QUEENSLAND DEPARTMENT OF PRIMARY INDUSTRIES QR89001

SOILS OF THE BILOELA RESEARCH STATION, QUEENSLAND

P. G. Shields Land Resources Branch

Queensland Department of Primary Industries Research Establishments Publication QR89001

SOILS OF THE BILOELA RESEARCH STATION, QUEENSLAND

P. G. Shields Land Resources Branch

Department of Primary Industries, Queensland Government Brisbane 1989

Queensland Government Technical Report

This report is a scanned copy and some detail may be illegible or lost. Before acting on any information, readers are strongly advised to ensure that numerals, percentages and details are correct.

This report is intended to provide information only on the subject under review. There are limitations inherent in land resource studies, such as accuracy in relation to map scale and assumptions regarding socio-economic factors for land evaluation. Before acting on the information conveyed in this report, readers should ensure that they have received adequate professional information and advice specific to their enquiry.

While all care has been taken in the preparation of this report neither the Queensland Government nor its officers or staff accepts any responsibility for any loss or damage that may result from any inaccuracy or omission in the information contained herein.

© State of Queensland 1989

For information about this report contact <u>soils@qld.gov.au</u>

ISSN 0813-4391

AGDEX 524

This publication was prepared for Queensland Department of Primary Industries officers. It may be distributed to other interested individuals and organisations.

© Queensland Government

Queensland Department of Primary Industries GPO Box 46 Brisbane 4001

CONTENTS	5
----------	---

				page			
LIS	ST OF	FIGUI	RES	iv			
LIS	ST OF	TABLE	ZS	iv			
SU	MARY			v			
1.	INTRO 1.1 1.2	ODUCTI Locat Aims	ION cion and history of the survey	1 1 1			
2.	CLIM	ATE		2			
3.	GEOL 3.1 3.2	OGY AN Geolc Landf	ND LANDFORM Dgy Corm	6 6 6			
4.	HYDR	OLOGY		7			
5.	VEG E'	IOITAT	ð	8			
6.	SOIL	SURVI	EY METHOD	9			
7.	 7. SOILS - MORPHOLOGY, CLASSIFICATION AND DISTRIBUTION 7.1 Previously published soils data 7.2 Definition and description of soil types 7.3 Relationship between soils 7.4 Soil correlation with previous data 7.5 Mapping units 						
8.	SOIL: 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	S - CH Intro pH a Part: Catio Excha Total Sodio Avai: Plant	HEMICAL AND PHYSICAL ATTRIBUTES oduction and salinity icle size analysis on exchange capacity and clay activity ratio angeable cations and base saturation L potassium and total phosphorus city and other indexes of soil dispersion lable water capacity and predicted leaching fraction t nutrients in surface soil	19 20 22 24 24 27 29 30			
9.	IMPL 9.1 9.2	ICATI Soil Conc	ONS FOR FIELD TRIALS type homogeneity lusions	32 32 32			
10	•	ACKN	OWLEDGEMENTS	34			
11	•	REFE	RENCES	35			
AP	PENDI	XI	Conventions used in describing and classifying the soil types	38			
APPENDIX II Morphological and analytical data for sampled soil profiles							

LIST OF FIGURES

Figure

1	Locality map Biloela Research Station	3
2	Monthly and annual rainfall variability at Biloela	5
	Research Station	
3	Comparative particle size analyses for three soil groups	21
4	Mean total potassium profiles for three soil groups	26
	showing significant differences at the 5% and 1% levels	

LIST OF TABLES

Table

1	Mean rainfall, mean pan evaporation and 9 am relative	2
2	Average annual erosion index (EI30) and average monthly	2
2	index for Biloela Research Station Temperature data for Biloela Research Station for the	4
J	period 1965 to 1986	
4	Water quality data (sampled 2/7/85) for four bores on the station	7
5	Detailed description and classification of the soils	11
6	Approximate correlation of soil types with previously published soils data	18
7	Mapping unit composition	18
8	Laboratory analyses performed on the soil samples	19
9	Cation exchange capacity and clay activity ratio at two sampling depths for all soils	23
10	Exchangeable cations and base saturation at two sampling depths of each soil	25
11	Indexes of soil dispersion for selected sampling depths	28
12	Estimated available water capacity (mm) to one metre depth and predicted leaching fraction of all soils	29
13	Plant nutrient ratings for the bulk surface samples	31

t

page

SUMMARY

The Biloela Research Station is situated in the Callide Valley of central Queensland, approximately 100 km south-west of Gladstone. Current research on the 240 ha station includes plant breeding, crop variety testing, crop nutritional work, weed control research and soil management studies.

The boundaries enclose part of an extensive alluvial plain and a small area of gently undulating rises. The rises have developed on Tertiary sedimentary rocks while subsequent Quaternary deposition has resulted in an alluvial plain covering the lower landscape positions.

A very high intensity grid survey (scale 1:5 000) was undertaken to identify and map the soils present. Six soil types, including one gravelly phase, were identified and are described in detail. A grey and brown massive earth, a dark non-cracking clay to duplex soil and a black earth occur on the levees transecting the alluvial plain. Another black earth and two dark non-cracking clays occupy the intervening flats and drainage depressions. A number of very shallow and stony, miscellaneous soils were also delineated on the gently undulating rises. Soil distribution is shown on the accompanying map.

The soils of the alluvial plain are non-saline and non-sodic. They have similar levels of plant nutrients in the surface soil with only organic carbon and total nitrogen reserves being low. Levels of exchangeable cations are adequate throughout all profiles and the soil cation exchange capacities are also considered adequate to retain these nutrients against leaching.

The soil physical characteristics are more variable. Particle size analysis reveals two distinct groups with one having less clay and silt and more fine sand than the other. The condition of the surface soil and subsoil structure also vary. Three groups can be identified on the basis of plant available water capacity but different groups are obtained when considering deep drainage characteristics.

The implications for designing field trials are discussed.

1. INTRODUCTION

1.1 Location and history

The Biloela Research Station is situated in the Callide Valley of central Queensland, approximately 100 km south-west of Gladstone (Figure 1).

The station was established in 1924 as the Callide Cotton Research Station. It was initially developed as a demonstration farm to show new settlers appropriate cotton management practices for the soils of the Callide alluvium. This initial role soon expanded into an investigation of all potential crops for the area (McTaggart 1987).

The station now comprises 240 ha of which 150 ha can be irrigated from shallow aquifers. The current research programme includes:

- . Cotton and sorghum plant breeding;
- . Summer and winter crop variety testing;
- . Crop nutritional work;
- . Weed control research;
- . Soil management studies;
- . Insect research;
- . Pig research; and
- . Agricultural engineering development.

1.2 Aims of the survey

The aims of this survey were to describe and map the soils of the research station and to comment on their homogeneity for experimentation. Previously published soils data are of insufficient detail for this purpose. A comprehensive soils report also allows more precise comparison of the soils with those of the surrounding district serviced by the station.

2. CLIMATE

Rainfall is the major climatic element determining plant growth. The mean annual rainfall recorded for the 60 year period 1924 to 1984 at Biloela Research Station is 699 mm. Mean monthly values are presented in Table 1.

Table 1. Mean rainfall, mean pan evaporation and 9 am relative humidityfor Biloela Research Station

	J	F	M	A	M	J	J	A	S	0	N	D	Annual
Mean rainfall (mm)	106	110	64	38	41	37	30	21	23	51	80	97	699
Mean pan evaporation (mm) 9am relative humidity (%)	217 64	175 68	170 67	147 65	112 69	84 72	87 70	115 65	150 58	195 57	210 59	236 60	1898

Source: Bureau of Meteorology

Annual totals are highly variable, due to the convective origin of much of the rainfall and the sporadic incidence of rainfall depressions associated with tropical cyclones. This is evident in Figure 2 which shows the rainfall values equalled or exceeded in one in ten years, five in ten years (median) and nine in ten years.

Figure 2 also demonstrates a marked seasonal distribution. Median rainfall for the six warmer months, October to March, represents 69% of the median value for the entire 12 month period beginning in October.

The EI₃₀ rainfall erosion index has been calculated for the research station by Rosenthal and White (1980). The index is a function of total storm energy and the maximum 30 minute rainfall intensity of the storm. The average annual EI₃₀ and the average monthly figures, expressed as a percentage of the annual index, are given in Table 2. Compared with similar agricultural centres further south the annual value is lower than for Kingaroy (EI₃₀ of 283) but higher than both Dalby (174) and Inverell (200).

Table 2.Average annual erosion index (EI30) and average monthly indexfor Biloela Research Station

<u> </u>	Average annual EI30											
J	F	М	A	М	J	J	A	S	0	N	D	
16.1	19,5	8.7	2.3	2.8	3.0	1.2	0.8	2,0	8.6	16.0	19.0	245

Source: Rosenthal and White (1980)

Figure 1

Temperature data are given in Table 3 for the research station. Between October and March an average 26 days experience maximum temperatures of at least 35oC but very few days are likely to reach 38oC. Skerman (1958) showed that heat waves (three consecutive days with temperatures over 37.8oC) adversely affect grain sorghum. The probability of heat waves occurring at Biloela is remote. An average 21 days have minimum temperatures of less than 2oC between May and September. At screen temperatures of 2oC, light frosts can be expected. The eight days with minimum temperatures less than 0oC represent the average number of heavy frosts which occur.

Table 3. Temperature data for Biloela Research Station for the period1965 to 1986

		J	F	M	A	м	ل	J	A	S	0	N	D	Annual
Av Max (oC) 3	13.0	31.9	31.1	28.7	25.2	22.1	21.8	23.8	26.9	29,7	31,7	32_9	28,2
Av Min (oC) 1	9.7	19.4	17.6	13,3	9.4	6.3	5,0	5,2	8.4	13 .1	16.3	18.3	12.7
Average (days	with	-											
Max =>35	(°C)	8	5	2							1	4	7	26
Max =>38	{ o C }	1	1									1	1	3
Min <2 (oC)					1	5	9	5	1				21
Min <d [<="" td=""><td>001</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>4</td><td>2</td><td></td><td></td><td></td><td></td><td>8</td></d>	001						1	4	2					8

ą.

Source: Bureau of Meteorology

Relative humidity and pan evaporation data are presented in Table 1. The mean monthly pan evaporation exceeds mean rainfall in all months.

3. GEOLOGY AND LANDFORM

3.1 Geology

The geology of the Callide Valley has been described by Dear *et al.* (1971). The valley may have formed as a result of fault movements during the Tertiary period (65 to 1.8 million years before present).

A thick sequence of flat-lying sediments was deposited during this period. The office and glasshouse complex are situated on this sequence. The sedimentary rocks are soft and consist mostly of grey clay shale and white to buff quartz sandstone. Minor pebble conglomerate and thin coal seams have also been reported.

Subsequent fluvial action resulted in deposits of clay, sand and gravel forming an extensive alluvial plain across the lower parts of the landscape. The research station is mainly sited on these Quaternary sediments (1.8 million years to present). Their maximum thickness is approximately 25 m.

3.2 Landform

The flat-lying Tertiary rocks form gently undulating rises with predominantly 2 to 3% slopes. Elevation varies between approximately 180 and 190 m. The Washpool Gully forms their northern border and also marks the southern limit of the alluvial plain.

The alluvial plain has an elevation of approximately 170 m. Callide Creek dissects the plain and forms the northern boundary of the research station. Between Callide Creek and the Washpool Gully are a series of levees separated occasionally by intervening flats. One flat contains a lower lying, run-on area most appropriately described as a backplain. Several open drainage depressions also transect the area.

Three of the drainage depressions have the position, direction, shape and deep incision similar to stream channels. They appear to be former courses, either main channels or overflow channels, of Callide Creek.

4. HYDROLOGY

The research station is drained by Callide Creek and, to a lesser extent, Washpool Gully. Queensland Water Resources Commission records indicate that Callide Creek has overtopped its banks only twice at Biloela since the station was established. The Washpool Gully has not caused flooding on the station.

Underground water resources are available in the recent (Quaternary) alluvial deposits which overlie the Tertiary sedimentary rocks. Their most important aquifer consists of clean gravel and sand and attains a maximum thickness of 9 m (Dear *et al.* 1971).

The standing water level varies between 8 and 12 m below ground level. Water quality is indicated for four bores in Table 4. Gill (1984) developed a scheme for classifying the quality of water for irrigation in Queensland. According to this scheme, all four bores have water suitable for irrigating all crops except tobacco, and they have no sodium problem.

Measurement	Unit	Bore number						
		3355 7	34284	34286	62940			
Conductivity ^(a) (correcte Cations	ed) dS m ⁻¹ meg L-1	520	520	500	640			
Ca ⁺⁺	•	2.84	2.69	2,25	2.99			
Mg ⁺⁺		2.06	2.06	1.73	2,55			
Na ⁺		2.35	2.44	2.52	2.65			
Anions	meq L ⁻¹							
HCO	-	3.09	2.99	2.79	3.79			
CO ₂		0.01	0.01	0.01	0			
c1		3.81	4.09	3.67	4.37			
^R esidual alkali ^(a)	meq L ⁻¹	0	0	0	0			
Sodium adsorption ratio ^{(a} (corrected)	1)	2.3	1.7	1.9	2.3			

Table 4. Water quality data (sampled 2/7/85) for four bores on the station

(a) For definition of these terms see Gill (1984)

Source: Queensland Water Resources Commission

5. VEGETATION

Speck (1968) has described the vegetation of the Callide Valley. The research station has been extensively cleared and only remnants of the native vegetation occur.

Scattered trees of brigalow (Acacia harpophylla) and narrow leaf bottle tree (Brachychiton rupestris) remain on the gently undulating rises as well as isolated clumps of narrow leaved ironbark (Eucalyptus crebra), variable bark bloodwood (E. erythrophloia) and Moreton Bay ash (E. tessellaris).

The levees of the alluvial plain contain isolated trees of Queensland blue gum (E. tereticornis), Moreton Bay ash, silver leaved ironbark (E. melanophloia) and sally wattle (A. salicina).

The vegetation fringing Callide Creek and the Washpool Gully includes Queensland blue gum, Moreton Bay ash, silver leaved ironbark, sally wattle, long fruited bloodwood (E. polycarpa), snow-in-summer (Melaleuca linariifolia), black teatree (M. bracteata), river sheoak (Casuarina cunninghamii), weeping bottle brush (Callistemon viminalis) and bauhinia (Lysiphyllum hookeri). Minor softwood species such as figs (Ficus spp.), white cedar (Melia azederach) and boonaree (Heterodendrum oleifolium) also occur on Callide Creek.

6. SOIL SURVEY METHOD

The scale of published soil maps should be determined by the purpose of the survey (McDonald 1975). The density of ground observations should then be appropriate for the selected scale. Biloela Research Station is used for small plot experiments such as plant breeding, crop variety testing and weed control research. A very high intensity mapping scale (1:10 000 or larger) was therefore chosen for the alluvial plain where experimentation is carried out.

Ground observations were recorded every 100 m along fixed traverses set 100 m apart. The distance between observations was varied where necessary to avoid highly disturbed sites. Sites were described according to McDonald *et al.*(1984). Soil profiles were described to a depth of 1.5 m or gravel, whichever occurred first.

The site descriptions were sorted into three landscape units and six soil types (see section 7.2). The six soils were then mapped on air photos (scale 1:5 000). Additional ground observations were taken to verify map boundaries. A total of 199 ground observations were recorded on the alluvial plain at a frequency of one per 1.1 ha.

