Principles of landscape, soil and water salinity - processes and management options. Part A in Landscape soil and water salinity. Proceedings of the Burdekin regional salinity workshop, Ayr, April 1986, Queensland Department of Primary Industries Publication QC86003.

Thompson, W. P. (1977), Soils of the Lower Burdekin River - Elliot River area North Queensland, Queensland Department of Primary Industries, Agricultural Chemistry Branch, Technical Report 10.

Thompson, C. H. T. and Moore, A. W. (1984), Studies in landscape dynamics in the Cooloola - Noosa River Area, Queensland. I. Introduction, general description and research approach, CSIRO Australia Division of Soils Divisional Report 73.

APPENDIX 1

IRRIGATION LAND SUITABILITY CLASSES, BURDEKIN RIVER IRRIGATION AREA

- Class 1. Land suitable for crop production under irrigation with no or minor limitations.
 - (a) It is highly productive requiring only fertiliser input.
 - (b) Land with attributes which allow greatest water application efficiency without the use of specialised irrigation management techniques.
 - (c) Land which requires no or minor land modification in preparation for irrigation.
 - (d) Potential erosion and salinity hazards are negligible under irrigation.
- Class 2. Land suitable for crop production under irrigation but with slight limitations to use in one or more of the following categories.
 - (a) Land with some limitations to crop growth requiring amendment(s) to attain satisfactory productivity.
 - (b) Land with attributes which require the use of some specialised irrigation management techniques to achieve satisfactory water application efficiency, crop establishment and growth.
 - (c) Land which requires some land modifications, for example levelling, stone picking in preparation for irrigation.
 - (d) Simple conservation measures only are required to reduce soil loss to an acceptable level and potential secondary salinisation is not expected under irrigation.
- Class 3. Land suitable for crop production under irrigation but with moderate limitations to use in one or more of the following categories.
 - (a) Land with moderate limitations to crop growth requiring rehabilitation or treatment to attain satisfactory productivity.
 - (b) Land with attributes such that there will be an even greater requirement to use specialised irrigation management techniques to achieve satisfactory water application efficiency, crop establishment and growth.
 - (c) Land which requires a moderate degree of land modification, for example levelling, stone picking in preparation for irrigation.

- (d) Land which requires graded banks as well as simple conservation measures to reduce soil loss to an acceptable level. Potential secondary salinisation is not expected to occur under irrigation.
- Class 4. Land currently unsuitable for crop production under irrigation with such severe limitations that special agronomic, edaphic, economic and/or engineering studies are required to show it to be capable of sustained economic crop production.
 - (a) Land on which crop growth under irrigation would be very poor without intensive reclamation measures.
 - (b) Land with attributes, such that satisfactory water application efficiency, crop establishment and growth cannot be achieved with current irrigation management techniques.
 - (c) Land which requires such a degree of land modification, for example, levelling, stone picking, drainage, in preparation for irrigation that it will not be economically feasible with current technology.
 - (d) Land which cannot be used for continuous crop production under irrigation due to excessive soil loss even with conservation measures applied. The potential for secondary salinisation is high.
- Class 5. Land which is not suitable for the long term production of crops under irrigation due to one or more of the following limitations.
 - (a) Land whose limitations to crop growth cannot be corrected with existing technologies.
 - (b) Land with such attributes that water application efficiency, crop establishment and growth cannot be achieved.
 - (c) Land which cannot be prepared for irrigation use.
 - (d) Land on which the level of soil conservation works required to reduce soil loss to an acceptable level would unduly hinder farming operations or land that is subject to regular damaging erosive flooding.