Only two sites were described on the gently undulating rises giving an approximate density of one per 6 ha. Field plot experimentation is not carried out on this area.

7. SOILS - MORPHOLOGY, CLASSIFICATION AND DISTRIBUTION

7.1 Previously published soils data

Isbell (1954) prepared a reconnaissance soil map of the Callide Valley at a scale of approximately 1:250 000. Soil associations were also delineated by landscapes as part of the Atlas of Australian Soils (Isbell *et al.* 1967). Mapping scale was 1:2 000 000. Sweeney (1968) identified soil families of the Dawson-Fitzroy area but did not delineate them on a map.

7.2 Definition and description of soil types

Six soil types, a soil phase and one group of miscellaneous soils were identified.

A soil type is a three-dimensional soil body. Any profile within this body has a similar number and arrangement of major horizons whose attributes, primarily morphological, are within a defined range. All profiles within the soil type have similar parent materials. A soil phase is a subdivision of the soil type based on attributes which have notable significance in the use of the soil (R.C. McDonald, personal communication).

A few soils were not adequately described and named as soil types because of their negligible agricultural value and extent. They are referred to as miscellaneous soils.

A detailed description and classification of the soil types are given in Table 5. The conventions used in Table 5 are explained in Appendix 1.

7.3 Relationship between soils

The soils have been arranged into three landscape units on the basis of landform and parent material.

7.3.1 Soils of the very gently to gently undulating levees

Hodge, Callide and Woodall soil types occur on the levees transecting the alluvial plain. Hodge is situated adjacent to Callide Creek, Woodall occurs in close proximity to the Washpool Gully and Callide occupies the levees in between. All three have a neutral to alkaline soil reaction trend and overlie similar buried layers (D horizons). Profile development appears to increase with distance from Callide Creek.

Hodge is a dark, grey or brown gradational soil with hard setting sandy clay loam to clay loam, sandy surface soil (A horizons) and massive to moderately pedal sandy clay subsoil (B horizons) and medium sized sand grains (Northcote 1979, p.26) are evident throughout the profile.

Callide is a dark, gradational soil, duplex soil or non-cracking clay. The sandy clay loam to light medium clay surface soil either hardsets or crusts; the light medium clay to heavy clay subsoil is moderately pedal and medium to fine sand occurs throughout the profile.

Table 5.	Detailed	description	and	classification	of	the soils	
----------	----------	-------------	-----	----------------	----	-----------	--

Soil type	PPF			Description	Landscape unit	Vegetation
Hodge	Gn 2.82P Gn 2.83P Gn 2.43P	рН 60-70	mm mm	Grey and brown massive earth and minimal prairie soil Hardsetting surface, may have very few subrounded coarse gravels	Very gently to gently undulating levees; slopes 0.5 to 3%	Completely cleared
	Gn 3.42 Gn 3.43P	67-78	150 300 400 BT 300 400	A1 or Ap - dark (5 YR to 10 YR 3/1, 3/2), grey- brown to grey (dry); sandy clay loam to clay loam, sandy; massive to weak 2 to 5 mm subangular blocky; dry moderately firm; may have few subrounded fine gravels; gradual to diffuse to -		
		7080	600	B1 (where present) - dark (7.5 YR 2/1); clay loam, sandy; weak subangular blocky; moderately moist moderately firm; gradual to -		
		80 90	900 B 1200 D S	B21 - grey-brown to dark or brown (5 YR to 10 YR 4/1, 4/2, 3/1, or 10 YR 3/3); may have few fine distinct brown mottles; clay loam, sandy to sandy clay; massive to moderate structure; dry moderately firm;		
		85-90	1500	clear to gradual to - B22 (where present) - mottled grey-brown to dark and brown (7.5 YR, 10 YR 2/1, 3/1 and 3/3) sandy clay; massive to moderate structure, dry moderately firm; may have very few medium soft carbonate; clear to gradual to -		
				D's - grey-brown, brown or dark (5 YR, 7.5 YR 3/1, 3/2, 4/1, 4/3), may have 50% mottles; loamy sand to sandy, medium clay or fine sandy clay; dry very weak to very firm; may have few fine soft carbonate; may have few subrounded fine gravels		
	-			<u>Comments</u> : The profiles with dark B2 horizons generally have a stronger grade of pedality.		
				<u>Variant</u> : The A1 horizon may have moderate grade of pedality and abruptly overlie D horizons (Um 6.21).		

¥_____

-

Soil type	PPF			Description	Landscape unit	Vegetation
Callide	Uf 6.32 Uf 6.32P Dd 1.13 Dd 2.12P	рН 60-80	mm mm 50 Ap or A1	Dark, neutral to alkaline, non-cracking clay, duplex soil and gradational soil: Hard setting (coarser textures) or surface crust (finer textures); may have few subrounded medium to coarse gravels	Very gently to gently undulating levees; slopes 0.5 to 3%	Extensively cleared; isolated Queensland blue gum, Moreton Bay ash, silver leaved
	Uf 6.42P	65-85	300 B21	Ap or A1 - dark to grey-brown (5 YR, 7.5 YR 2/1, 2/2, 3/1, 3/2, 4/1, 4/2), grey-brown (dry), sandy clay loam to fine sandy, light medium clay; massive to weak 2 to 5 mm subangular blocky; dry moderately firm		irondark and sally wattle trees
		7087	600	to moderately strong; abrupt to gradual to - B1 (where present) - dark to grey-brown (5 YR, 7.5 YR		
		7087	900	2/1, 3/1, 4/2), may have few fine distinct brown mottles, sandy clay to fine sandy, light medium clay; dry very firm, clear to gradual to -		
		80-90	1200 D s	B21 - dark to grey-brown (5 YR, 7.5 YR 2/1, 2/2, 3/1, 3/2, 4/1, 4/2), may have many fine to medium distinct brown mottles; sandy, light medium clay to fine sandy, heavy clay; moderately moist very firm to moderately strong; may have few subrounded fine gravels; clear to diffuse to -		
		80-90	1500 \	B22? (where present) - mottled dark to grey-brown and yellow-brown to red-brown (5 YR, 7.5 YR 2/1, 3/1, 3/2, 4/1, 4/2 and 3/3, 4/3, 4/4, 5/4, 5/3); fine sandy, light medium clay to sandy, heavy clay; dry very firm to very strong; may have few subrounded fine gravels; may have few fine to coarse nodular and soft carbonate; clear to diffuse to -		
				D's (where present) - either whole coloured or mottled, red-brown to yellow-brown or grey brown to dark (5 YR, 7.5 YR 4/3, 4/4, 5/3, 5/4, 5/6, 3/1, 3/2, 4/1, 4/2); coarse sand to sandy, medium clay or light medium clay to heavy clay; may have few subrounded fine to medium gravels; may have many fine to coarse soft and nodular carbonate		
				<u>Comments</u> : Fine sand or sand is present in the Ap or A1 horizon and is common in the B21 and B22? horizons. The B22? horizon appears to form a transition layer from the B21 to the D horizons. The D horizons are recognised by either substantial decrease in texture, often associated with a change in the size of sand present, or by a change to clay layers with no sand present at all.		
				<u>Phase</u> : A gravelly phase, with very few to many subrounded fine to medium gravels in the A, B1, B2 horizons and with few to very abundant subrounded fine to medium gravels in the D horizons, occurs in the north-east of the study area.		

Table 5 continued

-

Soll type	PPF			Description	Landscape unit	Vegetation
Woodall	Ug 5.16P Ug 5.17P Ug 5.1P	pH 63 87	mm mm ^C 5 AD 10	Black earth: Self-mulching surface and seasonally cracking; gilgai microrelief absent	Very gently to gently undulating levees; slopes to 0.5 to 6%	Completely cleared
		80-85	300. B21	Ap - dark (5 YR, 7.5 YR 2/1, 2/2, 3/1), grey-brown to grey (dry); light medium clay to medium reavy clay; weak to moderate 10 to 20 mm subangular blocky breaking to strong 2 to 5 mm subangular blocky; dry loose; abrupt to clear to -		
		80 87	550 700	B21 - dark (5 YR, 7.5 YR 2/1, 3/1, 3/2), rarely with few fine distinct brown mottles, medium heavy clay to heavy clay; moderate angular blocky; dry very firm to moderately strong; clear to diffuse to -		
		85-87 8587	900 B22	B22 (where present) - dark to grey-brown (5 YR, 7.5 YR 3/1, 4/1), few fine distinct brown mottles; meaium clay to medium heavy clay; moderate lenticular; dry very firm to moderately strong; usually with few to		
		8587	1500	common fine to medium sort and nodular carbonate. D's (where present) - mottled grey-brown with dark or brown (7.5 YR, 5 YR 4/1, 4/2, 3/1, 4/3); sandy clay loam to fine sandy, medium clay; dry moderately firm to moderately strong; very few to common fine to medium soft and nodular carbonate		
				<u>Comments</u> : Some profiles have only incipient seasonal cracking and can be classified Uf 6.32.		

Table 5 continued

Scil type	P PF			Description	Landscape unit	Vegetation
Tognolini	Ug 5.15P Ug 5.16P Ug 5.17P Ug 5.17P	рН 6080	mm mm 50 Ap	Black earth and dark, non-cracking clay. Surface crust, usually mulches when disturbed; often seasonally cracking; gilgai microrelief absent	Intervening alluvial flats and drainage depressions; slopes	Completely cleared
	Uf 6.32P	707 8	250 300 B21 200	Ap - dark (5 YR, 7.5 YR 2/1, 2/2, 3/1, 3/2), grey- brown to grey (dry); light medium clay to heavy clay; weak to moderate 5 to 20 mm subangular blocky breaking to moderate to strong 2 to 5 mm subangular	(Shallow, open drainage depression and backplain)	
		70-8 7	600 B22 650	blocky; dry very firm to moderately strong (crust); clear to gradual to -		
		78-87	900	B21 - dark (5 IR, 7.5 IR 2/1, 2/2, 3/1); medium clay to heavy clay; may have few fine to medium distinct brown mottles; moderate 10 to 20 mm angular blocky becoming lenticular with depth; moderately moist very firm; may have few subrounded fine gravels; clear to diffuse to -		
		85-87	1200 D's 1300	B22 (where present) - mottled dark to grey-brown with brown to red-brown (5 YR, 7.5 YR 2/2, 3/1, 3/2, 4/1,		
85-6	85-87	1500	4/2 and 3/4, 4/3, 4/4), occasionally whole coloured dark; meaium clay to heavy clay; moderate pedality, moderately moist very firm; very few to common fine to coarse soft and nodular carbonate, may have few subrounded fine to medium gravels; clear to diffuse to -			
				D's (where present) - mottled dark to grey-brown with yellow-brown to red-brown (5 YR, 7.5 YR 2/1, 3/1, 4/1 and 4/3, 4/4, 5/4); sandy clay to fine sandy, medium heavy clay; dry very firm to moderately strong; may have common fine to coarse soft and nodular carbonate, may have few subrounded fine gravels		

<u>Comments</u>: Fine sand and sand may occur in the B21, B22 horizons. Rarely, a dark, whole coloured heavy clay D may occur below the mottled B22.

Soil type	P PF			Description	Landscape unit	Vegetation
Melton	Uf 6.32P Uf 6.32	рН 60-80	mm mm	Dark non-cracking clay: Surface crust; may have few medium subrounded gravels on surface	Intervening alluvial flats and drainage	Completely cleared
		67-80	300 B21	Ap or A1 - dark to grey-brown (5 YR, 7.5 YR $2/1$, $2/2$, $3/1$, $4/1$), grey-brown to grey (dry); light medium clay to heavy clay; dry very firm to moderately strong; abrupt to gradual to -	depressions; slopes O to 1% (Alluvial flat)	
		80-90	450 600 750	B21 - dark (5 YR, 7.5 YR, 10 YR 2/1, 2/2, 3/1), may have few fine distinct brown mottles; medium-heavy clay to heavy clay; moderately moist very firm; may have very few subrounded fine gravels; clear to diffuse to -		
		80-90	900 B22 1000	B22 (where present) - mottled dark to grey-brown with brown to red-brown (5 YR, 7,5 YR 3/1, 4/1, 4/2 and		
8 0 9 0 12CC			4/3, 4/4); medium clay to heavy clay; moderately moist very firm to moderately strong; may have very few subrounded fine gravels; very few to common fine nodular and soft carbonate; clear to gradual to -			
-		8590	1500	D1 (where present) - either mottled or whole coloured, red-brown to grey-brown and dark (5 YR, 7.5 YR 4/3, 4/4 and 3/1, 4/1); sandy clay to fine sandy, medium heavy clay; moderately moist very firm to moderately strong, may have few fine to medium subrounded gravels; may have few to common fine to medium soft and nodular carbonate; clear to gradual to -		
				D2 (where present) - dark to grey-brown (5 YR, 7.5 YR 2/1, 4/1, 4/2), may have 50% fine distinct brown mottles; light medium clay to medium heavy clay; moderately moist very firm to moderately strong; may have many fine subrounded gravels, may have few medium to coarse soft and nodular carbonate		
				<u>Comments</u> : Fine sand or sand may be present in the A and B21 horizons where adjacent to levee footslopes with Callide soil.		
				<u>Variant</u> : Occasionally the B22 may be whole-coloured and dark.		

Soil type	PPF				Description	Landscape unit	Vegetation
Channel	Uf 6.32 Uf 6.32P Uf 6.41	ph 6 C - 6.7 6 O - 8 3	mm D 15C A1 or Ap 300 500 600 900 1200 D s	mm 400	 Dark non-cracking clay: Surface crust A1 or Ap - dark (5 YR, 7.5 YR 2/1, 2/2, 3/1), grey- brown (dry), light clay to medium heavy clay; weak to moderate 1C to 20 mm blocky breaking to moderate 2 to 5 mm subangular blocky; dry very firm; gradual to diffuse to - B2 - dark (5 YR, 7.5 YR 2/1, 2/2, 3/1, 3/2), may have 20% fine distinct brown mottles; light medium clay to heavy clay; moderate to weak 10 to 20 mm blocky; moderately moist moderately firm to very firm; may have very few rounded fine gravels; clear to diffuse to - D's - mottled grey-brown to dark with brown to red- brown (5 YR, 7.5 YR 4/1, 4/2, 3/2 and 3/3, 4/3, 4/4); sandy clay loam to sandy, heavy clay; moderately moist moderately firm to moderately strong, may have very few fine soft carbonate 	Intervening alluvial flats and drainage depressions; sideslopes 3 to 6% (Deep, open drainage depression)	Completely cleared
				•	A1/Ap and B2 horizons.		

Woodall is a dark, cracking clay with self-mulching light medium to medium heavy clay surface soil overlying moderately pedal medium clay to heavy clay subsoil with fine sand evident in the surface soil of some profiles.

A Callide gravelly phase occurs in the north east-corner of the station (blocks V to Z). The phase has a few to very abundant subrounded gravels present in some part of all profiles compared with none to few gravels occasionally present in Callide profiles. Spatial distribution is not consistent and the two cannot be mapped separately.

7.3.2 Soils of the intervening level flats and drainage depressions

Level alluvial flats occasionally separate the levees containing **Callide** soil. A dark, non-cracking clay, **Melton**, occurs on these flats. Both **Melton** and **Callide** have neutral to alkaline soil reaction trend and overlie similar buried layers. **Melton** has a heavier texture in the surface soil (light medium to medium heavy clay) and subsoil (medium clay to heavy clay). In contrast with **Callide**, sand is present only in the surface soil of **Melton** where adjacent to levee footslopes.

Shallow open drainage depressions occur within the alluvial flats and between the Woodall levees. These depressions contain Tognolini soil. Tognolini is a dark clay, generally cracking but occasionally non-cracking. Melton and Tognolini have similar textures, neutral to alkaline soil reaction trend and overlie similar buried layers. In contrast with Melton, the Tognolini surface soil is self-mulching and seasonal cracking generally occurs. Woodall and Tognolini have similar morphological properties but have been distinguished due to landform position. Tognolini also occupies the area of backplain.

Three deeper drainage depressions have Channel soil. Channel is a dark, non-cracking clay with neutral to alkaline soil reaction trend. Its features include a surface crust when dry and fine to medium sand often evident through the profile, distinguishing this soil from Melton.

7.3.3 Soils of the gently undulating rises

Very shallow (<0.5 m depth) and stony, unnamed, miscellaneous soils occupy these uplands. They are mainly non-cracking clays with dark surface soil and brown subsoil. Soil reaction trend is acid to neutral.

7.4 Soil correlation with previous data

The soils data available to date were published between 1954 and 1968. Since 1981, extensive land planing and drainage works have been implemented to facilitate flood irrigation. The surface soil has probably been substantially modified during this period and it is unlikely that soil profile descriptions taken during this survey entirely match those taken previously.

The previous surveys were of very low intensity aimed at broad regional assessment whereas this is a very high intensity survey. Nevertheless, some approximate correlations are given in Table 6.

Soil type	Soil family (Sweeney 1968)	Soil gr oup (Isbell 1954)	Soil association - landscape Isbell <i>et al</i> . (1967)
Hodge Callide Woodall	Warrinilla) Warrinilla, Retro) (a)) Rotro?)) Alluwial soils)	
Tognolini Channel	Vermont) (a))	Alluvial solls))	<u>n(</u> ; 4

 Table 6. Approximate correlation of soil types with previously published soils data

(a) There is no equivalent for these soils.

Both Sweeney (1968) and Isbell *et al.*(1967) indicate that the dominant soils on the alluvial plain are dark duplex soils. Sweeney (1968) describes them as having thin surface soils, generally 0.10 to 0.15 m thick. It is possible that the considerable ploughing and land planing has converted these soils into dark, uniform non-cracking clays.

7.5 Mapping units

Mapping units are areas of land with a consistent combination of soil types (after Beckett and Webster 1971). Each mapping unit is named after the dominant soil type present.

Any area that consists of a variety of soils with too few descriptions of each to adequately describe soil types is referred to as miscellaneous soils. This term is used to describe the soils of the gently undulating rises.

The enclosed soils map shows the distribution of the mapping units and Table 7 lists the soils that occur in them.

Mapping unit ^(a)	Associated soil type			
Hodge	Callide			
Callide	Melton, Callide gravelly phase			
Woodall	(b)			
Melton	Tognolini			
Tognolini	Melton			
Channel	(b)			
Miscellaneous soils	(c)			

Table 7. Mapping unit composition

(a) Named after the dominant soil type present except for Miscellaneous
 (b) Soils
 (b) These manufacture units are nelatively pupe that is ano dominated by

- (b) These mapping units are relatively pure, that is, are dominated by only one soil type with very little inclusion of other soils.
 (c) Contains a variaty of unpered sails
- (C) Contains a variety of unnamed soils

8. SOILS - CHEMICAL AND PHYSICAL ATTRIBUTES

8.1 Introduction

Ten soil profiles were sampled for detailed laboratory characterisation. These profiles represent the six soil types and one soil phase identified on the station. Location of the ten sampling sites are shown on the enclosed soils map.

All profiles were sampled with a jarret auger in 100 mm increments to a depth of 1500 mm. A bulk 0-100 mm surface sample (composite of 10 subsamples) was also collected for surface fertility assessment. Details of laboratory analyses performed on all samples are outlined in Table 8. The specific analytical methods together with some general data interpretations are listed in Bruce and Rayment (1982).

A correlation matrix was established to initially scan the data for significant relationships between some measured and derived attributes. Simple linear regression equations were calculated for some of the significant correlations. Analysis of variance was used to test for soil differences in total phosphorus and total potassium at each sampling depth; soil means were compared using the protected LSD test.

Detailed morphological and laboratory data for the 10 soil profiles are given in Appendix II.

Soil analysis(a)	Sample type and depth (
	Bulk			······································	Profile			
	0-100	0–100	200–300	500-600	800 –900	1100-1200	1400-1500	
pH, EC, Chloride ^(b)	x	x	x	x	x	×	x	
Exch. cations, CEC		x	x	x	x	x		
Total P, K, S		x	x	x	x	x		
Organic C, Total N	x							
Acid extractable P	x							
Bicarb, extractable P	x							
Extractable K	x							
DTPA extr. Cu, Zn, Mn,	Fe x							
Particle size analysis		x	x	x	x	x		
Moisture measurements -								
% Air dry		x	x	x	x	x		
-33 kPa content		x	x	x	x	x		
-1500 kPa content		x	x	x	x	x		
Dispersion ratio		x	x	x	x			

Table 8. Laboratory analyses performed on the soil samples

(a) All analyses described in Bruce and Rayment (1982)

(b) These analyses also performed on all intermediate depths to 1500 mm

8.2 pH and salinity

Surface pH (0-100 mm) ranges from 6.9 to 7.6 but pH increases in all profiles becoming moderately to strongly alkaline at depth. This alkaline reaction trend is represented by the regression equation:

 $pH = 7.1 + .001 Depth (n = 150, r^2 = .72, P<.01)$

where pH is measured on a 1:5 suspension and depth is expressed in millimetres. At 900 mm the pH varies from 7.9 to 8.5 and at 1500 mm the range is 8.1 to 8.7.

Northcote and Skene (1972) established salinity classes for Australian soils using percent chloride as the criterion. All soils on the research station are classified non-saline. They have very low to low chloride (<.03%) throughout, except for Woodall where levels increase below 900 mm to a maximum .04 %.

Electrical conductivity (EC) is also used to estimate soil salinity. The EC values are very low to low (<0.45 mS m^{-1}) in all soils.

The linear regression:

$$ECm = 0.04 + 8.05 Cl (n = 150, r^2 = 0.90, P<.01)$$

where ECm is 1:5 electrical conductivity (mS m-1) and Cl is percent chloride, was calculated from the data. This differs from the theoretical relationship:

$$ECc = 6.64$$
 Cl

where ECc is the EC calculated when all anions present are chloride. The difference suggests that, although chlorides probably dominate the soluble salts, other sources of salinity are present. Shaw *et al.* (1987) use ECm, ECm/ECc and pH to set guidelines for determining the relative contribution of various sources to soil salinity. Their criteria indicate that release of cations from exchange sites due to dilution effects may contribute as well as salts other than chlorides.

8.3 Particle size analysis

The mean sand, silt and clay contents of three soil groups are compared in Figure 3. The soils are derived from alluvium and buried layers occur in every profile at varying depths below 500 mm. Nevertheless, the particle size distribution forms a consistent pattern to at least 1200 mm depth in two of the groups.

The soils of the alluvial flats and drainage depressions have uniform clay profiles with clay content gradually decreasing below 900 mm. There is a considerable silt fraction throughout though the maximum content is in the surface 300 mm. Coarse sand represents only 1-12% of the soil material. **Channel** soil has more fine sand and less clay than the other soils in the group. This is probably due to its landscape position in the deeper drainage depressions. The levee soil **Woodall** is a cracking clay with similar particle size distribution to the soils of the alluvial flats and drainage depressions. Coarse sand accounts for only 2-10% of the soil material.

• Soils of the very gently to gently undulating levees -Hodge, Callide and Callide gravelly phase

• Soils of the very gently to gently undulating levees -Woodall

• Soils of the intervening alluvial flats and drainage depressions

Figure 3 Comparative particle size analyses for three soil groups

The third group consists of the levee soils Hodge, Callide gravelly phase and Callide and is quite variable. The Callide profile is similar to the Woodall profiles but with lower clay and silt and higher fine sand fractions. Hodge and Callide gravelly phase have much less clay and silt and considerably more fine sand than all other profiles. Coarse sand has also increased, representing 8 to 28% of the surface soil and subsoil. The relative amounts of clay, fine sand and coarse sand fluctuate in their buried layers below 500 to 800 mm depth.

The differences in grade and amount of sand can be used as an aid to distinguish several soils in the field (see section 7.3). However, the relatively high silt content of some soils was not recognised while texturing field samples and ground and sieved laboratory samples. Several field textures also overestimated the clay content determined by particle size analysis, especially in **Hodge**, **Callide** and **Callide gravelly phase**. These samples generally have higher fine sand and lower silt content than those in close agreement.

8.4 Cation exchange capacity and clay activity ratio

The cation exchange capacity (CEC) of a soil indicates the potential storage of nutrient cations that are available for plant growth.

The CEC of each soil is indicated for two sampling depths in Table 9. Hodge and Callide gravelly phase have the lowest levels; Woodall, Tognolini and Melton have similar high values while Callide and Channel are intermediate.

Sanchez (1976) claims that an effective CEC of at least 4 mequiv. 100 g⁻¹ is necessary to retain most cations against leaching. The analyses for these soils can be considered as effective CEC which is the CEC determined at the field pH of the soil. The lowest value recorded to 900 mm depth was 12 mequiv. 100 g⁻¹ in **Hodge.** All soils should have the ability to retain cations against leaching.

The differences in soil CEC are a reflection of the particle size distributions evident in Figure 3. CEC is significantly (P<.01) correlated with clay content (r = .96, n = 50) and with silt (r = .82, n = 50).

The clay activity ratio is the CEC of one gram of clay (mequiv. g⁻¹ clay) and is often used as an indication of clay mineralogy. Clay activity ratios are given for two sampling depths of each soil in Table 9.

A ratio of 0.8 or higher generally indicates a dominance of smectites, the clays that shrink and swell with changing moisture status. Vermiculite also has a very high ratio but is not known as a major component of any Australian soil group (Norrish and Pickering 1983).

Hodge is the only soil on the station with ratios of 0.8 and above through the profile. The total clay content of the soil is low and shrink-swell phenomena do not occur.

The remaining soils have similar ratios, generally less than 0.75, suggesting a common clay mineralogy, not dominated by smectites. Norrish and Pickering (1983) report that some illitic clays have activity ratios approaching 0.8 and exhibit the shrink-swell phenomena usually associated with smectites. All the soils on the station have a relatively high total potassium content (see section 8.6) suggesting illites may be present.

The high CEC-clay correlation across all soils, mentioned previously, also indicates a common mineralogy.

Soil type	Sample depth	CEC	Cl ay activity ratio
(Profile)	(mm)	(mequiv. 100 g ⁻¹)	(mequiv. g ⁻¹ clay)
Hodge			
(S1)	0-100	20	0.97
	500-600	16	0.91
(S2)	0 100	15	0.80
	500600	15	0.90
Callide gravel	ly phase		
(S5)	0- 80	14	0.75
	500-600	19	0.69
Callide		22	0. (F
(56)	0-100 500-600	22 28	0.60
Woodall			
(S8)	0- 50	27	0.73
	500-600	31	0.64
(89)	0- 50	29	0.80
	500-600	38	0.73
Melton			
(S10)	0–100	29	0.69
	500–600	34	0.65
Tognolini			A (A
(\$4)	0-100 500-600	29 35	0.69
(57)	0-100	29	0.71
	500-600	33	0.64
Channel			
(53)	0-100	24	0.74
	500-600	25	0.73

Table 9. Cation exchange capacity and clay activity ratio at two samplingdepths for all soils

This conclusion cannot be reconciled with field evidence for the medium to heavy clays. All profiles have analogous clay content, CEC and clay activity ratio but only three (Woodall S8, Tognolini S4 and possibly Tognolini S7) are cracking clays. Shallow (50 mm deep) cracks occurred at the Woodall S9 site and a 1 m deep pit adjacent to the Melton profile revealed no shrink-swell characteristics.

8.5 Exchangeable cations and base saturation

Levels of exchangeable calcium, magnesium, sodium and potassium are given at two depths for each soil in Table 10. Base saturation, which is the proportion of CEC occupied by these four cations (and expressed as a percentage) is also listed.

Calcium is the dominant cation throughout all soil profiles.

Consolidated Fertilisers Limited (1984) have set threshold limits for calcium and magnesium deficiency for the major crops grown in central Queensland. These are only guidelines as exchangeable calcium and magnesium levels vary widely between soils making absolute amounts unreliable as indicators of plant availability (Bruce and Rayment 1982). All the soils have levels at both the surface and at depth far in excess of any threshold values.

Exchangeable potassium levels are high to very high in all surface samples decreasing to medium-high at depth. The surface values exceed the threshold limits given for the major crops of central Queensland (Consolidated Fertilisers Limited 1984).

In Australian soils sodium is rarely deficient and often affects plant growth due to its presence in excess amounts. This aspect is discussed in section 8.7.

The exchangeable cations calcium, magnesium, sodium and potassium occupy 85 to 98% of the soil CEC in the surface soil. The soils are all base saturated at depth. Base saturation is significantly (P<.01) correlated with pH (r = .86, n = 50).

8.6 Total potassium and total phosphorus

Total potassium levels reflect the parent material, clay mineralogy and age of soils. McDonald and Baker (1977) found that, on the Emerald alluvium, total potassium decreased with increasing soil age. A similar relationship was reported for alluvial landforms at Mackay (Baker *et al.* 1985).

Profile trends of total potassium are shown for three soil groups at Biloela in Figure 4. Apart from Hodge, the soils appear to have similar clay mineralogy (see section 8.4) and, as they all occur within the same alluvial plain, probably have similar parent material. The levee soil Woodall has significantly less (P<.05) total potassium to a depth of 600 mm than the other two soil groups. This material may be older than the corresponding material in the other soils.

Buried layers are encountered between 500 mm and 1100 mm depth. Total potassium levels are not significantly different (P>.05) below 600 mm indicating these layers may be of a similar age.

Soil type	Sample depth	Exchangea	able cations	(mequiv.	(mequiv. 100 g-1)	
(1101116)		Ca++	Mg++	Na+	<u>K</u> +	
Hodge						
(S1)	0 -100	12	3.9	0.1	1.1	85
	500-600	12	3.8	0.1	0.4	101
(S2)	0 -100	9.7	3.5	0.1	1.0	93
	500-600	12	3.9	0.2	0.2	108
Callida an	avelly phase					
(\$5)	0- 80	8.1	2.4	0.2	1.3	85
	500-600	14	6.8	0.4	0.3	112
Callide						
(S6)	0-100	13	3.8	0.3	1.4	88
	500-600	20	7.0	0.6	0.6	100
Woodall						
(\$8)	0 - 50	19	5.5	0.2	1.5	96
	500-600	22	10	1.3	0.5	108
(89)	0- 50	16	7.2	0.4	2.2	91
	500-600	27	13	1.3	0.4	110
Melton						
(S10)	0-100	19	7. 9	0.4	1.2	97
	500-600	22	10	1.8	0.6	101
Tognol ini						
(S4)	0 -100	19	8.1	0.6	1.1	98
	500-600	22	13	1.1	0.4	104
(57)	0-100	17	5.9	0.3	2.0	85
	500-600	22	8.7	0.7	0.7	96
Channel	0-100	14	5.1	0.2	1.5	90
(S3)	500-600	19	5.9	0.2	0.3	101

Table	10.	Exchangeable	cations	and	ba se	saturation	at	two	sampling	depths
		of each soil								

Figure 4 Mean total potassium profiles for three soil groups showing significant differences at the 5% and 1% levels.