APPENDIX 2 LAND SUITABILITY CLASSIFICATION, BURDEKIN RIVER IRRIGATION AREA

(a) Crops other than rice

Limiting factor	Nature and degree of limitation	Subclass
Soll depth	Refers to rock, pan or readly observable restriction which will affect root development and plant available water. Does not refer to effective rooting depth as suggested by salinity, sodicity, bulk density.	
	-60 ~ 1-00m	d2
	•45 - •60m	d3
	•25 - •45m <•25m	d4 d5
Soil physical factors affecting plant growth and management.		-, -, -
 Depth to hard/slowly permeable subsolls. 	Hard subsolls reduce water entry, available water capacity and restrict root development.	
	Depth to B horizon of duplex soils with dry extremely hard consistence.	
	•20 - •40m	pb2
	-1020m <-10m	pb3 pb4
2. Nature of surface solls.	Crop emergence is limited if soils have large aggregates	
	at the surface or set too hard. (a) <u>Cracking clay soils</u> * Percentage of pads or fragments >5mm diameter on	
	surface is:	_
	25 ~ 45\$ >45\$	ps2 ps3
	(b) Other solls Surface may set hard if overworked and there maybe difficulties In achieving satisfactory germination.	ps2
	Surface soils set hard. Some difficulty in achieving satisfactory germination.	ps3
	Surface soils set very hard; may seal on wetting, forming dense crusts on drying; very difficult to establish and maintain tilth and achieve satisfactory germination.	ps4
3. Distribution of solis.	Where two or more soils occur in a 300m traverse, (300m is regarded as minimum run length for furrow irrigation) and differ in depth or texture of the surface, and/or internal drainage characteristics such that even under good management, crop yields may differ markedly. Criteria are:	
	B horizon permeability is similar but A horizon depths differ by a factor of 1.5-2+ where A horizon depth of one soil is greater than .20m and/or A horizon field textures differ by > 2 field texture groups.++	pd3
	B horizon permeabilities differ markedly and/or A horizon depths differ by a factor of >2 where A horizon depth of one soil is greater than 0.20m and or A horizon on field textures differ by >2 texture groups.	pd4
4. Texture of surface soils	Method of Irrigation is dependent on surface texture. Furrow Irrigation is more difficult with deeper sands; spray irrigation becomes essential.	
	Surface textures of sands to sandy loams to depths of:	
	•45 - •60m	pt2
	•60 - •90m >•90m	pt3 pt4
Salinity	Salts in the upper part of the soli affect crop growth.	
	Electrical conductivity of 1:5 suspension at 25°C is >1.0 dsm $^{-1}$ at .3090m	sa3
	<.30m	sa4

^{*} Based on data reported in Gardner and Coughlan (1982)

⁺ Depth differences determined by multiplication ++ Northcote (1979)

APPENDIX 2 (Continued)

Limiting factor	Nature of degree of fimitation	Subclass
Sodicity	High sodicity causes soil dispersion, loss of pore space, restricted rooting depth and plant available water capacity.	
	ESP at .2030m	
	ls:	_
	6 - 14% >14%	so3 so4
	<u> </u>	
	OR (where no ESP data)* Fleld pH at .2030m is:	
	(a) For cracking clays	
	8.0 - 9.5	so3
	>9.5 (b) For sodic soils and solodized-solonetz	504
	6.5- 8.0	so3
	>8.0	so4
Topography	Slope influences water management, ease of development,	
ropeg. op.ii,	layout, and erosion control. (Angled layout not considered) Even slopes of	
	0.25 - 1.0\$	†2
	1.0 - 2.0% <0.03 or 2.0 - 6.0%	†3 †4
	>6.0\$	+5
Fertility	Fertility can be very low in some solls. This alters the economic basis of development.	
	From soli analyses described in Bruce and Rayment (1982), the	
	following combination can be determined for plant nutrients: 1 - 2 nutrients are very low	n2
	>2 nutrients are very low	n3
Rockiness and stoniness	The presence of rocks on the surface and in surface soil affects cultivation and other cultural operations.	
	Some picking of cobbies for certain management requirements (e-g- harvesting soybeans).	r2
	Tillage restricted, picking of cobbles and stones required.	r3
	Tillage difficult, picking of cobbles and stones required.	r4
	Tillage impractical, stones and boulders too numerous to warrant removal or rockland.	r5
Microrefief	Uneven surfaces create the need for careful levelling. Costs	
	increase with depth of levelling required. Soli chemical and physical problems with exposed subsolis are often associated.	
	Vertical Interval of gligal, or of other regular microrelief	
	•10 - •25m •25 - •60m	g2 g3
	>.60m	g 4
Wetness	Areas which remain wet after rainfall, cannot be used until drainage has taken place. (Includes both Internal (soli) and external (site) aspects of drainage).	
	Areas which are wet for some time; require levelling including some cut and fill.	w3
	Areas which are wet for many months after wet season; considerable filling, or special drainage, or other considerable reclamation necessary.	w4
	Areas which are wet for most of the year and are uneconomical to reclaim.	w5