Baker et al. (1985) also demonstrated an inverse relationship between total phosphorus levels and soil age. However total phosphorus is not significantly different between soil groups at any depth in these soils.

8.7 Sodicity and other indexes of soil dispersion

Several indexes have been used in Australia to indicate soil dispersion. Dispersion results in degradation of soil structure and thus decreased permeability as well as increasing susceptibility to water erosion. These indexes have been calculated for the research station soils and are presented for various depths in Table 11.

Northcote and Skene (1972) used exchangeable sodium percentage or ESP (exchangeable Na. 100/CEC) as a criterion for determining sodicity. Soil material with an ESP of 6 or more is considered sodic and likely to have some structural degradation. The **Woodall** S8 profile has sodic buried layers below 650 mm (ESP 6.2 to 6.4). All other soils are classified non-sodic.

Exchangeable magnesium, in association with sodium, has been shown to aid soil dispersion in some soils (Emerson and Bakker 1973). Clay subsoils with degraded structure but low ESP have been recorded in coastal Queensland by Teakle (1950), Thompson *et al.* (1981) and Baker *et al.* (1985). The magnesium saturation (exchangeable Mg. 100/CEC) of these materials ranged from 64 to 83 \sharp . Stace *et al.* (1968 pp185,187) also include two soils from Glenelg (Victoria) with poorly structured subsoils, low ESP and magnesium saturation in excess of 40%. Tognolini S4 is the only profile on the station with a magnesium saturation of 40% or more. This occurs below 800 mm depth.

Emerson and Bakker (1973) also used Mg:Ca ratios to assess the physical performance of some Victorian soils. They suggested that Mg:Ca ratios greater than one associated with relatively low ESP can enhance clay dispersion. All soils on the station have Mg:Ca ratios well below one.

R1 is the ratio of readily dispersible silt + clay to the silt + clay determined by particle size analysis. Baker (1977) used the index to rate soil dispersion in the Burdekin district. A ratio of <0.6 was given a low dispersion rating, 0.6 to 0.8 was considered moderate and >0.8 high. These criteria suggest that the surface sample of the **Callide gravelly phase** is the only highly dispersible material on the station. This is unusual as its ESP, magnesium saturation and Mg:Ca ratio are all quite low. In fact there was negligible correlation between R1 and the other dispersion indexes for all soils.

The ESP, magnesium saturation and Mg:Ca ratio indicate soil dispersion is not a significant factor in any of these soils. This evidence is supported by the very low to low EC values throughout all profiles (section 8.2).

Yet surface crusting is a problem on the furrow irrigated soils (Callide, Melton and Tognolini), especially when cotton is grown. This could be due to management practices, particularly the amount of cultivation, rather than any inherent soil dispersion.

Soil (Profile) ratio	Sample depth (mm)	ESP %	Mg/CEC %	Mg:Ca ratio	R1
Hodge					
(S1)	0 100 500600 800900	0.4 0.8 1.1	19.0 23.1 27.1	0.31 0.31 0.31	0.48 0.59 0.60
(S2)	0-100 200-300 800-900	0.4 0.6	22.7 24.1 27.5	0.36 0.31 0.33	0.73
	000-900	1.0	21.0	0.33	0.10
Callide grave	elly phase 0- 80	1.2	17.1	0.30	0.84
	500-600 800-900	1.8	34-7 34-7	0.48 0.48	0.65
Callide					
(86)	0-100 500-600 800-900	1.3 2.1 2.7	17.6 25.2 28.9	0.29 0.36 0.37	0.70 0.43 0.60
Woodall					
(\$8)	0- 50 500-600 800-900	0.8 4.0 6.4	20.4 32.3 35.5	0.29 0.45 0.45	0.50 0.60 0.60
(89)	0- 50 500-600 800-900	1.2 3.3 4.6	25.0 33.3 34.6	0.43 0.45 0.50	0.61 0.56 0.53
Melton					
(S10)	0-100 500-600	1.5 5.2	27.1 30.3	0.42 0.48	0.60 0.64
Tognolini (S4)	0-100 500-600	2.1 3.0	27.9 36.4	0.43 0.56	0.59
	800-900	5+4	40.0	0.07	0./1
(57)	0-100 500-600 800-900	1.0 2.2 2.6	20.4 26.2 31.8	0.36 0.40 0.38	0.58 0.51 0.49
Channel					
(\$3)	0-100 200-300 800-900	0.7 0.9 0.7	21.7 23.0 24.8	0.36 0.32 0.31	0.62 0.54 0.57

Table 11. Indexes of soil dispersion for selected sampling depths in each soil

8.8 Available water capacity and predicted leaching fraction

Three methods were used to estimate the available soil water capacity (ASWC) of each soil. An ASWC was calculated from the -33 kPa and -1500 kPa water contents. The plant available water capacity (PAWC) was also determined using regression equations of Shaw and Yule (1978) based on either -1500 kPa (PAWCb) or the soil CEC (PAWCc). All three figures were converted to volumetric water using a bulk density calculated from the maximum gravimetric water content, assuming a 3% air content at that point. They were then summed to a depth of one metre. Any peaks in chloride concentrations occur below this depth suggesting water moves through all soils to at least one metre. Results are given in Table 12.

Soil	Estimato	ed availab	Predicted leaching	
	caj	pacity (mm	fraction	
	ASWC	PAWCb	PAWCe	
Hodge	215-245	120-125	105-110	(a)
Callide gravelly phase(b)	220	130	115	0.34
Callide	270	135	120	0.19
Woodall	285	135-140	130-140	0.08-0.11
Melton	(c)	140	130	0.11
Tognolini	275-285	135-140	128-135	0.15-0.21
Channel	265	140	135	1.27

Table 12. Estimated available water capacity (mm) to one metre depth andpredicted leaching fraction of all soils

(a) Leaching fraction cannot be predicted for this soil

(b) Estimated available water capacity reduced in proportion to gravel content

(c) No data available

The AWSC figures are approximately double both PAWCb and PAWCc values. The ASWC calculation relies on -33 kPa being an accurate estimate of the soil upper storage limit but the estimate has been found unreliable on ground and sieved samples (Thorburn and Gardner, in press). The ASWC figures probably overestimate the actual available water capacity of the soils.

The PAWCb and PAWCc estimates are similar and are comparable to values reported by Williams (1983) for equivalent field textures in a range of Australian soils. The coarser textured soils, Hodge and Callide gravelly phase, have lower available water capacity than the finer textured soils. Callide appears to be intermediate between these two groups. The gravel content of Callide gravelly phase can range between 10 and 50% and its PAWC can vary accordingly.

Deep drainage is an important characteristic of irrigated soil as it is a major factor determining whether soluble salts will accumulate in the root zone. One method of assessing deep drainage of a soil is to estimate its leaching fraction, which can be expressed as the ratio of the salinity of output water (or soil salinity at depth) to the salinity of input water. A model described by Shaw *et al.* (1987) was used to predict a leaching fraction for soils on the station. The ratios are given in Table 12. There are no algorithms available in the model to predict a leaching fraction for soils such as **Hodge**. The model overestimates the value for **Channel** as the ratio should not exceed unity but, nevertheless, indicates this soil has a high leaching fraction. **Callide gravelly phase** has the second highest ratio, **Woodall** and **Melton** have the lowest ratios while **Callide** and **Tognolini** are intermediate.

Hansen and Thorburn (1987) have related the leaching fraction to the relative concentration of soil salinity compared with the salinity of input water. Soils with a ratio below approximately 0.2 have a propensity to accumulate soluble salts. Melton and Woodall fall within this category and Callide and Tognolini are marginal.

8.9 Plant nutrients in surface soil

The general fertility ratings of Bruce and Rayment (1982) are given for the soil bulk surface samples in Table 13. Urea was the only fertiliser used on the station prior to sampling except for scattered applications of zinc. The **Tognolini** S4 profile received a dressing of 10 kg Zn ha⁻¹ six months before sampling.

Bicarbonate extractable phosphorus levels are high to very high on all soils regardless of cropping history. The coarser textured soils Hodge and Callide gravelly phase vary from 53 to 80 mg kg-1 P while the others range from 120 to 190 mg kg-1 P. Acid extractable phosphorus levels are all very high (180 to 470 mg kg-1 P).

The extractable potassium levels are a reflection of the high to very high exchangeable levels listed in Table 10.

Zinc levels are rated as medium for all soils except **Melton** which is very high. There are no records of zinc being applied to this site. Further sampling of this soil is warranted. The application of zinc at S4 profile prior to sampling has not resulted in a high value.

Consolidated Fertilisers Limited (1984) have set threshold values as guidelines for assessing zinc deficiency in both acid and alkaline soils for the major crops grown in central Queensland. Three of the ten profiles (S2, S5 and S8) approximate these limits.

Copper levels are medium in all soils; manganese levels are medium to high. A deficiency of either element is unlikely.

The organic carbon levels are mainly low to medium. **Channel** is the only soil with a high value. The range in values is similar for both cropped and pasture sites. Total nitrogen levels are low to very low. Application of urea does not appear to be increasing the soil nitrogen reserves.

Soil type	Extract	able phosphorus	· · · · · · · · · · · · · · · · · · ·	Extractable				Total nitrogen
	Acid	Bicarbonate	Potassium	Copper	Zine	Manganese		-
Hodge	very hig	h high	very high	medium	medium	medium	low	low
Callide gravelly phase	very hig	h high	very high	medium	medium	medium	low	low
Callide	very hig	h very high	very high	medium	medium	medium	low	low
Woodall	very hig	h very high	very high	medium	medium	medium -high	medi um	low
Melton	very hig	h very high	very high	medium	very high	medium	medium	low
Tognol ini	very hig	h very high	high- very high	medium	medium	high	low- medium	low- very low
Channel	very hig	h very high	very high	medium	medium	high	high	low

Table 13.	Plant	nutrient	ratings	(Bruce	and	Rayment	1982)	for	the	bulk	surface	samples	

9. IMPLICATIONS FOR FIELD TRIALS

9.1 Soil type homogeneity

The surface fertility of all soils is similar (Table 11). Soil CEC values are all above the minimum considered necessary to retain nutrients against leaching. The levels of exchangeable calcium, magnesium and potassium are also adequate in every soil. All soils can be considered homogeneous with respect to nutrient fertility.

The soil physical characteristics are more variable. Particle size analysis reveals two distinct groups. Subsoil structure varies from massive (in Hodge) to weak prismatic (Callide) and moderate lenticular in Woodall. Field evidence suggests the finer textured soils can be split into self-mulching, cracking clays (Woodall and Tognolini) and noncracking clays with a surface crust (Channel and Melton).

These differences are reflected to some extent in the PAWC estimates. Three soil groups can be delineated on the basis of their relative soil PAWC:

- . Low Hodge, Callide gravelly phase
- . Intermediate Callide
- . High Woodall, Channel, Tognolini, Melton

The PAWC of Callide gravelly phase can vary widely depending upon gravel content.

Three different soil groups are obtained when considering deep drainage characteristics. The predicted leaching fractions of **Melton** and **Woodall** indicate these soils have potential to concentrate soluble salts from irrigation water. **Callide** and **Tognolini** have marginally higher leaching fractions and may have some potential as well. **Channel, Callide** gravelly phase (and probably Hodge) have much higher values suggesting their potential is minimal.

9.2 Conclusions

As the soils have similar nutrient status, PAWC will be the major soil factor influencing yield variability under rainfed conditions. With irrigation, the principal effect of soil PAWC will probably be to determine frequency of watering rather than total volume applied or plant yields.

Further research is warranted to estimate more accurately soil PAWC and to check whether the differences are of practical or economic significance.

During the interim it is advisable to design rainfed trials so that each replicate is wholly within the three PAWC groups identified. Moreover, it is recommended that **Callide gravelly phase** not be used at all as its PAWC will vary widely with gravel content. The shallow drainage depressions contain **Tognolini** soil and are runon areas which may receive more water than other areas during high rainfall. It would be unwise to include these depressions in any trial area.

Channel occurs in deep drainage depressions which are probably former overflow or main channels of Callide Creek. Such run-on areas do not represent a significant portion of central Queensland and this soil could be excluded from crop trials.

Tognolini also occurs in a level back-plain through blocks P1 to P4 and Q1 to Q4. This run-on area is large enough to accommodate a full replicate for most trials.

The accompanying soils map can be used to locate trials. However it must be remembered that apart from **Woodall** and **Channel**, the mapping units are not pure; that is, they contain more than one soil. The soils that may occur in each mapping unit are listed in Table 7. The greatest soil complexity is in the units containing **Callide gravelly phase** which could not be mapped separately. This problem can be avoided by not designing trials in blocks V2, W1, W2, W3, Y and Z.

With long-term irrigation it is probable that Woodall and Melton will accumulate soluble salts from the input water. It is also possible that Callide and Tognolini will accumulate salts. Further investigation of this potential hazard is recommended.

10. ACKNOWLEDGEMENTS

I wish to thank Mr Peter Thorburn for his willing advice in interpreting the soil salinity, available water and leaching fraction data and Mr Gary Blight for advising on statistical analyses of the laboratory data.

I am also indebted to Mr Alan McTaggart for providing background information and to the station farmhands for their assistance during field work.

Mr Dennis Baker supervised the laboratory analyses and assisted with interpretation of results.

Mr Brian Slater and Mr Ed Turner provided valuable comments and advice on the report.

Officers of drafting section of Land Resources Branch prepared the map, figures and diagrams included in this report.

11. REFERENCES

- Baker, D.E. (1977), Chemical and physical properties of the soils, in Soils of the lower Burdekin River-Elliot River area, north Queensland, Queensland Department of Primary Industries, Agricultural Chemistry Branch, Technical Report 10, Queensland Department of Primary Industries.
- Baker, D.E., Holz, G.K. and Shields, P.G. (1985), Chemical and physical characteristics of soils, in Mackay Sugar Cane Land Suitability Study, Part 1. Land Resource Inventory, Queensland Department of Primary Industries Land Resource Bulletin QV85001, Queensland Department of Primary Industries.
- Beckett, P.H.T. and Webster, R. (1971), Soil variability: A review, Journal of Soil Science 22, 44674-80.
- Bruce, R.C. and Rayment, G.E. (1982), Analytical methods and interpretations used by the Agricultural Chemistry Branch for soil and land use surveys, Queensland Department of Primary Industries Bulletin QB82004, Queensland Department of Primary Industries.
- Consolidated Fertilisers Limited (1984), Volume II, Analytical services soil interpretation manual, Consolidated Fertilisers Limited.
- Dear, J.F., McKellar, R.G. and Tucker, R.M. (1971), Geology of the Monto 1:250 000 Sheet area, Queensland Department of Mines Report 46, Queensland Department of Mines.
- Emerson, W.W. and Bakker, A.C. (1973), The comparative effects of exchangeable calcium, magnesium and sodium on some physical properties of red-brown earth subsoils. II The spontaneous dispersion of aggregates in water, *Australian Journal of Soil Research* 11, 151-57.
- Gill, J.Y. (1984), Determining the quality of water for irrigation in Queensland, Queensland Department of Primary Industries refnote R1/ Jan 84, Queensland Department of Primary Industries.
- Hansen, P.B. and Thorburn, P.J. (1987), WATCROP: A program to calculate the relative yield of crops from irrigation and soil salinity data, in Landscape, soil and water salinity. Proceedings of Brisbane regional salinity workshop, Brisbane, May 1987, Queensland Department of Primary Industries Conference and Workshop Series QC87003, Queensland Department of Primary Industries.
- Isbell, R.F. (1954), An investigation of the Callide, Don and Dee Valleys, Queensland Bureau of Investigation Technical Bulletin 3, Queensland Bureau of Investigation.
- Isbell, R.F., Thompson, C.H., Hubble, G.D., Beckmann, G.G. and Paton, T.R. (1967), Atlas of Australian soils. Sheet 4, Brisbane-Charleville-Rockhampton-Clermont area, With explanatory data, CSIRO and Melbourne University Press.
- McDonald, R.C. (1975), Soil survey in land evaluation, Queensland Department of Primary Industries, Agricultural Chemistry Branch Technical Report 6, Queensland Department of Primary Industries.

- McDonald, R.C. and Baker, D.E. (1986), Soils of the left bank of the Nogoa River, Emerald irrigation area, Queensland, Queensland Department of Primary Industries, Agricultural Chemistry Branch Technical Report 15, Queensland Department of Primary Industries.
- McDonald, R.C., Isbell, R.F., Speight, J.G., Walker, J. and Hopkins, M.S. (1984), Australian soil and land survey field handbook, Inkata Press.
- McTaggart, A. (1987), Biloela Research Station, Queensland Agricultural Journal 113, 77-81.
- Norrish, K. and Pickering, J.G. (1983), Clay minerals, in *Soils: An* Australian viewpoint, Division of Soils, CSIRO, CSIRO/Academic Press, 281-308.
- Northcote, K.H. (1979), A factual key for the recognition of Australian soils, 4th edition, Rellim Technical Publications.
- Northcote, K.H. and Skene, J.K.M. (1972), Australian soils with saline and sodic properties, CSIRO Soil Publication 27, CSIRO.
- Northcote, K.H., Hubble, G.D., Isbell, R.F., Thompson, C.H. and Bettenay, E. (1975), A description of Australian soils, CSIRO.
- Oyama, M. and Takehara, H. (1967), Revised standard soil colour charts, Fujihira Industry Co Ltd.
- Rosenthal, K.M. and White, B.J. (1980), *Distribution of a rainfall erosion index in Queensland*, Queensland Department of Primary Industries, Division of Land Utilisation Report 80/8, Queensland Department of Primary Industries.
- Sanchez, P.A. (1976), Properties and management of soils in the tropics, John Wiley and Sons.
- Shaw, R.J. and Yule, D.F. (1978), The assessment of soils for irrigation, Emerald, Queensland, Queensland Department of Primary Industries, Agricultural Chemistry Branch Technical Report 13, Queensland Department of Primary Industries.
- Shaw, R.J., Hughes, K.K., Thorburn, P.J. and Dowling, A.J. (1987), Principles of landscape, soil and water salinity-processes and management options, Part A, in Landscape, soil and water salinity. Proceedings of the Bundaberg regional salinity workshops, Bundaberg, April 1987, Queensland Department of Primary Industries Conference and Workshop Series QC87001, Queensland Department of Primary Industries.
- Skerman, P.J. (1958), Heatwaves and their significance in Queensland's primary industries, in Proceedings of Canberra Symposium, Climatology and Microclimatology, UNESCO, 195-197.
- Speck, N.H. (1968), Vegetation of the Dawson-Fitzroy area, in Lands of the Dawson-Fitzroy area, Queensland, CSIRO Land Research Series 21, CSIRO.

- Stace, H.C.T., Hubble, G.D., Brewer, T., Northcote, K.H., Sleeman, J.R. Mulcahy, M.J. and Hallsworth, E.G. (1968), A handbook of Australian soils, Rellim Technical Publications.
- Sweeney, F.C. (1968), Soils of the Dawson-Fitzroy area, in Lands of the Dawson-Fitzroy area, Queensland, CSIRO Land Research Series 21, CSIRO.
- Teakle, L.J.H. (1950), Notes on the soils of coastal Queensland and portions of the hinterland with special reference to the tropical latitudes, University of Queensland Papers, Faculty of Agriculture 1(1), 1-40.
- Thompson, W.P., Baker, D.E. and Cannon, M.G. (1981), Soils of the Proserpine lowland, north Queensland, Queensland Department of Primary Industries, Agricultural Chemistry Branch Technical Report 18, Queensland Department of Primary Industries.
- Thorburn, P.J. and Gardner, E.A. (in press), Plant available water capacity of irrigated soils, in *Proceedings of irrigation-management* workshop, QAC Lawes, 24-27 June 1986, Queensland Department of Primary Industries Conference and Workshop Series, Queensland Department of Primary Industries.
- Williams, J. (1983), Physical properties and water relations: soil hydrology, in Soils: An Australian viewpoint, Division of Soils, CSIRO, CSIRO/Academic Press.

APPENDIX I

Conventions used in describing and classifying the soil types

PPF (Principal Profile Form)

As in Northcote (1979).

рĦ

Based on field determinations in A1 or Ap horizon and at 300, 600, 900, 1200 and 1500 mm.

Description

The terminology of McDonald *et al.* (1984) is used to describe the most common range of profile features encountered in the soil type, except for colour. The summary description, for example <u>Black earth and dark non-</u> <u>cracking clay</u>, is from either Stace *et al.* (1968) if the soil fits a great soil group, otherwise from Northcote *et al.* (1975).

Colours

Colour codes are those of Oyama and Takehara (1967) for moist soil while colour nomenclature is that of McDonald (personal communication), which is based on the Value/Chroma rating system of Northcote (1979) and utilises the following table:

Value/Chroma 2a = 4/1 - 4/2 to 6/1 - 6/2Value/Chroma 2b = 5/3 - 5/4 to 6/3 - 6/4

Value/ Chroma	1	2a	2b	4	5
Hue					
5 Y	dark	grey	yellow-grey	yellow	olive
2.5 Y	dark	grey	yellow-grey	yellow	olive-
brown					
10 YR	da rk	grey	yellow-brown	yellow	brown
7.5 YR	dark	grey-brown	brown	yellow	brown
5 YR	dark	grey-brown	brown	red-brown	red-brown
2.5 YR	dark	grey-brown	red-brown	red	red
10 R	dark	red-grey	red-brown	red	red

APPENDIX II. Morphological and analytical data for sampled soil profiles

.

-

-SOIL TYPE: Hodge SUBSTRATE MATERIAL. Unconsolidated substrate materials SITE NO· S1 CONFIDENCE SUBSTRATE IS PARENT MATERIAL Almost certain or certain A.M G REFERENCE - 247 940 mE 7 302 400 mN ZONE 56 SLOPE 1 % GREAT SOIL GROUP. No suitable group LANDFORM ELEMENT TYPE Levee PRINCIPAL PROFILE FORM. Gn2 83P LANDFORM PATTERN TYPE Level plain SOIL TAXONOMY UNIT Typic Torrifluvent FAO UNESCO UNIT Eutric Fluvisol VEGETATION STRUCTURAL FORM TYPE OF MICRORELIEF No microrelief DOMINANT SPECIES SURFACE COARSE FRAGMENTS Very few cobbles, subangular unspecified coarse fragments ANNUAL RAINFALL: 699 mm PROFILE MORPHOLOGY CONDITION OF SURFACE SOIL WHEN DRY Recently cultivated, hard setting HORIZON DEPTH DESCRIPTION ____ Ap 0 to 20 m Brownish black (7 5YR3/2) moist, greyish yellow-brown (10YR4/2) dry, no mottles, humic clay loam, sandy, no coarse fragments, massive, dry moderately firm, no segregations Clear to-Brownish black (7 5YR3/2) moist, few fine distinct brown mottles, sandy clay, no coarse fragments, **B**1 20 to 40 m massive, dry moderately firm, no segregations Gradual to-Greyish brown (7 5YR4/2) moist; few medium distinct brown mottles, sandy clay, no coarse fragments, B21 40 to 80 m massive, dry moderately firm, no segregations. Abrupt to-Greyish brown (7 5YR4/2) moist, brown (7.5YR4/6) moist; no mottles, sandy medium clay, moderate pedality, dry very firm; very few fine carbonate soft segregations Gradual to-D12 80 to 1 20 m 1 20 to 1 50 m Dark brown (7.5YR3/4) moist, dull reddish brown (5YR5/4) moist, no mottles, fine sandy medium clay, D2 no coarse fragments, moderate pedality, dry very firm, no segregations -----f Depth '1:5 Soil/Water 'Particle Size' Exch Cations 'Total Elements Moistures 'Disp Ration 'pH EC Cl 'CS FS S C 'CEC Ca Mg Na K ' P K S 'ADM 1/3b 15b ' R1 R2 1 metres 'mS/cm % ' % ' meq/100g ' % ' % ' % ' 1 '@105C' @ 105C ' @ 105C ' @ 80C ' @ 105C ' '

-																														
'B	ulk .10	Т	6	9	.05	. (001	I.					1							(I I				I.	
	10	1	6	9	.05	(001		13	54	14	21		20	12	3	9	80	11	1 0	80	1.6	51	0.03	י 1.	6	28	10	I.	48
	20	I.	7	0	.04	I	001	r.												•					۱. I				4	
	30	I.	7	2	.03	(001		26	52	6	15		14	11	3	2	07	62	· 0	07	1.0	50	0 01	ו י	4	17	7	•	39
	40	I.	7	4	.04	1	001	r												•					r -					
	50	I.	7	5	.04	- (901	r.					•							۱					1					
	60	1	7	8	.04	- 6	901	r	12	63	- 7	18		16	12	3	8	13	40	· 0	06	1.	53	0 01	1	8	20	8	Į	59
	70	4	7	9	.03	- 0	001	r					ţ,							t I					1				t	
	80	1	8	1	.07	- 0	902	r					1							r					r i				r	
	90	1	B	5	.09	- 0	301	r	20	53	8	21	1	14	12	3	9	16	.44	' 0	05	1 !	51	0 01	1	5	20	8	r	60
	1 00	1	в	5	.08	(301						1							r					1				r	
	1 10	1	В	5	.06	÷.(201	r		_										r					1				r	
	1 20	1	8	5	.06	9	301	1	12	56	10	21		16	13	4	6	23	.43	1 0	05	1 4	19	0 01	+ 2.	.1	23	9	1	
	1 30	1	8	5	.06	- 0	201						ŗ							ŗ					4					
	1 40	1	8	2	.07	• •	001						1							1					1				1	
	1 50	•	8	5	09	, t	JU1	1					r							1					•				f	

metres	i@	(W&H % 10	50'@	% 1050	1	Acid E ppm @ 105	Bicarb 1 iC	' K 'meq '∂105	। हुन टुन	Fe	Mn PI @ 1	Cu 2m .050	:	Zn	
Bulk 10		1	1 '	05	1	271	65	1.5	1	36	34	1 6	1	4	

 SOIL TYPE Hodge
 SUBSTRATE MATERIAL Unconsolidated substrate materials

 SITE NO S2
 CONFIDENCE SUBSTRATE IS PARENT MATERIAL Almost certain or certain

 A M G REFERENCE 248 640 mE 7 302 860 mN ZONE 56
 SLOPE 1 %

GREAT SOIL GROUP Prairie soil PRINCIPAL PROFILE FORM Gn3 42 SOIL TAXONOMY UNIT Ustollic Haplargid FAO UNESCO UNIT Luvic Xerosol

TYPE OF MICRORELIEF No microrelief SURFACE COARSE FRAGMENTS: Very few coarse pebbles, subangular unspecified coarse fragments

PROFILE MORPHOLOGY

CONDITION OF SURFACE SOIL WHEN DRY Hard setting

HORIZON	DEPTH	DESCRIPTION
A1	0 to .15 m	Dark reddish brown (5YR3/2) moist, greyish brown (5YR5/2) dry, no mottles, clay loam,sandy, very few coarse pebbles, subangular unspecified coarse fragments, weak 2-5mm subangular blocky, dry moderately firm, no segregations. Gradual to-
B21	15 to .50 m	Brownish black (5YR2/2) moist, very few fine distinct brown mottles, sandy clay, no coarse fragments, moderate 2-5mm angular blocky, dry moderately firm, no segregations. Gradual to-
D 1	50 to 80 m	Dark reddish brown (5YR3/2) moist, common fine distinct brown mottles, clay loam,sandy, no coarse fragments, dry moderately firm, no segregations Gradual to-
D2	80 to 1 50 m	Dull reddish brown (5YR4/3) moist, few fine distinct yellow mottles, sandy clay loam, no coarse fragments, dry moderately weak, no segregations

LANDFORM ELEMENT TYPE Levee LANDFORM PATTERN TYPE Level plain

ANNUAL RAINFALL 699 mm

VEGETATION STRUCTURAL FORM Tall open tussock grassland DOMINANT SPECIES

'n

Depth metres		1 pl	5 H	Soil/W EC mS/cm	ater C1 % @105	1 1 1 C 1	Part CS	FS	le 5 %	Size' C'	CEC	Exch Ca	leg Id	Cat Mg /1(10 n s Na 10g	ĸ	1	То	tal P	L E.	 lem K BOC	ents S	1 1 1	Mo ADM	1 1/3 1 1/3	ure 3b %	s 15b	'Disp ' R1 '	Ratio R2
I					GT 0 0	<u> </u>		e .		~			<u>e</u>							<u>e</u>					e.				
'Bulk 10	r	7 (2	03	001					r							Į						I.					4	
10	r	7 1	ō	03	001		20	51	11	19 1	15	97	3	5	.06	1.0	r	0	07	1 (60	0 02	1	1 6	2	2	9	1.73	
20	1	7 :	1	02	001	4				r													1					•	
1 30	Т	7	4	02	001		12	56	9	23 1	17	13	4	. 2	.11	.35	1	0	06	1.5	50	0 02	1	2.4	2	9	10	.63	
.40	1	7 '	7	.02	001												1						٩.					•	1
.50	1	7 1	8	.02	001					1							r						٠					•	r
· 60	Т	8 1	9	02	001		28	46	10	20 1	15	12	3	. 9	17	20	1	0 (06	1 4	15	0 01	ł.	1.6	20	0	8	.73	1
1 70	1	8 1	Э	.02	001	1				1							1												1
1 80	1	7 !	9	02	001	r				1							1						1					•	1
r 90	1	8 1	C	02	.001	1	36	43	5	15 1	12	10	3	4	15	21	1	0 0	05	1 4	15	0 01	4	1 6	- 10	6	6	1 78	1
1 00	1	8 1)	02	.001	t I				4													1					t i i	1
1 10	١	8 3	1	02	.001	1				•							٩.						1					5	
1 20	1	8	D	02	.001	r	44	38	4	13 1	9	7.9	2	в	.13	19		0.1	05	1 (15	0.01	r	2 3	14	4	7	r	
1 30	1	8	0	03	.001	1																	T.					1	
140	1	8	1	03	.001	r											- E						ł					r	
1 50	I.	8 3	2	04	002	I.											1						4					1	
[~			•
Depth		Org	C	'Tot	N	Ex	tr	Pho	psbl	horus	R	ep.		_D1	°PA−€	extr	•	_											
	1	(WI	ŝВ	1.		A	ciq		B10	carb		К !		Гe	Mn	Cu	2	2n											
metres	2	a 1	5	ai 0. 10	5 (PI	m		្រុត	eq*'			pp	m													
	י 	<u>e 1</u>	, D'	C.66 TC	1901		3	ΞŢ	190		-l@T	USCI			वा	.05C													
Bulk 10	ī	1	1	1 (15 r		177			53	1 1	A 1		28	33	1 5	n	ф	r r										
1											· +																		

Δ.