^{*} Relationship from Baker, Rayment and Reid (1983)

APPENDIX 2 (Continued)

Limiting factor	Nature and degree of limitation	Subclass
Water erosion	Solis susceptible to erosion need to be protected to maintain productivity.	
	Susceptible to erosion, control measures required are:	
	Simple practices, for example maintenance of cover.	e2
	Intensive practices, for example graded banks.	е3
	Pasture phase or permanent pasture.	e4
	Gully erosion so severe, that measures to rehabiliate these areas would be uneconomical.	ө5
Flooding	Areas susceptible to flooding at critical stages of crop growth pose limitations to development because of yield reduction or total loss of crops.	
	Areas subjected to local flooding at different frequencies. Crop damage or losses may occur.	
	Frequency of ficoding <1 in 10 years. Minor wet season crop losses or damage can be expected.	12
	Frequency of flooding 1 in 5-10 years.	f3
	Frequency of flooding >1 in 5 years. Cropping during wet season months is not recommended due to frequency of flooding. Low lying areas adjacent to creeks and their outlets.	f4
	Areas subjected to erosive flooding.	f5
Intake or recharge attributes	Refers to intake areas where excessive amounts of irrigation and rain water losses to the groundwater can cause off-site seepage and salinisation.	
	intake to groundwater is such that it can be minimized with:	
	Simple management and design.	12
	Special management and design e.g. use of sprinkler irrigation.	13
	Restricted cropping management and design e.g. trickle irrigation of deep rooted tree crops.	14
	Where accessions to groundwater are excessive and cannot be prevented. $ \label{eq:constraint} % \begin{array}{c} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}}$	15
		
Outflow or discharge attributes, susceptibility to rise in groundwater.	Areas which have a history of seepage or secondary salinisation or are suspected of same, will not be productive or will be very risky to develop. Lower slopes of the gently undulating rises are susceptible. Edges of the Burdokin River levee may also be susceptible.	
	, '	
	Known/suspected secondary salinisation	04

APPENDIX 2 (Continued) (b) Rice

Limiting factor	Nature and degree of limitation	Subclass
Topography	Simple slopes of ∙03 to 0∙25≸ are	
	regarded as the most sultable	
	0.03 to 0.25% complex slope	†2
	<0.03 or 0.25 to 0.5% simple or complex slope	+3
	0.5 to 0.75\$ simple slope	†4
	Any slope >.75% and/or complex slopes of 0.5 -0.75%	†5
Microrellef	Vertical interval of gligal (m)	
	•10 to •25m	g2
	•25 to •60m	g3
	> •60m	g4
Flooding	Areas subject to local flooding more than 1 in 10 years but less often than 1 in 5 years.	f2
	Areas subject to local flooding more often than 1 in 5 years.	f3
	Areas subject to erosive flooding.	f5
Profile permeability	Duplex solls with A horzions of <0.20m, extremely hard upper B horizons and textures in the clay range from the base of the A horizons to >1.5m, and strongly alkaline (or with ESP>15)	
	by 0.60m are considered the least permeable.	
	Cracking clay solls with alkaline soil reaction frend	p2
	and/or ESP at some point in the profile >15 and texture	•
	in the clay range extending to >1.50m.	
	Duplex soils with A horizons >.20m deep, extremely hard	ρ3
	upper B horizons and textures in the clay range from the	
	base of the A horizon to >1.50m. Alkaline soil reaction trend and/or ESP at some point in the profile >15.	
	As for p3 but upper 8 horizon not extremely hard.	р4
	All uniform, duplex and gradational solls with acid and	р5
	neutral soil reaction trends with ESP <15 throughout profile	
	ad/or with some material with texture coarser than sandy clay between .40 and 1.50m.	
Soil salinity	Electrical conductivity of 1:5 extract at 25°C is greater	
	than 1 ds m ⁻¹ at:	
	.10 to .30m	sa4
	<.10m	sa5
Distribution of soil types	Distribution of soli types is such that when two or more soli	
	types occur within a 300m traverse:	
	Soll types are of similar sultability for rice.	pd2
	Soll types are all sultable for rice but are of different suitabilities.	pd3
	One or more soil types is not suitable for rice.	pd4