SOIL TYP SITE NO	E Channel S3 PETERENCE 248 600 mE	7 302 550 mm 70117 56	SUBSTRATE MATERIAL Unconsolidated substrate materials CONFIDENCE SUBSTRATE IS PARENT MATERIAL. Almost certain or certain
GREAT SC PRINCIPA SOIL TAX FAO UNES TYPE OF SURFACE PROFILE	DIL GROUP NO SUITABL L PROFILE FORM UF6 3 CONOMY UNIT USTOLLIC CO UNIT Haplic Xeros MICRORELIEF. No micro COARSE FRAGMENTS. No MORPHOLOGY.	e group 32 Camborthid sol prelief coarse fragments	SLOPE. 0 % LANDFORM ELEMENT TYPE Drainage depression LANDFORM PATTERN TYPE Level plain VEGETATION STRUCTURAL FORM Tussock grassland DOMINANT SPECIES ANNUAL RAINFALL 699 mm
CONDITIC	N OF SURFACE SOIL WHE	EN DRY Surface crust	
HORIZON	DEPTH		DESCRIPTION
A1	0 to 15 m	Brownish black (5YR2/1) mc moderate 5-10mm subangular	oist, no mottles, fine sandy light medium clay, no coarse fragments, r blocky, dry very firm, no segregations clear to-
B21	15 to 50 m	Brownish black (5YR3/1) mc moist very firm, no segreg	oist, no mottles, fine sandy medium clay, no coarse fragments, moderately gations. Clear to-
D12	50 to 1 00 m	Dark reddish brown (5YR3/3 no coarse fragments, dry v	3) moist, common fine distinct dark mottles, fine sandy light medium clay, very firm, no segregations slightly calcareous Gradual to-
D 2	1 00 to 1 20 m	Brown (7.5YR4/4) moist, bi fragments, dry moderately	rownish black (5YR3/1) moist, no mottles, fine sandy clay, no coarse firm, no segregations slightly calcareous Gradual to-

D3 1 20 to 1.50 m Dull reddish brown (5YR4/3) moist, brownish black (5YR3/1) moist, no mottles, fine sandy light medium clay, no coarse fragments, dry very firm, no segregations slightly calcareous

Dept h metres	1 1 1	15 рН	Soil, EC mS/ci	/Water Cl m % @105		Par CS	FS ()	le %	Size C C	CEC	Exch Ca me	Ca Mg eg/1 d 10	tions Na 00g 5C	ĸ	י דע י י	P P	El. K 8 (d. 80	ements S IC		Mo: ADM	1/3b 1/3b @ 10	es 15b 5C	'D1sp ' R1 '	Ratio R2
Bulk .10	T	69	.07	001	1				1						1				1				r	
.10	T.	7 1	.05	001	Т	4	48	20	32 1	24	14	5.1	.16	15	1 0	07	1 55	5 0 03	I.	27	31	13	1 62	
20	1	70	04	001	1				1						1				1				1	
30	1	71	03	U01	I	- 3	43	24	36 י	28	20	64	26	49	• 0	06	1 38	3 0 02	1	29	33	15	1.54	
40		73	03	001	1										•				1				•	
50	1	7.4	03	001					'						· .				•					
60		76	03	001		1	48	22	34 '	25	19	59	24	.33	0	06	1 34	0.02	1	30	33	18	.51	
70	4	77	03	001															1					
80		7.8	03	001	1															~ ~				
90	1	79	03	001	1	1	46	22	34 1	24	19	5.9	.17	.40	1 0	06	1.40	0.02	5	3.3	31	13	57	
1 00	1	80	03	001											t .									
1 10	1	7.9	03	.001															ŗ					
1 20	1	8.0	03	001		4	55	17	26	22	17	5.4	.16	34	. 0.	.06	1 35	0 02		2.5	30	11	r •	
1 30	2	8.1	05	001																				
1 40	2	8.2	05	001											1									
1 20		83	0.6	001											•				1				ļ.	
Depth metres	י (י י	Org. (W& % @ 10	С тто В); 5Ст@ :	EN % 105C1	Ext	tr Cid	Pho Pho 2 10	ospl Bie om 05C	horus carb	Re H me @10	2p / (/ 2q% /)5C /	D' Fe	IPA-e Mn PF @ 1	xtr Cu m 05C	Zn	, , , ,					h Ang Ang			
Bulk 10	r	2	6 1	06 1		344			125	' 2	6	55	60	29	28	1								

1------

.

~

41

SOIL TYPE Tognolini SITE NO· S4 A M G REFERENCE 248 280 mE 7 302 040 mN ZONE 56 SUBSTRATE MATERIAL Unconsolidated substrate materials CONFIDENCE SUBSTRATE IS PARENT MATERIAL: Almost certain or certain

SLOPE 0 8 LANDFORM ELEMENT TYPE Back-plain LANDFORM PATTERN TYPE Level plain

GREAT SOIL GROUP Black earth PRINCIPAL PROFILE FORM UG5 1P SOIL TAXONOMY UNIT Mollic Torrert FAO UNESCO UNIT Chromic Vertisol

TYPE OF MICRORELIEF No microrelief SURFACE COARSE FRAGMENTS. No coarse fragments VEGETATION STRUCTURAL FORM DOMINANT SPECIES

ANNUAL RAINFALL 699 mm

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY Recently cultivated

HORIZON	DEPTH	DESCRIPTION
Ар	0 to 10 m	Brownish black (5YR3/1) moist, greyish brown (5YR5/2) dry, no mottles, medium heavy clay, no coarse fragments, dry moderately strong, no segregations. Clear to-
B21	.10 to 45 m	Brownish black (5YR2/2) moist, no mottles, heavy clay, no coarse fragments, moderately moist very firm, no segregations. Gradual to-
B22	.45 to 1 10 m	Dark reddish brown (5YR3/2) moist, few fine faint brown mottles, heavy clay, no coarse fragments, moderately moist very firm, very few medium carbonate nodules, very few fine carbonate soft segregations. Diffuse to-
D	1.10 to 1 50 m	Brown (7.5YR4/4) moist, common fine distinct grey mottles, fine sandy medium heavy clay, no coarse

Brown (7.5YR4/4) moist, common fine distinct grey mottles, fine sandy medium heavy clay, no coarse fragments, moderately moist very firm, few coarse carbonate nodules

Depth metres	1 1 1	15 рн	Soil/ EC mS/cm	Water Cl 1 % @105	1 1 1 1	Par CS	tıc FS ्रे	le \$ 105	Size' C' C'	CEC	Exch Ca me	Ca Mg eg/1 10	tion: Na 00g 5C	з К	• To •	pta: P	1 Elen K @ 800	nents S	' M ' AD	юі М	sture 1/3b @ 105	s 15b C	'Disp 'R1 '	Ratio R2
Bulk 10	1	7475	.07	002 002	l t	3	30	35	42	29	19	8.0	61	1.1	. 0.	. 06	1.36	0 02	; ; 3.	2	39	17	r 1 59	
* 20 * 30 • 40	1	7576	08 .08 07	002 002 003	1 1 1	3	30	28	45 1	33	22	9.7	.79	77	• 0.	. 06	1.38	0 02	1 13.	6	38	20	r r 67 r	
50 60	1	79	07	003	ŗ	1	28	25	49	35	22	13	1.0	43	0	. 04	1.24	0 01	4.	9	41	20	r 72	
, 70 , 80 , 90	i i	83 85	.10 .13	004 004 004	ļ	1	33	22	48 ·	33	21	14	1.1	39	. 0.	. 05	1 32	0 01	; ; ; 3	9	40	20	71	1
1.00 1.10 1.20	1	86 87 87	17 19 .18	005 005 004	1	1	36	26	41	28	18	12	1.2	33	; • 0.	.05	1.44	0 01	1 1 13.	9	36	17	r r r	1
1.30 1.40	1	87	19 20	004	;				1						-								r r	
I Depth I Depth I metres	 	o / Org (W& % @ 10	C 'Tot B)' 5C'@ 1	8 1 .05C	Ext	cr. 21d	Ph 9 10	ospi Bi om 05C	horus carb	Re K me @10	200 (2018 150	D' Fe	PPA-e Ma PI	extr. Cu m 105C	Zn	 			·	/				!
Bulk 10	r	1.	2 '	04 '	1	237			129	· 1.	0 1	39	32	35	2 5	- I 1 - 1								

GREAT SC PRINCIPA SOIL TAX FAO UNES	DIL GRO AL PROF (ONOMY SCO UNI	JP Pr ILE FO UNIT T Luv	airie s RM Uf6 Typic H ic Xero	oll 32P aplarg sol	ıđ				L L V	ANDFC ANDFC EGETA	RM E RM P	LEME	ENT ERN	TYPE TYPE	· Leve Leve	e el pla	1 n					
TYPE ∩F SURFACE	MICROR COARSE	ELIEF FRAGM subang	No mic ENTS F ular un	rorelı ew coa specif	ef rse p ied c	ebbles oarse	, fragme	nts	A	STR DOM NNUAL	IINAN RAI	IT SP	FOR ECI	M ES 699 1	to en							
CONDITIC	ON OF S	URFACE	SOIL W	HEN DR	Y Su	rface	crust															
HORIZON	D	EPTH									DE	SCR	PTI	ON								
Ар	0	to .0	8 ma	Dar med Cle	k red lum p ar to	dısh b ebbles -	rown (, suba	5YR3 Ingul	/2) ar u	moist nspec	, gr 1f1e	eyıs d co	h b ars	rown e fr	(5YR agme n t	5/2) d .s, ma	ry, n ssive	> mot , dry	tles, very	humic firm,	sandy no <i>s</i> eg	clay, f pregatic
B21	.08	to .2	0 m	Dar few seg	k red smal regat	dı sh b l pebb lons	rown (les, s Clear	5YR3 ubro to-	/2) unde	moist d uns	, ve peci	ry f fied	ew co	fine arse	dıst: fragi	unct b ments,	rown : mode	ottl atel	es, sa y mol:	andy l st mod	ight me erately	dium el / firm,
B22	.20	to .7	Ош	Dul cla no	l red y, ve segre	dish b ry few gation	rown (small s Cle	5YR4 peb ar t	/4) bles o-	moist , sub	, br broun	own 1 Ided	sh uns	grey peci:	(5YR4 fied o	/1) m oarse	oist, frag	no m nents	ottle: , mode	s, san eratel	dy medi y moist	um heav very 1
D1	.70	to 1 0	0 m	Dul ver seg	l bro y few regat	wn (7 small ions	5YR5/4 pebbl Clear) mo es, to-	ist, subr	brow ounde	mısh dun	gre spec	y (ifi	75YI ed co	R4/1) Darse	moıst fragm	, no i ents,	ottl dry	es, sa modera	andy 1 ately	ight me firm, n	dium ເປີ ເວ
						~~~~	/7 5VD	4/11	າທ	et n	പര	ttle	s.	ໄດລໜ			nd f	ພາວ	daum i			
D2	1 00	to 1 3	Om	Bro uns	wnish pecif	ied co	arse f	ragm	ents	, dry	100	se,	com	non (	coarse	carb	onate	nodu	les (	Gradua	s, subr 1 to-	ounded
D2 D3	1 00 1 30	to 1 3 to 1 5	0m. 0m.	Bro uns Bro sma nod	wnish pecif wnish 11 pe 11es	grey grey bbles,	arse f (5YR4/ subro	ragm (1) m unde	ents oist d un	, dry , dul	loo l re fied	ddis coa	com h b rse	non ( rown frag	(5)R gments	/4) m	onate Dist, mode:	nodu no m ratel	les ( ottles y wea)	Sradua Sradua s, cla k, few	s, subr l to- y loam, fine c	sandy, arbonat
D2 D3	1 00 1 30 Depth metres	to 1 3 to 1 5 ' 1 5 ' pH	0 m 0 m Soil/Wa EC mS/cm	Bro uns Bro sma nod ter 'P Cl ' % ' 105C'	wnish pecif wnish il pe iles artic CS FS	grey grey bbles, le Size S C 105C	(7 SIK arse f (5YR4/ subro  e' ' CEC	1) m unde Exch Ca	ents oist d un Ca Mg eq/1 @ 10	, dry , dul speci tions Na 00q 5C	loo l re fied	ddis coa ' To	com rse tal	rown frag Elei K %	(5YR gments nents S	/4) m , dry Mo ADM	nd, in onate olst, mode: istur 1/3b % (ð 10)	nodu nodu ratel 15b	Disp	Ratio Ratio	s, subr l to- y loam, fine c ! ! !	sandy, sandy, arbonat
D2 D3	1 00 1 30 Depth netres	to 1 3 to 1 5 ' 1 5 ' pH	0 m 0 m Soll/Wa EC mS/cm 06 06	Bro uns Bro sma nod ter 'P Cl ' % ' 105C' 	wnish pecif wnish ll pe iles artic CS FS	grey grey bbles, le Siz \$ 105C	(7 SIR arse f (5YR4/ subro e' CEC	1) m unde Exch Ca m	ents oist d un Ca Mg eq/1 0 10	, dry , dul speci tions Na 00q 5C 	l re fied K	ddis coa 1 To	com h b rse tal P	rown frac Elei K % a 800	(5)R ments S	<pre>/4) m /4) m /</pre>	nd, it onate oist, mode: istur 1/3b & (0 10)	no m ratel	(Disp (Disp (Disp (R1)) (Contraction) (Disp (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction) (Contraction)	Ratio	s, subr l to- y loam, fine c ! ! ! ! ! !	sandy, arbonat
D2 D3	1 00 1 30 Depth netres 08 20 30	to 1 3 to 1 5 ' 15 ' pH ' 6 9 ' 7 0 ' 6 9 ' 7 0	0 m 0 m Soll/Wa EC mS/cm 06 .06 .05 .04	Bro uns Bro sma nod ter 'P Cl ' % ' 105C' 001 ' 001 ' 001 '	wnish pecif wnish il pe iles artic CS FS 22 48 18 44	grey grey bbles, le Sizi s C 105C 13 19 9 30	(7 SIR arse f (5YR4/ subro cet cet cet cet cet cet cet cet cet cet	1) m unde Exch Ca 8 1	ents oist d un Ca Mg eq/1 @ 10 2 4 5 1	, dry , dul speci tions Na 00q 5C 17 25	l re fied K 1 3 65	ddis coa 1 To 1 1 1 1 1	com h b rse tal P 07	rown fra Elei K 8 8 8 0 1 58 1 53	(5YR gments nents S 0.02 0.01	<pre>se carb (/4) m , dry</pre>	1/3b @ 10 20 27	nodu no m ratel 15b 5C 8	(Disp (Disp (Disp (R1 ( ( 84 ( ) 64	s, cla k, few Ratio R2	s, subr l to- y loam, fine c ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	sandy, arbonat
D2 D3	1 00 1 30 Depth netres 1k 08 08 20 30 40 50	to 1 3 to 1 5 ' 1 5 ' pH ' 7 9 ' 7 9 ' 7 9 ' 7 4 ' 7 7	0 m Soll/Wa EC mS/cm 06 .05 .04 .04 .04	Bro uns Bro sma nod ter 'P Cl ' % ' 105C' 	wnish pecif wnish il pe iles artic CS FS (0 	grey grey bbles, le Siz, s C % 105C 	(7 STR arse f (5YR4/ subro e c c c c c c c c c c c c c c c c c c	1) m unde Exch Ca 8 1 8 1	ents oist d un Ca Mg eq/1 @ 10 2 4 5 1	, dry , dul speci tions 000 5C 17 25	l re fied K 1 3 65	ddis coa i To i i i i i i i i i i i i i i i i i i i	com h b rse tal P 07 06	Eler K 2 800 1 58 1 53	(5YR gments nents 0.02 0.01	<pre>se sa carb /4) mo , dry / ADM / 1.3 / 2.4 /</pre>	1/3b @ 10 20 27	no modu no moratel 15b 5C 8 12	(Disp (Disp (Disp (R1 ( 84 ( 84 ( 64 ( 54	s, cla k, few Ratio R2	s, subr 1 to- y loam, fine c ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	rounded sandy, arbonat
D3	1 00 1 30 Depth metres 1k 08 08 20 30 40 50 60 70	to 1 3 to 1 5 ' 1 5 ' pH ' 7 0 ' 6 9 ' 7 7 ' 7 7 ' 7 7 ' 7 8 ' 7 9 ' 7 9	0 m 5011/Wa EC mS/cm 06 .06 .05 .04 .04 .04 .04 .04 .04 .04	Bro uns Bro sma nod ter 'P ter 'P ter 'P 001 ' 001 ' 001 ' 001 ' 001 ' 001 ' 001 '	wnish pecif wnish il pe iles artic CS FS (0) 22 48 18 44 8 46	grey grey bbles, le Sizc s C 105C 13 19 9 30 13 28	(751R4/ subro (5YR4/ subro (5YR4/ (5YR4/ subro (5YR4/ subro (5YR4/ subro (17) (5YR4/ subro (17) (17) (17) (17) (17) (17) (17) (17)	ragm 1) m unde Exch Ca m 8 1 12 14	ents olst d un Ca eq/1 @ 10 2 4 5 1 6 8	, dry , dul speci tions Na 00q 5C 17 25 .36	l re fied K 1 3 65 29		com h b rse tal P 07 06 06	rown frac Elei K 8 3 800 1 58 1 53 1.38	Coarse (5YR gments nents 0.02 0.01 0.01	<pre>% carb % carb % dry % dry % ADM % 1.3 % 2.4 % 2.3</pre>	20 28	nodu no m ratel 15b 5C 8 12 12	(Disp (Disp (Disp (R1)) (84) (84) (65)	Ratio	s, subr 1 to- y loam, fine c ! ! ! ! ! ! ! ! ! ! ! ! !	rounde <b>d</b> sandy, arbonat
D2 D3	1 00 1 30 Depth metres 08 20 30 40 50 60 70 80 90	to 1 3 to 1 5 1 5 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	0 m 0 m Soll/Wa EC mS/Cm 06 .06 .04 .04 .04 .04 .04 .04 .04 .04	Bro uns Bro sma nod ter (P Cl () % ( 105C() 001 () 001 () 001 () 001 () 001 () 001 () 001 () 001 ()	wnish pecif wnish 11 pe 11es 	grey bbles,  le Sizz 105C  13 19 9 30 13 28 11 21	(5YR4/ subro cEC cEC i i i i i i i i i i i i i i i i i i i	(1) m (1) m unde Exch Ca m . 8 1 . 12 . 14 . 11	ents olst d un Ca eq/1 @ 10 2 4 5 1 6 8 5.3	, dry , dul speci tions Na 00q 5C 17 25 .36 .40	1 loo 1 re fied  K  1 3 65 29 .21	se, dd1s coa ' Tc ' Tc ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0	com h b rse tal P 07 06 06	rown frac rown frac Eler K 3 800 1 58 1 53 1.38	0.02 0.01 0.01 0.01	<pre>/4) mo /4) mo /4)</pre>	20 27 28 20	nodu no m ratel 15b 5C 8 12 12 9	(Disp (Disp (Disp (R1)) (B4) (B4) (B4) (C1) (C1) (C1) (C1) (C1) (C1) (C1) (C1	Ratio	s, subr 1 to- y loam, fine c ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	rounded sandy, arbonat
D2 D3	1 00 1 30 Depth metres 08 20 30 40 50 60 70 80 90 1 00 1 00	to 1 3 to 1 5 ' 1 5 ' PH ' 6 9 ' 7 0 ' 7 0 ' 7 0 ' 7 0 ' 7 7 ' 7 8 ' 7 7 ' 7 8 ' 7 7 ' 7 8 ' 7 7 ' 7 8 ' 8 8	0 m 0 m Soll/Wa EC mS/cm 06 .05 .04 .04 .04 .04 .04 .04 .04 .04	Bro smaa nod ter (P cl () % () 105C() 001 () 001 ()	Wnish pecif wnish iles artic CS FS 22 48 18 44 8 46 32 39	grey bbles, grey bbles, s C 13 19 9 30 13 28 11 21	(5YR4/ subro cEC cEC c cEC c c cEC c c cEC c c cEC c c cEC c c cEC c c cEC c c cEC c c cEC c c c c	<pre>ragm ragm (1) m unde Exch Ca m 8 1 12 14 11</pre>	ents oist d un Ca Mg eq/1 @ 10 2 4 5 1 6 8 5.3	, dry , dul speci tions Na 00q 5C 17 25 .36 .40	100 1 re fried  K  29 	se, ddis coa ' Tc ' ' ' ' ' ' ' ' ' ' ' ' '	com h b rse tal P 07 06 06 06	non ( rown frag Eler 8 3 800 1 58 1 53 1.38 1.38	0.02 0.01 0.01 0.01	<pre>/4) mo /4) mo /4, dry //4) Mo /4 //4) //4 //4 //4 //4 //4 //4 //4 //4</pre>	20 27 28 20	no π ratel ess 15b 6C 12 12 9	() () () () () () () () () ()	Ratio	s, subr 1 to- y loam, fine c ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	rounde <b>d</b> sandy, arbonat
D2 D3	1 00 1 30 Depth metres 08 20 30 40 50 60 90 1 00 1 20 1 20 1 30	to 1 3 to 1 5 ' 1 5 ' pH ' pH ' 7 0 ' 6 9 ' 7 7 ' 7 8 ' 7 7 ' 7 8 ' 7 7 ' 7 8 ' 7 7 ' 8 0 ' 8 0 ' 8 0 ' 8 9 ' 8 0 ' 8 9 ' 8 0 ' 8 9 ' 8 0 ' 8 9 ' 8 0 ' 7 0 ' 8 0 '	0 m 5011/Wa EC mS/cm 06 .04 .04 .04 .04 03 03 03 03 02 08 10 07 06	Bro uns Brod sma nod ter (P ( 105C) 001 ( 001 ( 001)))))))))))))))))))))))))))))))))))	whish peecif whish ll pe lles artic CS FS 22 48 18 44 8 46 32 39 74 14	grey ied co. grey bbles, le Siz. s C 105C 13 19 9 30 13 28 11 21 4 9	(7 5YR4/ subro c (5YR4/ subro c CEC 14 14 18 19 19 15	ragm (1) m unde Exch Ca m	ents oist d un Ca Mg eq/1 2 4 5 1 6 8 5.3 2.2	, dry , dul speci tions Na 5C 17 25 .36 .40 23	1 loo 1 ref fied .21 18	se, dd1s coa 1 Tc 1 Tc 1 1 Tc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	com h b. rse 	rown frac Fler K 8 2 800 1 58 1 53 1.38 1.38	(5)R ³ ments S 0.02 0.01 0.01 0.01	<pre>/4) mo / ADM / / ADM / / / / / / / / / / / / / / / / / / /</pre>	13 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	nodu no modu no modu es 15b 50 12 12 12 9 13	(Disp (Disp (R) (B4 (B4 (B4 (B4 (B4 (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	Ratio	s, subr 1 to- 1 to- y loam, fine c ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	rounde <b>d</b> sandy, arbonat

-	SOIL TYPE Callide SITE NO S6	SUBSTRATE MATERIAL Unconsolidated substrate materials CONFIDENCE SUBSTRATE IS PARENT MATERIAL Almost certain or certain
	A M G REFERENCE 248 JIV ME 7 JUL 490 MN ZUNE 36	
		STOLE I &
	GREAT SOIL GROUP No suitable group	LANDFORM ELEMENT TYPE Levee
	PRINCIPAL PROFILE FORM Uf6 32P	LANDFORM PATTERN TYPE Level plain
	SOIL TAXONOMY UNIT Ustollic Haplargid	-
	FAG UNESCO UNIT: LUVIC Xerosol	VEGETATION
		STRUCTURE FORM
	TYPE OF MICRORELIEF NO INCODENCE	DOMINANT SPECIES
	SURFACE COARSE FRAGMENTS Very Iew coarse pebbles,	
	subrounded unspecified coarse fragments	ANNUAL RAINFALL 699 mm
	PROFILE MORPHOLOGY	
	CONDITION OF SURFACE SOIL WHEN DRY Recently cultivated.	surface crust
	· · · · · · · · · · · · · · · · · · ·	
	HORIZON DEPTH	DESCRIPTION

Ap	0 to 15 m	Brownish black (5YR3/1) moist, greyish brown (5YR5/2) dry, no mottles, fine sandy light medium clay, no coarse fragments, dry moderately strong, no segregations. Gradual to-
B21	15 to 60 m	Brownish black (5YR2/2) moist, no mottles, heavy clay, no coarse fragments, moderately moist very firm, no segregations non-calcareous. Gradual to-
D1?	.60 to 80 m	Brown (7.5YR4/4) moist, brownish grey (5YR4/1) moist, no mottles, fine sandy medium clay, no coarse fragments, moderately moist very firm, no segregations slightly calcareous. Gradual to-
D2	80 to 1 50 m	Brown (7.5YR4/4) moist, brownish grey (5YR4/1) moist, no mottles, sandy clay, no coarse fragments,

dry moderately firm, very few fine carbonate soft segregations, slightly calcareous

1																												!
Depth		1	5	S011/	Water	- 2	Pari	t10.	le "	Size	E	xch	C	at	.10ns		1	Tota	1 :	Ele	nents		Mo.	istur	es	וטי	.sp.1	atio
1	1		рң	mC (am	CI CI	÷	CS	rs	ి	- U 1	CEC	Ca	M North	ug Gino	Na.	ĸ	1	P		A	5	1	ADM	1/36	uci i	1	кı	RZ
neeres	÷			noy ca	- G105	C1		<i>a</i> .	105	e i		ue C	4/	10	ic g		÷		a	9 O	•	÷		ີ G 1 ທີ	50	i -		1
· /			_ ~-					<u>e</u> .					5 I	.0.0					_@		~ ~	·		6 10				i
'Bulk 10	٢	7	1	08	002	Т				1							1					r				1		1
' 10	t	7	1	06	001	Т	12	25	31	33 1	22	13	3	8	29	14	- 1	0 07	1	56	0 02	E.	2.4	28	13	1	70	1
4 20	ł	-7	0	06	001	1				1							- 1					4				1		1
· 30		7	1	07	003	r	2	30	26	47 '	28	18	5.	3	.52	72	t	0 06	1	51	0 02	۲	34	36	17	r	55	1
40	1	7	2	09	005	T.				1							r					۲				r -		1
· 50	1	-7	4	10	007	r				'												1				'		1
· 60	1	-7	-7	10	007		3	37	21	47 '	28	20	7	0	.59	61	ť	0 09	- 1	51	0.02	1	35	36	18	•	43	
70	1	8	0	10	007	I																1				•		
r 80	1	8	2	12	009	1																1				1		
r 90		8	4	15	013	1	13	46	13	32 1	20	15	5	7	52	44	1	0 08	1	52	0 01	I.	28	29	13	۰.	60	
1 00	1	8	3	.15	.014	1				•							1					1				1		
1 10	1	8	4	.19	.021	1								_			1									4		
1 20		8	4	24	.027		- 7	55	18	26 1	19	14	5	7	77	.41	4	0.06	1	. 53	0 01	5	2.8			1		
1 30	1	8	4	26	028	4				1																		1
1 40	1	R	5	21	027	-																2						
1 1 50	1	в	Э	40	027																							
/ Depth	11	ີ. ກະ	~ (	" UTOL	NI	FVI	+r	Dhe	neni	horus	t Ro	n I		D.P.P	DA-0	w + m												
Depen	- È		ar I	a		20	and.	t no	Bu	norus	1 12	P .	5	01	Mn	CU	•	7 n i										
metres	÷.	с.	98.	1 1	Я. I	110	Ju	DI DI	om	JULD	r me		r	C.	nn	m		211 ·										
1	- 1.1	a .	10'	5C1@ 1	0501		6	à î é	55C			SCL			ิลโ	050												
·																		1										
'Bulk 10	T		1 :	3   .	06 1		267			119	· 1	8 1	З	8	45	28	4	5 1										
1		-,																1										

44

1

SOIL TYPE Tognolini SITE NO S7 A M 3 REFERENCE 248 390 mE 7 301 310 mN ZONE 56

GREAT SOIL GROUP No suitable group PRINCIPAL PROFILE FORM Uf6 32P SOIL TAXONOMY UNIT Ustollic Haplargid FAO UNESCO UNIT Luvic Xerosol

TYPE OF MICRORELIEF No microrelief SURFACE COARSE FRAGMENTS No coarse fragments SUBSTRATE MATERIAL Unconsolidated substrate materials CONFIDENCE SUBSTRATE IS PARENT MATERIAL: Almost certain or certain

45

SLOPE 0 % LANDFORM ELEMENT TYPE Drainage depression LANDFORM PATTERN TYPE Level plain

#### VEGETATION

STRUCTURAL FORM: DOMINANT SPECIES

#### ANNUAL RAINFALL· 699 mm

PROFILE MORPHOLOGY

CONDITION OF SURFACE SOIL WHEN DRY Surface crust

HORIZON	DEPTH	DESCRIPTION
Ap	0 to 05 m	Brownish black (5YR3/1) moist, brownish grey (5YR5/1) dry, no mottles, medium clay, no coarse fragments, fragment secondary, parting to moderate 2-5mm subangular blocky primary, dry moderately strong, no segregations. Abrupt to-
B21	05 to 60 m	Brownish black (5YR2/1) moist, no mottles, heavy clay, no coarse fragments, moderately moist very firm, no segregations non-calcareous. Gradual to-
B22?	60 to 80 m	Brownish black (7.5YR3/1) moist, brown (7.5YR4/4) moist, no mottles, heavy clay, no coarse fragments, moderately moist very firm, no segregations slightly calcareous. Gradual to-
D	80 to 1 50 m	Brownish black (7 5YR3/1) moist, brown (7.5YR4/4) moist, no mottles, fine sandy medium clay, no coarse fragments, dry moderately firm, wery few medium carbonate nodules, yery few medium carbonate

-----

coarse fragments, dry moderately firm, very few medium carbonate nodules, very few medium carbo soft segregations

I De	pth	1	1	5	Soil/	Water	1	Part	:1C	le	Size'	E	xch		at	ions		1	Total	E1	ement	s	м	01	sture	es	'Disp	Ratio
,		•	P	Н	EC	Cl	ł	CS	$\mathbf{FS}$	s	C '	CEC	Ca	N	ſg	Na	K	r	Р	K	5	3	AÐ	Μ.	1/3b	15b	1 R1	R2 1
' me	tres				mS/cm		.!		~	8_	_ '		me	eq/	10	)0g		r .		<u></u>		1			~ ^{- 8}		1	
		1				@1026	C.		6.	105	c i		0	11	.05	oC .			(	a s	00			1	@ 10:	e e	·	
'Bulk	10	1	7	0	09	001	,				1							i.									1	
1	10	۰.	7	0	09	001	1	7	23	34	41 /	29	17	5	9	30	2 0	L.	0 09 0	14	9 0.0	12	3	4	37	17	I 58	
1	20	۴	7	0	08	.001					1							ι				1					1	
1	30	٠	б	9	05	.002	1	3	25	29	50 r	30	19	6	6	49	.86	L.	0 07 (	13	8 0.0	2	4	3	38	19	1 57	9
	40	,	б	9	05	.003					1							ι									1	
¢.	50	٩	7	3	05	003	۲				r							I									f i	1
1	60	٩	7	5	06	004		2	28	21	52 1	33	22	8	7	.71	69	1	0.06 1	13	6 0.0	12	3	4	40	20	۱ 5 <b>1</b>	. I
1	70	٩.	7	8	08	005					1							1									•	
н. —	80	٩	7	9	09	007					1							۹.									(	
1	90	1	8	0	11	008	I.	3	42	19	42 1	23	19	7	2	58	51	1	0.05	14	400	י 10	2.	9	33	16	· 49	
· 1	00	٩.	8	3	12	007	۲				1							۱.									(	1
· 1	10	1	В	3	09	007					1							•									۱. I	
· 1	20	۰.	8	4	07	006	e	12	45	14	31 1	19	14	6.	1	.54	42		0.04 1	15	000	11	2.	1			L	
· 1	30	٠	8	4	07	004	ч.				f							•									t i	
· 1	40	1	в	4	06	004					t							1									۱. I	1
· 1	50	4	в	4	06	004	1				1							I.									I	1
1																												
Ⅰ De	pth	10	Drg	c	'Tot	NI	Eх	tr.	Pho	ospl	horus	∣ Re	рι		DT	PA-e	xtr		1									
1		1	(Ŵ	'&B	1 (1	•	A	cid		Bi	carb.	I K	Ĩ	F	'e	Mn	Cu	Zı	n I									
• me	tres	1		8	1 1	8 1			PE	m		l me	r\$p			PP	m		1									
·		1	31	05	રાઢ મ	05C'		(	<u>a</u> 10	)5C		ା ( <u>ଡ</u> ି10	5CI			@1	05C		1									

'Bulk 10 ' 2 2 ' 16 ' 412 189 ' 2 2 ' 72 72 3 5 1 8 '

(______

SOIL TYPE Woodall SITE NO S8	—	SUBSTRATE MATERIAL: Unconsolidated substrate materials CONFIDENCE SUBSTRATE IS PARENT MATERIAL Almost certain or certain											
A M G REFERENCE: 248 880 mE GREAT SOLL GROUP Black earth	7 301 270 maN ZONE 56	SLOPE- 2 % LANDFORM FLEMENT TYPE Levee											
PRINCIPAL PROFILE FORM Ug5 17 SOIL TAXONOMY UNIT Mollie Tor	7P rrert	LANDFORM PATTERN TYPE · Level plain											
TYPE OF MICRORELIEF No microi	isol relief	STRUCTURAL FORM: DOMINANT SPECIES											
SURFACE COARSE FRAGMENTS No coarse fragments ANNUAL RAINFALL 699 mm													
OFILE MORPHOLOGY													
CONDITION OF SURFACE SOIL WHEN	N DRY Surface crust, self	mulching											
HORIZON DEPTH		DESCRIPTION											
Ap 0 to .05 m	Dark reddish brown (5YR3/2 coarse fragments, moderate blocky primary, dry very f	) moist, greyish brown (7 5YR4/2) dry, no mottles, light medium clay, no 5-10mm subangular blocky secondary, parting to moderate 2-5mm subangular irm, no segregations. Clear to-											
B21 .05 to .65 m	Brownish black (5YR2/2) mo moderately moist very firm	ist, no mottles, medium heavy clay, no coarse fragments, moderate pedality , no segregations slightly calcareous. Diffuse to-											
D1 .65 to 1.10 m	Brownish grey (7 5YR4/1) m clay, no coarse fragments,	oist, bright brown (7 5YR5/6) moist, no mottles, fine sandy light medium dry very firm, few fine carbonate soft segregations. Diffuse to-											

D2 1.10 to 1.50 m Brownish grey (7 5YR4/1) moist, bright brown (7 5YR5/6) moist, no mottles, fine sandy clay, no coarse fragments, dry very firm, few fine carbonate soft segregations.

Depth metres	1 ] 1 1	1:5 pH	Soll/ EC mS/cm	Nater Cl % @105	'1 C'	art CS	rs PS	le : 5 %	Size C	E CEC	xch Ca me	Ca Mg eq/1 2 10	tion Na 00g 5C	s K	r Tota r P r	a1 (0	Elem K % 80C	ents S	† Mo † ADM †	1stur 1/3b % @ 10	es 15b 5C	†Disp   R1 	Ratio R2
Bulk 10	1 1	7.2	07 05 06	001		6	21	33	37	27	19	55	.21	15	1 0.07	7 1	40	0 02	   3.2	37	15	50	
30 1 40		7.0	04	001	ì	2	22	26	53	34	21	8.4	. 80	71	0.05	51	.18	0.02	3.6	41	21	66	
1 60 1 70	1 8	79	08	003	i	4	30	24	49	31	22	10	12	.45	, 0.06	51	. 22	02	3.9	38	19	60	1
90 1 00	18	54 84 84	23 35 40	017 030 038	i	6	46	19	35 r	23	17	8.0	14	. 23	i 0.05	51	. 28	9 02	2.5	32	14	60	
1 10 1 20 1 30	1 8 1 8 1 8	82 81 80	39 36 36	040 041 044	i	7	48	20	31	22	17	7.6	13	. 23	r 0.05	5 1	.31	0.01	2.9			1 1 1	
1 40 1.50	ן ו ז ו 	80 81	34 33	044 041	;				י י						1 1 				1 r 			, , 	
Depth metres	ימי יפ	rg ( (W&E % 105	C'Tot 3)' 5C'@1(	N 1 1 50'	Ext Ac	er. eid	Pho Pl 1	B10 D5C	orus arb	; 'Re 'К 'те '@10	9             	D Fe	TPA- Mn Ø	extr Cu pm 105C	Zn †								

Bulk 10 1 8 1 10 382 147 2 1 41 52 2 9 0 8

`

SOIL TYPE Woodall SITE NO: S9	- F 7 201 240 - N KONR 54	SUBSTRATE MATERIAL. Unconsolidated substrate materials CONFIDENCE SUBSTRATE IS PARENT MATERIAL Almost certain or certain
GREAT SOIL GROUP No suit PRINCIPAL PROFILE FORM U	able group 66.32	SLOPE 0 5 % LANDFORM ELEMENT TYPE Levee LANDFORM PATTERN TYPE Level plain
FAO UNESCO UNIT LUVIC Xe	rosol	VEGETATION STRUCTURAL FORM TUSSOCK grassland
TYPE OF MICRORELIEF NO m SURFACE COARSE FRAGMENTS:	icrorelief Very few cobbles,	DOMINANT SPECIES
subrounded	unspecified coarse fragments	ANNUAL RAINFALL 699 mm
PROFILE MORPHOLOGY:		
CONDITION OF SURFACE SOIL	WHEN DRY: Surface crust	
HORIZON DEPTH		DESCRIPTION
A1 0 to .05 m	Dark reddish brown (5YR3/) fragments, weak <2mm platy	2) moist, greyish brown (5YR5/2) dry, no mottles, medium clay, no coarse y, dry moderately strong, no segregations Gradual to-
B21 .05 to 75 m	Brownish black (5YR2/1) mo moderately moist very firm	oist, no mottles, medium heavy clay, no coarse fragments, moderate pedality m, no segregations slightly calcareous. Gradual to-
D1 75 to 1.10 m	Brownish black (7 5YR3/1) clay, no coarse fragments,	moist, dull reddish brown (5YR4/4) moist, no mottles, fine sandy medium , dry very firm, very few fine carbonate soft segregations. Clear to-
D2 1.10 to 1.50 m	Dark reddish brown (5YR3/2 coarse fragments, dry very	2) moist, brownish black (5YR2/1) moist, no mottles; light medium clay, no y firm, no segregations slightly calcareous

Depth metre	 	1	5 pH	Soll/ EC mS/cm	Water Cl 8 G105	- 1) - 1 - 1 - 1 - 1	Par CS	FS 6	le : S	Size C	CE	Exch C Ca	i ( ieq,	Cat 4g /10	Na Na Na	ĸ	г г г	Tota. P	1   	Elen K %	ents S	1 1 1	Mo: Adm	1/3b 1/3b 8 @ 10	es 15b 50	ים ים י	1 <i>s</i> p R1	Ratio R2
1								<u>e</u>					e -											6 10				
'Bulk 0	5 I	7	3	07	002	1				4							٩					t				I.		
.05		7	3	06	001	1	10	24	35	36 1	23	9 16	i 7	2	.34	2.2	١	0 10	1	.42	0.03	r	28	39	15	,	61	
· 20	,	- 7	4	06	002	· •				1												t				'		
· 30	,	- 7	4	06	002	. •	3	18	28	53 1	- 31	3 23	: 9	7	1.3	.68		0 06	1	.11	0 02	I.	45	41	21	t.	58	
· 40	,	- 7	-5	06	004					1							1					I.				r -		
.50	,	- 7	-7	80	006	•				1							¢					1				r		
.60		- 7	9	.11	010		2	20	25	52 1	31	3 27	1	13	1.3	42	ı	0 06	1	08	0 02	1	5.0	40	21	1	.56	
1 70	,	8	0	17	018												,					1				1		
80	Į	8	1	27	027												'					1				1		
.90		8	2	.33	030		9	30	24	40 1	29	9 20	1	L O	13	24	r	0.06	1	16	0 02	1	3.6	35	16	ł	. 53	
1.00	Ę	8	4	.33	030												r					1				1		
1 1 1 0		8	3	.36	034	1											r					1				4		
1 20	r	- 8	3	.40	039	1	10	28	24	40 1	20	519	9.	. 2	15	24	1	0.05	1.	. 27	0.02	١.	3.7			•		
1 30		8	2	.37	040	1											İ					ı.				1		
1.40	'	8	2	.36	038												1									•		
' 1.50	'	8	2	33	036	1				, I							ł.					ı.				•		1
) and h																												
Jepth		or	g ( wer	J TOL	DN P	EX.	ur and	Ph	Sabi	iorus		ep '	т	נים גים	PA-6 Ma	Cu	۰,											
I motiona			461	27 j	a ,	A	C10		BIG	sarp	÷.,	1.600.01		e	mu		4	<u>ан і</u>										
uetre	2	a	- <del>5</del> 101		0501			a Pl	011		10	0.500			GPE	050		i										
	~'	<u>e</u>	10:	<u> </u>			(	е т,			· @.				61			i										
Bulk 1	n I		2 (		07 1		466			58	r 3	2 2 1	4	15	50	2.8	1	1 0										
/																		1										

.

47

SOIL TYPE Melton SITE NO SIO A.M G. REFERENCE: 247 680 mE 7 301 300 mN ZONE 56

GREAT SOIL GROUP: No suitable group PRINCIPAL PROFILE FORM: Uf6 32P SOIL TAXONOMY UNIT Ustollic Haplargid FAO UNESCO UNIT: Luvic Xerosol

SUBSTRATE MATERIAL Unconsolidated substrate materials CONFIDENCE SUBSTRATE IS PARENT MATERIAL: Almost certain or certain

SLOPE 0 % LANDFORM ELEMENT TYPE Plain LANDFORM PATTERN TYPE Level plain

VEGETATION STRUCTURAL FORM: DOMINANT SPECIES

#### ANNUAL RAINFALL · 699 mm

#### PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Surface crust

TYPE OF MICRORELIEF No microrelief SURFACE COARSE FRAGMENTS No coarse fragments

HORIZON	DEPTH	DESCRIPTION
Ар	0 to 10 m	Dark reddish brown (5YR3/2) moist, greyish brown (5YR4/2) dry, no mottles, medium clay, no coarse fragments, dry moderately strong, no segregations. Gradual to-
B21	.10 to 75 m	Brownish black (5YR3/1) moist, no mottles, heavy clay, no coarse fragments, moderately moist very firm, no segregations slightly calcareous. Gradual to-
D1	.75 to 1 30 m	Brown (7 5YR4/6) moist, brownish black (7 5YR3/1) moist; no mottles; fine sandy medium clay, no coarse fragments, moderately moist very firm, very few fine carbonate soft segregations. Gradual to-
D2	1.30 to 1 50 m	Dark brown (7 SYR3/3) moist, black (7.5YR2/1) moist; no mottles, fine sandy medium clay, few small pebbles, subrounded unspecified coarse fragments, moderately moist moderately firm, no segregations slightly calcareous

Depth metres	י י י	15 pH	Soil/ EC mS/cm	Water Cl & @1050		art CS	FS	e s t 05	Size' C' C'	CEC	Exch Ca m	. Ca Ma eq/: 2 10	ation y Na L00g )5C	s K	Tota 1 p	a1 (@	Ele K %	ments S C	1 1 1	Moi ADM	sture 1/3b @ 105	ic	'Disp ' Rl '	Ratio R2
Bulk .10	1	74	10	001	1				1						r				,				1	
10	F	76	08	001	٩.	6	28	28	42	29	19	7 !	).44	1.2	1 0 0	81	36	0.02	r	3.3	35	16	1.60	
· 20	r	7.6	.08	001	•				1						1				r				1	
I 30	r	7.6	09	002	1	5	24	29	48 1	32	20	83	3 1.0	. 76	1 0.0	71	32	0 02	r	3.8	38	20	· 53	
! 40	1	76	10	005	•				1						1				r				1	
1 50	r	7.6	.11	006	1				•						1				r				1	
1 60	1	7.8	.12	007	•	4	25	20	53 1	34	22	- 10	) 1.8	58	0.0	61	- 16	0 02	1	39		22	· 64	
£ 70	1	8.0	.12	008					1						1				r				1	
1 80	r	8.0	.13	010	•										1				1				•	
0 0 0	T	82	.16	014	,	5	36	18	40 1	27	20	9.0	112	31	0.0	71	14	0 01	1	3.5		17	· 65	
! 1 00	1	83	.20	.021	•				•										1				•	
1 1 10	1	82	.24	.028											·				•				1	
1 20	1	82	26	031	<u>ا</u>	11	39	17	34 1	24	18	8.3	5 99	24	0.04	51	.19	0.01	•	3.4			1	
1 30	1	82	20	.024	1				•						r				1					
1 40	1	82	21	026	'														1				,	
1 50	1	8.2	.23	.028	,				'						'				•				'	
Depth	1(	Drg (Wal	C !Tot B)!	.N † E	cxt Ac	r 1d	Phc	spl B10	norus varb	' Re	ep.¦	I Fe	TPA-	extr. Cu	2n !									

/ met	res		8	<u>і</u> (	8	1		ppm	1	megti		ppm	
r	E	Э	105	6 ' O	1050	21	6	105C	- 14	a105C+		@ 105C	1
1													
Bulk	10 1		18	; r	07	١	401	166	1	1.7 1	35	35 3.1	19 i
1													